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Abstract

We introduce the class of p-adic F-functions which contains both the p-adic E-functions and p-adic
G-functions, as well as other functions. In this paper we obtain lower bounds for polynomials in the
values at algebraic points of a class of p-adic F-functions defined over the completion of the algebraic
closure of a p-adic field.
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1. Introduction

One speaks of the Siegel-Sidlovskii method for studying the arithmetic properties
of E-functions and G-functions in virtue of Siegel’s seminal paper {12] and
Sidlovskii’s far-reaching generalization [10] of this work. In the p-adic case,
Flicker [4] considering a polynomial in p-adic G-functions, and Remmal [8]
generalized a result of Bundschuh and Walliser [2] on the p-adic exponential
functions by considering polynomials in p-adic E-functions defined over the
completion of the algebraic closure of a p-adic field. Estimates at rational points
are given. Remmal [8] also deals with the p-adic function I2_,h!z" which is not a
p-adic E-function or G-function. His work motivates us to consider a new class of
p-adic functions. We name these functions p-adic F-functions and give estimates
for values at algebraic points of a class of p-adic F-functions.

I should like to thank Professor A. J. van der Poorten for his help in preparing
this paper and the School of Mathematics and Physics at Macquarie Univerisity
for its provision of good research conditions.
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2. Notations and results

As usual Q denotes the field of rational numbers. If p is a fixed prime then Q,
denotes the field of p-adic rationals and C, a completion of an algebraic closure
of Q,. We denote by K a subfield of C, of degree d over Q, and by Oy the
domain of integers of K. We use | - | to denote the archimedean valuation (that is,
the ordinary absolute value), | -|, the normalised non-archimedean valuation
(that is, the p-adic valuation with |p |, = p~ "), and use || - || to denote the size of
an algebraic element of C, (by which we mean the maximum of the absolute
values of the element and its field conjugates).

A p-adic F-function is defined as an analytic function of the form

f(z) = 2 a,z"
h=0

where the a, have the following properties:
(1) a, € K, h = 0, and there exists a sequence of natural numbers g,, q,,...,
and a function ¢( /), which is an increasing function of 4, such that

qya; € Ox and max(g,,llg,a;l) <¢(h), h=0,0<j<h.
(i1) There are constants a = 1, b = 1, and ¢ > 0 such that

lagl,<a, |a,|,<ah®", h=1.

So the series f(z) converges in the subdisc of those z in C, with |z |, < c
Suppose now that we have a system of linear differential equations

(1) ¥=0i(2) + X Qul(2)ys, l<i<m,
h=1

with the Q,,(z) € K(z). There is then no loss of generality in supposing that the
Q,,(z) are rational functions with coefficients in Ok (see [10]). We denote by T(z)
a least common denominator for the rational functions Q,,(z). Thus T(z) is a
polynomial in Og[z] such that all the T(2)Q,,(z) are in O[z].

Let

() g = max (deg 7(2), deg(T(2)Q,,(2))),

7= max ([T(z)],[T(2)Q(2)])

where |T(z) I denotes the height of polynomial T(z) (that is, the maximum of the
sizes of its coefficients).

If a set of p-adic F-functions fi(z),...,f,(z) satisfies (1) and (2) then we speak
of them as belonging to the class f(K; ¢(4); a, b,c; g, T).
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In particular, the standard E-functions, Z,a,z"/h!, belong to the class
F(K; C*"*Dpt; C,0,Cp'/P~D; g, T) for a suitable constant C, and the standard
G-functions, 3, a,z", belong to the class F(K; C2**D; C,0, C; g, T') again for a
suitable constant C. (Compare [8] and [4].)

We give some further examples: Let @ be a non-negative integer. Consider a
function

f(2) = io(a +1) -+ (a+ h)z".

Using a method similar to that of Lemma 3.1 in Chapter II of Bachman’s book
[1], it is easy to verify that for h = 1 we have

[(a+1)--- (a+h) |p < p~h/(p=Nytlog(h+a)/log p+1

<p(a+ Dh(p7e- )"
So the series f,(z) converges in the subdisc of those z in C, with | z |, < p'/?~ 1.

Moreover, the function f,(z) satisfies a linear differential equation

, 1 1—(a+1)z
z z

Let a,,...,a, be m distinct non-negative integers. Put a = max(a,,...,q,,).
Then f,(z),....f,(2) belong to the class of p-adic F-functions

FK;(a+ (h+ 1)/2)"; p(a+1),1, p/®= D2, a + 1),

In this paper we shall suppose that p-adic F-functions f,(z),...,f,(z) do not
satisfy any algebraic equations of degree at most r, and with coefficients in K. Let

P(x,,...,x,) =0 be any polynomial in Oglx,,...,x,] with degree s <r and
with height H, say
(3) P(x),...,x,) = 2 Ci,mi,,,xi""x:r'n"’

O=iy+ -+ +i,<s

..., €0 and |lc

[IRERY

LI <H.

he il

Put
_(rt+tm _(r—s+m
u= ( m )’ v= ( m )
Suppose thaté € K with §T(£) # 0 and let g be the smallest natural number such
that g€° € Oy, where the £° are the field conjugates of £&. Let Q = max(q, Il g¢|}).
Clearly we have

(4) Q< lIgtll"? <| N(g¢) "' <| 4|, <| &,
where N(-) denotes the norm of an element of K. We assume
(5) &, <0
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where d’ is a positive number with
(6) 0<d'<d and dy=du—d(u—v)>0.

Then we obtain

THEOREM 1. Under the assumptions above, there exist positive constants v,, Y, Y3
and v, independent of Q and H, and there is a non-zero function ¥(n), such that for
any real number 0 < n < 7y and any § in K as above and with

Q > max(y,, ,¥(n)H")

we have

| P(fi(£),....£,(£)) l, > Q@M
where
7N A =3d'duv/d,.

In general, the constant y,, v,, y; are effectively computable but the constant 5,
is not. v,, v;, v; and ¥(n) will be detailed in the proof of the theorem.

THEOREM 2. Consider a set of p-adic E-functions f\(z),...,f,(2) defined as above.
Under the assumptions of Theorem 1, there exists a positive constant v,, independent
of Q and H, such that for any real number 0 < n < n, and any ¢ in K as above and
with

Q > yun T Aoy,

we have

lP(fl(g)’9fm(£)) |p > Q"\/n

where m,, A are as in Theorem 1.

This result is a generalization of the theorem in Section 3 of Remmal [8].

A similar result can be obtained for a set of p-adic G-functions when Q > y, H"
(in place of the condition in Theorem 2). Additional hypotheses seem to be
required to obtain more precise results of the type given by Flicker [4].

THEOREM 3. Let «a,...,a, be p distinct integers in Oy which are linearly
independent over Q, and let B,,...,B, be some other v distinct non-zero integers in
O with

a=max(lell, 181), a,=max(la]l,|B],).
ij ij
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1f

+p+
«=("u47)

g+ v dy=du—d(u—1)>0,

then there exist positive constants Y, Y, depending on p, p, v, d, d’, a, «, and there

is a non-zero function ¥\(n) such that for any non-zero polynomial P(x,,...,x,,)

in Oglx,,...,x,,,] of degree r and with height H and for any real number
0 < n <y andany § in K as above and with
Q > max(vs, v;, ¥,(n)H"),

we have

| P(e%,...,e%, ~log(1 — B,)....,-log(1 — B£))], > Q3 4x/“on.
This result is a p-adic analogue of Theorem 2 of Cirskii [3].

THEOREM 4. Let a,,...,a, be m distinct non-negative rational integers with
a = max(a,,...,a,,). We consider p-adic functions

[e )
fi(z2)= 2 (a;+1)--- (g, +R)2",  1<i<m.
h=0

If
u:(r+m)’ o=du—d(u—1)>0,

m
then there exist positive constants vy, Yy, and there is a non-zero function ¥,(n) such
that for any non-zero polynomial P(x,,...,x,) € Oklx,,...,x,] of degree r and
with height H and for any real number 0 < n < n, and any £ in K as above and with
Q> max(Ys, 79‘1'2(71)11"),

we have

| P(fal(g)" - ’f:zm(g)) |p > Q“3d'd“/(doﬂ).

This result is a generalization of the theorem of Remmal 8], Section 1.
Let fi(2),....f,(2) belong to F(K; ¢(h); a, b, c; g, T). We consider the set of
functions
fl(z) - fin(z), O<h +---+h,<r,

m

and name them F|(z),...,f(z), with the convention that Fi(z) = 1. As in [5],
Lemma 7, we see that F|(z),...,F,(z) belong to

F(K;27**¢(h)o([h/2]) -~ ¢([h/r]); a’, b, c; g, rT)
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and satisfy a system of linear homogeneous differential equations
u
(8) =208y, 1<i<u
h=1
There are u polynomials
n—1
P(z)= 3 puz", 1<i<u,
h=0

in Ok[z] and not all zero, with the properties
() |P,(z) |< C!®(n), where

9) C, = (4r4+ 1d)u2/w’
and
(10) ®(n) = {¢(un)p([un,/2]) ---¢([un/r])}d"/"’;

(i) R(z) = 3}_,P,(z)F(z) satisfiesord R(z) = un — [wn] — 1, where ord R(z)
denotes the order of the zero of R(z) at z = 0; and

(iii) | R(z) |, < (au")'(c|z|,)** 1"~ for all z in K with | z|, < ¢™'. Here w is
a constant satisfying 0 < w < 1/2.

To construct the required polynomials note that (ii) amounts to M = un —
[wn] — 1 linear equations in the N = un unknowns p,,, the coefficients in the
equations being in Oy and having sizes at most 4 = 2"“*®(n)“/(?*)_ There is a
solution of this system with

“P.-h” < (2M/2dNNMAM+(d~l)N)l/(N—M)

which gives (i). (The particular estimate used here follows from the proof of
Lemma 1.3.1 in [15] and the remarks in [14].) Finally (iii) follows since the
coefficients of the F(z) have p-adic valuations not exceeding a’h"™c”" and
a’h™’c"| z |} is a decreasing function of h.

Let R\(z) = R(z) and

d
(1) R(2)=T(2) 5 R\(2), k=2,
It follows that

(12) R(2) = 3 Pu()E(), k=1,

i=1

where the P, ,(z) are in Og[z] and satisfy the recurrence relation
d u
P(z) = T(Z)Epk—l,i(z) + 2 T(2)Qr ()P 4(2),
h=1

k=2, 1<isu,
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with P,(z) = P(z) and Q},(z) as in (8). Let the dimension of the vector space
over K(z) generated by the R,(z) be /. From {6}, Theorem 3,

(13) ord R(z) < in + Q(m)s",

where 7=(m+ 1)""'+ m+ 1 and Q(m) is a constant depending on the
functions f,(z),....f,(z).
Let A(z) = det(P,,(2)))<; x<. and put

(14) t=[wn] +u(u—1)g/2,
(15) ny=2Q(m)s™ + 2.
If n > n,, we see, as in Lemma § of {11], that

A(Z) :Zun—[wn]—lAl(z)’

where A((z) is in Ok[z] and not identically zero and deg A (z) <«
Let £ be given as above with | £|, < min(l, ¢™') and let

(16) uy=u(u— 1)g/2 + u.

If n > max(n,, uy/w), then there are u distinct suffixes j,...,j, with 1 <j, <j,
< ... <j,<t+ usuch that the ¥ X u determinant with entries

Qi = q"HEP, (§),  1<ik<u.

Just
is non-zero. Further, the g,; are in Oy and satisfy
gl < CFR(n)n*"Q, ) 4.
where
(17) C2 == 4g+erC|.

This follows from the argument of Lemma 6 of [13] and Lemma 7 of [10}].
Finally we estimate | R, (§) |,- It is easily seen by induction that

|Rj,((£)|pS max |R(j)(£)|p‘
1<;=<;,—1

Moreover, since ord RY)(z) = M — j, — 1, we have

R(’)(§)| <max( rhrbe h'h(h — 1) (h—j+ l)gh—j’p) < aerbCMlgllfl"f*/'

Therefore

|R,(8)], < CI&[m,
with
(18) C, = (au)c
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3. The proofs of theorems

PrROOF OF THEOREM 1. We consider the set of functions
f,""--f"',""P(f,,...,fm), O<h +---+h,<r-—s,
and denote them by ¥ (2),...,¢,(z). Then we have

Vil2) = 2 eFi(z), 1<k<v
i=1
where the ¢,; satisfy the conditions (3). We define

rd£) = "R, (§) = 2 4. F(£).
i=1

[8]

From the above construction, the linear forms r,(£),...,7,(£) are linearly inde-
pendent. Since ¥,(£),...,¥,(£) are linearly independent, we can select w = u — o

linear forms, indeed, without loss of generality, the first w forms, such that

rl(g)""’rw(g)’ ‘Pl(g)”\”u(g)

are u linearly independent linear forms. Denote the determinant of their coeffi-
cients by A. Clearly A # 0 and A € Og. We have | N(A) |= 1. By replacing the
first column on the left by the sum of the ith column multiplied by F,(£), we get

9119 " Gy rl(%) 912 """ G

(19) A=|913v2 " Qwu| = r(8) 4w " 4, )
Clitip " Gy V(&) ey - ey
Co1 €o2 """ Cou Yo(€) €oa * Cpu

We now estimate the size of A using the determinant on the left of (19). Since

1 <j, + -+ +j, < 2wwn we obtain by (3)
ANl < w'H°Cy™(®(n)) " n2vengwnt2vgwn,
and so
(20) |A], =[N = lal
= u_d"CZ_dW"H_d"((I)(n))_dwn-dan—dwn~2dwgwn‘
By (4) and (5) we have
(21) | (£) |, < CpQun+3om,

We now take

(22)  d, =3d+ 2dg(u—v), d*=min(d,,d,), w,=d*/(2d,).
t 0 0
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Clearly 0 < wy < 1/2. We choose

(23) v, = min(C5 /@40, (2¢)"7),

(24) Yy, = u2d/d0C22d(u—v)/doc32/d0(3du/d0)Zd("‘v)/do,
(25) Y; = (max(a, a(b/(elog2))b))s_r,

(26) Mo = min(2dv/ (dgng), 2dvey/ (doty)),
(27) w = w.

For any real number 0 < 5 < 7, we set

(28) n=[2dv/ (dgn)] + 1.

Then for any Q with Q > v,¥(n)H", where

(29) ¥(n) = ®(3do/ (dgn))" " 2,
we have

(30) udnc;lwnc}n(q)(n)nn)dedo < Qdon/Z < Q(d'u—dw—(3d+2dwg)w)n,

so that | r,(§) |, <|A|, by (20) and (21). Finally, we use the determinant on the
right of (19). This gives

w

A= 3 n®8+ S w8,

k=1

where A, and §, are certain minors of the determinant. Clearly |A, |, <1,
|8, |, < 1. Since Q >y, = (2¢)"/* we see that | £|, < (2¢)™" and that for 1 <i <
m,

[f(¢) |p < T:())(([ a,, |p | € |;')) < 1;1>a¥(a, ahhch(2c)—h)

< max(a, a(b/ (elog2))b).

It follows that
|8, < max(|g4(£)|,) < max(a, a(b/ (elog2))’)" " [ P(A(E).... Ll )],
<v'[P(AE)- - Su(D)) -

Noting Q > v, = C;'/?9%0) we have

| P(£i(8)s- - ful§)) |, > 1,079 = 1,07/
by (7), (20), (21), (30), completing the proof of Theorem 1.

REMARK 1. If the p-adic functions f,(z),...,f,(z) are algebraically independent
over K, then for any non-zero polynomial P(x,,...,x,,) € Ok[x,,...,x,,] with
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degree s, we can choose r =s. S in this case we have v =1, y; = 1 and the
theorem takes a simpler form.

ReMARK 2. The constant £(m) in Theorem 1 is not effectively computable.
However, suppose that fi(z),...,f,(z) constitute an irreducible set of functions.
That is, the functions satisfy a system of linear homogeneous differential equa-
tions and an equation

S P(2)y, =0, PUz) €C [z}, 1<k<m,
k=1

where y,,...,y,, is some solution of the system of differential equations, occurs
only when P, (z)y, =0, 1 <k < m, identically in z. In this case the constant
Q(m) is effectively computable. However we should note that proofs of the
irreducibility of sets of functions are very complicated (for example see [11]).

If the functions F(z),...,F,(z) constitute an irreducible set of functions then
we can compute the constant n, in (15) by using methods similar to those of
Lemma 6 of {10], and Lemma 3 of [11]. This gives

(31) ny =20+ u(u—1)g,

where o is the least order of a zero of the functions F,(z) at z = 0.

PROOF OF THEOREM 2. Using a similar method we can compute the constant y,
as follows: Let

D, = 458, T(44r29~ lC(Zd—l)r)"z/"’o’
D, = (rC7p/ )",
Then
Y4 = u2d/d0D|2d(u—v)/d0D22/d0(Zdv/do)4d(uAu)/d0’

where the constant wy is given by (22). This completes the proof of Theorem 2.

Similarly, to obtain the remark about G-functions, let

D, = 48+ er(4dr2d— 1cQd- ])r)u2/w0
and

Y5 = uZd/d0D32d(u*u)/d0(rCr)Z“/do.

PrROOF OF THEOREM 3. It is easy to verify that the functions
e™, ..., —log(l — B,z),..., -log(1 — B,z)
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satisfy the system of linear differential equations
i =y, 1
Bj/(l_BjZ)’ I<j=<v,

and belong to the class of p-adic F-functions

F(K; a*h";1,0,0,p"/ 7 v, (2a)" ')

’

Yj

M
A
~ T

We can see from an analogue of the theorem in [7] that these functions are
algebraically independent over C,(z). Clearly v = 1, v; = 1 (see Remark 1), and

_fr+ptvw
“'( ptw )

Hence
Mo = min(2d/(dono),23dw0/(d0u0))

and we can compute the constant y, from (18), (22), (23), (27); y; from (9), (17),
(18), (22), (24), (27), and the function ¥,(n) is given by (10), (27), (29).

PROOF OF THEOREM 4. From our example of p-adic F-functions in Section 1 we
see that the functions f, (2),...,f, (a) belong to

F(K;(a+ (h+1)/2)"5 p(a+1),1, p/P 2,0 + 1),

It is easy to verify that the functions f,(z),...,f, (z) are algebraically indepen-
dent over C,(z). Using a method similar to the proof of Theorem 3 we can
compute the constants v;, v, and 1, and the function ¥,(7).
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