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Abstract

We introduce the class of p-adic F-functions which contains both the /?-adic E-functions and /?-adic
G-functions, as well as other functions. In this paper we obtain lower bounds for polynomials in the
values at algebraic points of a class of/>-adic F-functions defined over the completion of the algebraic
closure of a p-adic field.

1980 Mathematics subject classification (Amer. Math. Soc): 10 F 45.

1. Introduction

One speaks of the Siegel-Sidlovskii method for studying the arithmetic properties
of E-functions and G-functions in virtue of Siegel's seminal paper [12] and
Sidlovskii's far-reaching generalization [10] of this work. In the p-adic case,
Flicker [4] considering a polynomial in p-ndic G-functions, and Remmal [8]
generalized a result of Bundschuh and Walliser [2] on the ^-adic exponential
functions by considering polynomials in p-adic ^-functions defined over the
completion of the algebraic closure of a />-adic field. Estimates at rational points
are given. Remmal [8] also deals with the/>-adic function ^=oh\zH which is not a
/7-adic ^-function or G-function. His work motivates us to consider a new class of
p-adic functions. We name these functions p-adic F-functions and give estimates
for values at algebraic points of a class of p-adic F-functions.

I should like to thank Professor A. J. van der Poorten for his help in preparing
this paper and the School of Mathematics and Physics at Macquarie Univerisity
for its provision of good research conditions.
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2. Notations and results

As usual Q denotes the field of rational numbers. If p is a fixed prime then Q^
denotes the field of p-adic rationals and Cp a completion of an algebraic closure
of Qp. We denote by K a subfield of Cp of degree d over Q, and by OK the
domain of integers of K. We use | -1 to denote the archimedean valuation (that is,
the ordinary absolute value), | • 1̂  the normalised non-archimedean valuation
(that is, the />-adic valuation with \p | = p'1), and use II • II to denote the size of
an algebraic element of Ĉ  (by which we mean the maximum of the absolute
values of the element and its field conjugates).

A p-adic ^-function is defined as an analytic function of the form

/(*) = 1 ahz"
h=0

where the ah have the following properties:
(i) ah G K, h > 0, and there exists a sequence of natural numbers qo,qu...,

and a function <$>(h), which is an increasing function of h, such that

qhcijGOK and max(qh, \\qhaj\\) < <t>(h), h>O,O^j^h.

(ii) There are constants a > l,b> 1, and c > 0 such that

\ao\p*ia, \ah\p<ahbch, h>l.

So the ser ies / (z ) converges in the subdisc of those z in C^ with \z\p< c~\

Suppose now that we have a system of linear differential equations

h=\

with the Qih(z) G K(z). There is then no loss of generality in supposing that the
Qih{z) are rational functions with coefficients in OK (see [10]). We denote by T(z)
a least common denominator for the rational functions Qih{z). Thus T(z) is a
polynomial in OK[z] such that all the T(z)Qih(z) are in OK[z].

Let

(2) g = max(degr(z),deg(7-(z)e,7(z))),
i ,h

T = max{\l\zT\, | T{z)Qih{z) |)

where | T{z) | denotes the height of polynomial T(z) (that is, the maximum of the
sizes of its coefficients).

If a set of p-adic F-functions/^z),... ,/m(z) satisfies (1) and (2) then we speak
of them as belonging to the class/(K; </>(/*); a, b, c; g, T).
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In particular, the standard ^-functions, 1hahz
h/h\, belong to the class

F(K; C2(*+1)/i!; C,0,CpWip~x\ g, T) for a suitable constant C, and the standard
G-functions, lh ahz

h, belong to the class F(K; C2(h+^\ C,0, C; g, T) again for a
suitable constant C. (Compare [8] and [4].)

We give some further examples: Let a be a non-negative integer. Consider a
function

00

h = 0

Using a method similar to that of Lemma 3.1 in Chapter II of Bachman's book
[1], it is easy to verify that for h > 1 we have

| (a + 1) • • • (a + h) L, </r*/(*-i)+iog<A+<.)/iog/,+ i

So the series fa(z) converges in the subdisc of those z in Cp with | z \p <p]/{p~l\
Moreover, the function/a(z) satisfies a linear differential equation

zl

Let ai,...,am be m distinct non-negative integers. Put a = max(ax,...,am).
Then fa (z) , . . . ,fa (z) belong to the class of p-adic F-functions

F(K; (a + (h + l)/2)*; p(a + \),\,p-^'~\ 2, a + l).

In this paper we shall suppose that p-adic F-functions/,(z),.. .,/m(z) do not
satisfy any algebraic equations of degree at most r, and with coefficients in K. Let
P(x, , . . . ,xm) 2 0 be any polynomial in 0K[x, , . . . ,xm] with degree 5 < r and
with height H, say

(3) P(Xi,...,Xm)= 2 Cti...iA"-Xm>

cit...imEOK and

Put

Suppose that| e K with £T(£) ¥= 0 and let q be the smallest natural number such
that qi" 6 OK, where the £° are the field conjugates of £. Let Q — max(^r, II ^11).
Clearly we have

(4) Q-d<WqS\\-d<\N{qi)V*\qZ\P<>\i\P,

where N( •) denotes the norm of an element of K. We assume

(5) \i\P<Q-d'
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where d' is a positive number with

(6) 0<d'<d and do = d'u - d(u - v) > 0.

Then we obtain

THEOREM 1. Under the assumptions above, there exist positive constants y2, y2, T?
and T)0, independent of Q and H, and there is a non-zero function ^(ij), such that for
any real number 0 < 17 < T)0 and any £ in K as above and with

we have

(7) X = 3d'duv/d0.

In general, the constant y,, y2, Y3 a f e effectively computable but the constant TJ0

is not. Y|, y2, Y3 and ^(i)) will be detailed in the proof of the theorem.

THEOREM 2. Consider a set ofp-adic E-functions f\{z),... ,fm{z) defined as above.
Under the assumptions of Theorem 1, there exists a positive constant y4, independent
of Q and H, such that for any real number 0 < TJ < T)0 and any £ inK as above and
with

Q > y4v~4d(u~v)/d°Hr>,

we have

where TJ0, X are as in Theorem 1.

This result is a generalization of the theorem in Section 3 of Remmal [8].
A similar result can be obtained for a set of p-zdic G-iunctions when Q > y5H

v

(in place of the condition in Theorem 2). Additional hypotheses seem to be
required to obtain more precise results of the type given by Flicker [4].

THEOREM 3. Let a , , . . . , ^ be (i distinct integers in OK which are linearly
independent over Q, and let / } , , . . . ,fiv be some other v distinct non-zero integers in
OK with

a = m a x ( I I a , | | , | | ^ . | | ) , a p = m a x ( | « ; | | % . ) ) .
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do = d'u-d(u-\)>O,

then there exist positive constants y6, y7, depending on p, n, v, d, d', a, ap and there

is a non-zero function ^x(i\) such that for any non-zero polynomial / * ( * , , . . . , * + „ )

in 0 K [*,,.. . ,x M + F ] of degree r and with height H and for any real number

0 < 7j < TJ0 and any | in K as above and with

we have

This result is a p-adic analogue of Theorem 2 of Cirskii [3].

THEOREM 4. Let au...,am be m distinct non-negative rational integers with
a — max(a , , . . . ,am) . We consider p-adic functions

fa,(z) = 2 (*/ + 1) • • • («, + h)z"> Ki<m.
h = 0

If
( l ) do = d'u-d(u-l)>0,

then there exist positive constants yg, y9, and there is a non-zero function ^ ( T J ) such
that for any non-zero polynomial P ( x , , . . . , x m ) G OK[xx,... ,xm] of degree r and
with height H and for any real number 0 < 17 < TJ0 and any £ in K as above and with

we have

This result is a generalization of the theorem of Remmal [8], Section 1.
Let / , ( z ) , . . . ,/m(z) belong to F(K; <j>(h); a, b, c; g, T). We consider the set of

functions

/,*'(*) • • • / > ( * ) , 0 < A , + • • • + * „ < r ,

and name them F,(z), . . . ,/u(z), with the convention that Fx(z) — 1. As in [5],
Lemma 7, we see that f , (z ) , . . . ,Fu(z).belong to

F(K; r+h4>(h)<t>([A/2]) • • • * ( [A/ r ] ) ; a ' , /*, c; g, rT)
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and satisfy a system of linear homogeneous differential equations

(8) y l = t Q?*(z)yh, l < i < u .
h=\

There are u polynomials

A = 0

in 0K[z] and not all zero, with the properties
( i ) |P , ( z ) |< C?<&(«), where

(9) CI = (4" + '< / ) " 2 A \

and

(10) * ( « ) = {*(m)*([un/2]) • • • * ( [u»A] )} r f " / - ;

(ii)fl(z) = 2,"=1P,(z)/;(z) satisfies ord /?(z) s* K/I - [un] - 1, where ord i?(z)
denotes the order of the zero of R(z) at z = 0; and

(iii) | rt(z) I, < (awr*)"(c | z ^ " " - [ - " l - i for all z in K with \z\p< c~l. Here w is
a constant satisfying 0 < w < 1/2.

To construct the required polynomials note that (ii) amounts to M = un —
[w/i] — 1 linear equations in the N = un unknowns pih, the coefficients in the
equations being in OK and having sizes at most A = 2r+un<b(n)u/(du). There is a
solution of this system with

\\pih\\

which gives (i). (The particular estimate used here follows from the proof of
Lemma 1.3.1 in [15] and the remarks in [14].) Finally (iii) follows since the
coefficients of the Ft(z) have /7-adic valuations not exceeding arhrbch and
arhrhc

Let

(11)

* | z |* is
/?,(*) =

It follows that

(12)

where

1

the/>,,(

?*,(*) =

a decreasing
R(z)and

**(*:

**(^

z) are in OK[

d
dz k~

function of h.

) =

T{z)j-zRk.x{z),

2 ^,(O^(^),

z] and satisfy the recurrence

0A-

> 2 .

s 1,

relation

A: > 2, 1 < / < M,
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with PiX(z) = P,(z) and Q*t(z) as in (8). Let the dimension of the vector space
over K(z) generated by the Rk(z) be /. From [6], Theorem 3,

(13) ord R(z) *zln + ti(m)sT,

where T = (m + l ) m + 1 + m+ 1 and ti(m) is a constant depending on the
functions / , ( z ) , . . . , fm(z).

Let A(z) = det(Pk,(z))^,k^u and put

(14) t = [on] + u(u - l)g/2,

(15) «0 = 2fl(m)sT + 2.

If n > «0, we see, as in Lemma 8 of [11], that

A(z) = z""-[w"1-1A1(z),

where A,(z) is in OK[z] and not identically zero and deg A,(z) =s t.
Let £ be given as above with | £ \p < min(l, c"1) and let

(16) u0 = «(« - l ) g /2 + «.

If « > max(/i0, MO/W), then there are u distinct suffixesy,,... Ju with 1 <_/', <j2
< ' ' " <JU ^ ( + M s u c n t n a t t n e M x M determinant with entries

qki = qn+^PJklU), 1 < i, * < «.

is non-zero. Further, the ^ , are in OK and satisfy

11^,11 ^ C2"<!>(n)n2»"Qn+Jkg,

where

(17) C2 = 4s+1/-rC,.

This follows from the argument of Lemma 6 of [13] and Lemma 7 of [10].
Finally we estimate | RJk(£) \p. It is easily seen by induction that

Moreover, since ord R(J\z) > M — j k — 1, we have

-j+ l)t"-J\p) < arMrbcM \

Therefore

with

(18) C3 = (au)rhc».
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3. The proofs of theorems

PROOF OF THEOREM 1. We consider the set of functions

and denote them by ̂ , (z) , . . . ,^ (2) . Then we have

[81

1 = 1

where the ckj satisfy the conditions (3). We define

7 = 1

From the above construction, the linear forms r,( £),...,/-„(£) are linearly inde-
pendent. Since ^,(£),. • • >^o(i)

 a r e linearly independent, we can select w = u — v
linear forms, indeed, without loss of generality, the first w forms, such that

are u linearly independent linear forms. Denote the determinant of their coeffi-
cients by A. Clearly A ̂  0 and A £ OK. We have | N(b) \> 1. By replacing the
first column on the left by the sum of the /th column multiplied by /•)(£), we get

(19) A =

4 l 2 • • • <?lu

12

<\,1 <\ ,2

7 * 2 ••• <7»

We now estimate the size of A using the determinant on the left of (19). Since

1 <y, + • • • +jw < Iwosn we obtain by (3)

II All < u\HvC2
wn(^{n))wn2w""Qwn+2w^n,

and so

(20) lA^lMA)!"1 >HA||-rf

c3"Q'd'un+3u".
By (4) and (5) we have

(21) ,

We now take

(22) di = 3d + 2dg(u-v), d* = min( </„,</,), uo = d*
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Clearly 0 < w0 < 1/2. We choose

(23)

(24)

(25) Y3 = (max(a, a(b/(elog2))b))'~r,

(26) TI0 = min(2dv/ (dono),2dvuo/ (douo)),

(27) « = «0.

For any real number 0 < 17 < T)0 we set

(28) n=[2do/(d0r,)] + l.

Then for any Q with Q > Y 2 ¥ ( I J ) # \ where

(29) ( )f-oWvWV\

we have

(30) ud"Cdw"

so that I rk(i) \p < | A ̂  by (20) and (21). Finally, we use the determinant on the
right of (19). This gives

A = 1 A : = l

where AA and 8k are certain minors of the determinant. Clearly | Ak \p < 1,
I 8 t \p < 1. Since G > Yi ^ (2c)l /< r we see that | £ |p < (2c)"1 and that for 1 < / «£

It follows that

Noting Q > Y, > C{Vi3du°\ we have

by (7), (20), (21), (30), completing the proof of Theorem 1.

REMARK 1. If the/7-adic functions/,(z),... ,/m(z) are algebraically independent
over K, then for any non-zero polynomial P(xu...,xm) G OK[xx,.. .,xm] with
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degree s, we can choose r = s. S in this case we have v = 1, y3 = 1 and the
theorem takes a simpler form.

REMARK 2. The constant R(m) in Theorem 1 is not effectively computable.
However, suppose tha t / , (z ) , . . .,/m(z) constitute an irreducible set of functions.
That is, the functions satisfy a system of linear homogeneous differential equa-
tions and an equation

m

2Pk(z)yk = 0, Pk(z)eCp[z],Kk<m,

where >>,,... ,ym is some solution of the system of differential equations, occurs
only when Pk(z)yk = 0, 1 < k < m, identically in z. In this case the constant
J2(m) is effectively computable. However we should note that proofs of the
irreducibility of sets of functions are very complicated (for example see [11]).

If the functions F,(z) , . . . ,Fu(z) constitute an irreducible set of functions then
we can compute the constant n0 in (15) by using methods similar to those of
Lemma 6 of [10], and Lemma 3 of [11]. This gives

(31) n0 = 2o + u(u-l)g,

where a is the least order of a zero of the functions Ft(z) at z = 0.

PROOF OF THEOREM 2. Using a similar method we can compute the constant y4

as follows: Let

Then

y4 = u2

where the constant w0 is given by (22). This completes the proof of Theorem 2.

Similarly, to obtain the remark about G-functions, let

and

PROOF OF THEOREM 3. It is easy to verify that the functions
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satisfy the system of linear differential equations

and belong to the class of p-adic ^-functions

We can see from an analogue of the theorem in [7] that these functions are
algebraically independent over Cp(z). Clearly v = 1, y3 = 1 (see Remark 1), and

Hence

Tj0 = min(2d/ (dono),23duo/ {douo))

and we can compute the constant y6 from (18), (22), (23), (27); y7 from (9), (17),

(18), (22), (24), (27), and the function * , (TJ) is given by (10), (27), (29).

PROOF OF THEOREM 4. From our example of /?-adic .F-functions in Section 1 we
see that the functions fa ( z ) , . . . ,/„£<*) belong to

F(K;(a + (h+ \)/2)h;p(a + 1), 1, p - ' A ' " 1 ) ; 2, a + l ) .

It is easy to verify that the functions fa(z),. ..,fa(^z) are algebraically indepen-
dent over Cp(z). Using a method similar to the proof of Theorem 3 we can
compute the constants ys, yg and TJ0 and the function ^M-
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