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We present evidence for layered anisotropic stratified turbulence (LAST) and mixing
produced in a freely evolving uniformly stratified shear layer where the direction of shear is
orthogonal to gravity. As originally reported by Basak & Sarkar (J. Fluid. Mech., vol. 568,
2006, pp. 19–54), such a flow develops a rich three-dimensional structure in the form of
interlocking columnar vortices formed by horizontal shear instability that remain coherent
at large scales due to the stabilising vertical stratification. Here, we modify the initial
velocity field by introducing additional small-amplitude vertical perturbations designed
to be representative of pre-existing horizontal layers often observed in strongly stratified
ocean environments. This reveals a novel finite amplitude, non-normal mode growth
mechanism through which the vertical shear between layers may be rapidly amplified by its
interaction with the horizontal shear layer prior to the growth of shear instability, leading
to a rapid turbulent transition instigated by the subsequent interaction of the layers with
the emerging columnar vortices. Through a consideration of relevant flow statistics and
associated dimensionless parameters, we demonstrate that turbulence can enter the LAST
regime, thereby indicating a generic mechanism leading to the transient development
of regions of strongly stratified turbulence in the ocean. We discuss the properties of
mixing and the parameterisation of mixing efficiency in terms of the relationship between
turbulent length scales in the flow, in particular highlighting links to models based on
the classical vertical shear instability paradigm typically associated with more weakly
stratified flows that produce isolated turbulent ‘patches’.
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1. Introduction

Throughout much of the ocean interior, the spectrum Φ(kz) of large-scale vertical shear
(where kz is the vertical wavenumber) exhibits a strong degree of universality and is
reasonably well approximated by the empirical Garrett–Munk (GM) spectrum (Garrett &
Munk 1975). As reported by Gargett et al. (1981) however, measurements from the upper
ocean display a distinct steepening in the spectrum slope from Φ ∼ k0

z (corresponding
to the smallest scales in the GM spectrum) to Φ ∼ k−1

z at scales of around O(10 m),
suggesting a change in the mechanisms leading to downscale energy transfer. At these
scales, the influence of inertia becomes comparable to that of buoyancy, consistent with
the conditions required for wave breaking, and the resulting turbulence might reasonably
be expected to be influenced at leading order by stabilising buoyancy effects in the
vertical direction. This regime can be formally defined in terms of a distinguished limit
of dimensionless parameters in the governing equations and is often generically referred
to as ‘strongly stratified turbulence’ (Lindborg 2006; Brethouwer et al. 2007), though
the geophysical relevance of this paradigm and its relationship to the internal wave field
in the ocean has not yet been fully established. Considering a range of geophysical
observations reported in the literature, Riley & Lindborg (2008) argue that the strongly
stratified turbulence paradigm may be responsible for a number of observed atmospheric
and oceanic spectra, with their arguments being furthered by Kunze (2019) who suggests
strongly stratified turbulence as a means of constructing a unified model for interpreting
oceanic spectra. In any case, from both a geophysical and fluid dynamical perspective,
many questions remain regarding the mechanisms producing small-scale vertical structure
and turbulence, as well as the parameterisation of the resulting mixing.

For a uniformly stratified flow with horizontal length and velocity scales L and
U, buoyancy frequency N, kinematic viscosity ν and density diffusivity κ , natural
dimensionless parameters for characterising the evolution of the flow are the horizontal
Reynolds number Reh and corresponding Froude number Frh defined as

Reh ≡ UL
ν

, Frh ≡ U
NL

, (1.1a,b)

along with the molecular Prandtl number Pr ≡ ν/κ . If the flow is turbulent, an inertial
range of scales with an isotropic energy cascade is expected in the horizontal, where
now U and L represent the largest horizontal velocity and length scales injecting energy
into turbulence. In the strongly stratified limit Frh � 1, buoyancy is expected to stabilise
motions in the vertical direction and so, in addition to Reh � 1, in order for fully isotropic
(three-dimensional) turbulence to develop there must be a range of scales between the
Ozmidov scale LO ∼ (ε/N3)1/2 characterising the largest vertical scales that are not
influenced at leading order by the stratification and the Kolmogorov scale LK ∼ (ν3/ε)1/4,
where ε is the rate of dissipation of turbulent kinetic energy. This gives rise to the buoyancy
Reynolds number

Reb ≡ ε

νN2 ∼
(

LO

LK

)4/3

. (1.2)

The strongly stratified turbulent regime is generally associated with Frh � 1, Reh � 1 and
Reb � 1. Note that, under the inertial scaling ε ∼ U3/L we have Reb ∼ RehFr2

h, the latter
often being used as an equivalent ‘turbulence intensity’ parameter in the flow (Brethouwer
et al. 2007).

A notable flow feature associated with the strongly stratified limit is the formation of
quasi-horizontal ‘pancake’ layers in the velocity and density fields with vertical extent
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Evidence for LAST in a freely evolving horizontal shear flow

Lv ∼ U/N as predicted by the inviscid theory of Billant & Chomaz (2001), which has led
to the regime sometimes being referred to as ‘layered anisotropic stratified turbulence’,
or LAST, to more clearly differentiate the specific dynamics associated with this strongly
stratified regime from inherently weakly stratified paradigms such as turbulence produced
by Kelvin–Helmholtz instability (Falder, White & Caulfield 2016; Caulfield 2021). We will
use this nomenclature subsequently. Below the scale of the largest vertical layers (denoted
by the buoyancy scale Lb ∼ U/N) and above the Ozmidov scale LO, layering behaviour
can be argued to exist on a scale-by-scale basis (i.e. smaller scale horizontal motions have
smaller associated vertical length scales according to the stratified prediction) from which
the spectrum of horizontal kinetic energy Eh(kz) ∼ N2k−3

z for vertical wavenumber kz can
be derived (Waite & Bartello 2004), in direct correspondence with the observed vertical
shear spectrum Φ ∼ k2

z Eh(kz) ∼ k−1
z . The k−3

z scaling has been notoriously elusive in
studies using direct numerical simulation (DNS), though it is suggested that this may be
due to contamination from smaller-scale near-isotropic vertical motions that are aliased
into the associated buoyancy-inertial subrange due to the one-dimensional nature of the
spectra (Almalkie & de Bruyn Kops 2012; Augier, Chomaz & Billant 2012; Maffioli 2017;
Howland, Taylor & Caulfield 2020).

Modelling flows in the LAST regime is difficult because of the large range of horizontal
and vertical scales that must be resolved simultaneously, therefore, most existing studies
are by DNS, although some features predicted by the theory have been recently observed in
large-scale experiments (Rodda et al. 2022). Many DNS provide a continual power input
to turbulence through the use of a large-scale body forcing term added to the equations
of motion, which are most commonly purely vortical, i.e. only modes with zero vertical
wavenumber are forced (e.g. Waite & Bartello 2004; Brethouwer et al. 2007; Augier,
Billant & Chomaz 2015; Maffioli, Brethouwer & Lindborg 2016) or internal wave driven
(e.g. Waite & Bartello 2006; Howland et al. 2020). In all cases a statistically stationary
state is achieved by a forward cascade of energy through a sequence of instabilities that are,
in general, not well understood, largely because the focus is on the properties of turbulence
itself. Even in this idealised setting however, as demonstrated by Howland et al. (2020), the
energy pathways can vary significantly according to the large-scale mechanisms operating
in the flow. Complicating matters further, some flows are observed to equilibrate in a state
of relatively isolated ‘patches’ with distinct dynamical properties, as reported by Portwood
et al. (2016).

Freely evolving stratified turbulent flows can be studied by DNS by imposing
a stratification on top of initially homogeneous and isotropic velocity fields that
subsequently decay, as originally studied by Riley, Metcalfe & Weissman (1981). These
flows exhibit at least some of the same turbulence characteristics as forced stratified
turbulence after a period of flow adjustment over approximately one buoyancy period
2πN−1 (de Bruyn Kops & Riley 2019). The transient mechanisms required for a freely
evolving flow to enter the LAST regime from a background quiescent state are less well
studied. In the (necessarily) contrived spin-up period of forced flows, a layered structure
can emerge from vortical forcing that is uniform in the vertical, often attributed to the
‘zigzag’ instability first observed by Billant & Chomaz (2000) in the form of decoupled
vertical layers developing between two interacting stratified columnar vortices, which can
produce regions of overturning and shear instability as natural precursors for turbulence
(Deloncle, Billant & Chomaz 2008; Waite & Smolarkiewicz 2008; Augier & Billant 2011).
Without a body forcing however, turbulence is difficult both to initiate and maintain, as
exemplified by the study of wall-forced flows that, to date, have only been shown to exhibit
sustained fully developed turbulence for levels of stratification too weak to produce the
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required Frh � 1 (Deusebio, Caulfield & Taylor 2015; Zhou et al. 2017; Lucas, Caulfield
& Kerswell 2019).

Of course, as pointed out by Waite & Bartello (2004) based on the observations of Polzin
et al. (2003), vortical motions in the ocean are likely to coexist with the vertical structure
due to the background internal wave field. An alternative argument for the existing vertical
structure can be attributed to Gibson (1987), who indicates that such variability could also
be the result of ‘fossilised’ remnants of decaying turbulence occurring late during the
evolution of a previous mixing event. Riley & de Bruyn Kops (2003) used a vertically
varying idealised initial flow state consisting of idealised Taylor–Green vortices from
which strongly stratified turbulence developed on top of layers of large vertical shear in
the velocity fields. Motivated by the observations of Alford & Pinkel (2000), Howland,
Taylor & Caulfield (2021) demonstrate that the interaction of a background field of
internal gravity waves with a layer of strong vertical shear can produce local regions of
strong turbulence and mixing, which could perhaps in turn give rise to strongly stratified
turbulence dynamics on larger scales. However, both of these studies assume an existing
periodic vertical shear with fixed wavelength that is crucially of leading-order importance
in the flow. Attempting to produce turbulence in the LAST regime under the relaxation of
these conditions forms one of the main goals of this work.

A primary quantity of interest for parameterising small-scale mixing is its efficiency
η measuring the rate of irreversible conversion of energy into the background potential
energy of the flow (Gregg et al. 2018). Largely based on simulations of statistically
stationary forced flows and decaying initially isotropic turbulence, the mixing properties
of flows approaching the LAST regime, specifically the flux coefficient Γ ≡ η/(1 − η),
have been argued to be primarily dependent on the parameter Frh (Maffioli et al. 2016).
Garanaik & Venayagamoorthy (2019) demonstrate that the ratio of the Ozmidov scale LO
to the Thorpe scale LT measuring the size of the largest density overturns in the flow may
be a reasonable proxy for the Froude number and, hence, Γ . This ratio has been used
in transient vertical shear-driven mixing events as a measure of the ‘age’ of a turbulent
mixing event, where, in this paradigm, early stage developing turbulence with ROT � 1
is associated with large values of Γ � 1 (Mashayek, Caulfield & Peltier 2017; Mashayek,
Caulfield & Alford 2021). It is not yet clear whether such values are obtainable in freely
evolving flows that transition into the LAST regime. This is mainly due to a present lack
of relevant DNS, though we note that, for sufficiently large Reynolds numbers, the data of
Riley & de Bruyn Kops (2003) do demonstrate a significant early peak of Γ ∼ 0.7 arising
during the turbulent transition of their initial Taylor–Green vortex configuration.

Motivated by the above discussion, here we seek to demonstrate the existence of a
novel transient pathway to LAST from a relatively generic yet physically plausible initial
flow state, which importantly has relatively weak vertical shear. To do so, we consider
the background flow studied by Basak & Sarkar (2006) (hereafter BS06) consisting
of a horizontal shear layer in the presence of a uniform vertical density stratification,
modified by adding perturbations to the horizontal velocity fields whose vertical structure
consists of small-amplitude horizontal layers. This structure is motivated by (though not
strictly representative of) the sort of vertical structure produced by a relatively weak
background internal wave field with large horizontal to vertical aspect ratio, or by decaying
turbulence from a previous mixing event. Crucially, the interaction of the initially weak
vertical structure with the background vortical flow produces rapid transient growth of
strong vertical shear layers via the lift-up mechanism of Ellingsen & Palm (1975), which
fundamentally alters the subsequent flow evolution and eventually facilitates a transition
to fully developed turbulence. We study the properties of this turbulence, in particular
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Evidence for LAST in a freely evolving horizontal shear flow

its relevance to the strongly stratified turbulence paradigm, for a range of different
appropriately defined initial Froude numbers Fr0 characterising the background flow, and
discuss emerging patterns in the associated mixing properties.

The remainder of this paper is organised as follows. In § 2 we describe the DNS
set-up, detailing the background flow and superposed small-amplitude perturbations, as
well as outlining the theory behind the key lift-up mechanism that facilitates the early
development of strong vertically sheared layers. The results from the DNS are presented
in § 3, where we discuss both the early shear amplification and fully nonlinear stratified
turbulent regime in detail, as well as analysing the properties of the resulting mixing. We
conclude and discuss the implications of our results in the context of ocean mixing in § 4.

2. Set-up and theory

2.1. Ambient flow
As noted in the introduction, we consider the model background flow originally studied
in BS06 consisting of a horizontal shear layer in the presence of uniform vertical
density stratification. Denoting dimensional variables with a star, the corresponding
one-dimensional background profiles for the streamwise velocity u∗( y) and (total) density
ρ∗

t (z) are given by

u∗( y) = 	u∗ tanh
(

y∗

h∗

)
, ρ∗

t (z) = ρ∗
0 − 	ρ∗

(
z∗

h∗

)
, (2.1a,b)

where h∗ is half the shear layer thickness, 	u∗ is half of the velocity difference across
the shear layer, 	ρ∗ is half the density difference over an equivalent vertical distance
and ρ∗

0 � 	ρ∗ is a reference density. In order to investigate the evolution of the profiles
(2.1a,b) on a vertically periodic domain, we consider density perturbations ρ∗(x, t)
away from the linear background state so that we can write ρ∗

t (x, t) = ρ∗
t (z) + ρ∗(x, t).

Defining non-dimensional variables

t = t∗	u∗/h∗, x = x∗/h∗, u = u∗/	u∗, ρ = ρ∗/	ρ∗, p = p∗/(ρ∗
0	u∗2),

(2.2a–e)

the non-dimensional Boussinesq Navier–Stokes equations for the velocity field u =
(u, v, w), density perturbation ρ and pressure perturbation p (away from the hydrostatic
pressure that balances the linear background density profile) are

Du
Dt

= −∇p −
(

1
Fr2

0

)
ρẑ + 1

Re0
∇2u, (2.3)

∇ · u = 0, (2.4)

Dρ

Dt
= w + 1

Re0Pr
∇2ρ. (2.5)

The dimensionless Reynolds number Re0, Froude number Fr0 and molecular Prandtl
number Pr are defined as

Re0 = 	u∗h∗

ν∗ , Fr0 = 	u∗

N∗
0 h∗ , Pr = ν∗

κ∗ , (2.6a–c)

where g∗ is the acceleration due to gravity, ν∗ is the kinematic viscosity, κ∗ is the
molecular density diffusivity, and the background buoyancy frequency N∗

0 (z) is defined
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by

N∗2
0 (z) ≡ − g∗

ρ∗
0

∂ρ∗
t

∂z∗ = g∗

ρ∗
0

	ρ∗

h∗ . (2.7)

Note that, for comparison with previous studies such as BS06, an equivalent ‘Richardson
number’ can be defined as Ri0 ≡ N∗2

0 h∗2/	u∗2 = g∗	ρ∗h∗/(ρ∗
0	u∗2), so that Ri0 =

Fr−2
0 . One advantage of using Fr0 as opposed to Ri0 is that it avoids potential confusion

with the classical analogue problem consisting of a vertical rather than horizontal shear
layer, where Ri0 corresponds to the minimum gradient Richardson number in the centre
of the shear layer and, thus, is a direct indicator of the susceptibility of the flow to
Kelvin–Helmholtz instability for sufficiently small values of Ri0.

As demonstrated by the linear stability analysis of Deloncle, Chomaz & Billant
(2007), infinitesimal normal mode perturbations to this background flow have a fastest
growing mode that is two dimensional with the vertical wavenumber kz = 0, though
for a sufficiently small initial Froude number Fr0, vertical modes with kz ∼ 1/Fr0 grow
essentially as fast as the two-dimensional mode. The result is complex three-dimensional
behaviour, with coherent Kelvin–Helmholtz billow structures emerging in the form of
vertical columns that have significant defects over a vertical scale Lv ∼ U/N, as observed
in BS06. However, despite the flow organising into distinctive layers with large associated
dissipation of kinetic and potential energy, the development of small-scale turbulence with
corresponding buoyancy Reynolds number Reb � 1 from these layers is notably absent for
sufficiently small Fr0. Motivated by the existing vertical structure expected to be found in
the ocean thermocline, here we propose an alternative (non-normal mode) mechanism for
the expedited transition to small-scale turbulence whilst still maintaining small Fr0.

2.2. Finite-amplitude perturbations and the lift-up mechanism
For an inviscid unstratified shear flow with initial velocity profile ut=0 = ū( y)x̂, small
but finite-amplitude perturbations [ũ, ṽ, w̃, p̃]( y, z, t = 0) that are independent of the
streamwise coordinate x are subject to algebraic growth according to the lift-up mechanism
originally proposed by Ellingsen & Palm (1975). The linearised momentum equation for
the total streamwise velocity u is

∂u
∂t

= −v
∂ ū
∂y

, (2.8)

and it can be argued using the linearised equation of motion for the streamwise vorticity
ζx = ∂w/∂y − ∂v/∂z that v remains constant in time so that u = u(0) − ṽt∂ ū/∂y grows
algebraically (a treatment of more general perturbations is given by Landahl 1980). The
lift-up mechanism has since been proposed to be an important pathway to turbulent motion
in a variety of viscous flows (e.g. Butler & Farrell 1992; Arratia, Caulfield & Chomaz
2013; Pickering et al. 2020) and in viscous vertically sheared stratified flows (Kaminski,
Caulfield & Taylor 2014, 2017). We will see that, for sufficiently large initial perturbations
(though still small compared with the magnitude of the background flow velocity) in a
vertically stratified yet horizontally sheared flow, the lift-up mechanism can act to amplify
rapidly a horizontally uniform vertical layered structure in the streamwise velocity field
that remains coherent due to the stabilising effect of stratification until horizontal shear
instability causes the roll up of columnar Kelvin–Helmholtz billows.
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Evidence for LAST in a freely evolving horizontal shear flow

We consider perturbations (ũ(z), ṽ(z), 0) to the base flow described above in § 2.1, so
that the initial velocity field can be written as

u|t=0 = ū( y) + ũ(z) = tanh( y)x̂ + ũ(z)x̂ + ṽ(z)ŷ. (2.9)

The perturbations are designed to be representative of existing structures in the
environment with a long horizontal wavelength (compared with the vertical wavelength,
so that they are approximately independent of x and y), which subsequently encounter a
region of high horizontal shear due to a background flow on scales much larger than the
domain.

Similarly to Howland et al. (2020) and Furue (2003), we define the perturbation
velocities ũ(z) and ṽ(z) as a sum of shear modes (A/kz) exp(2πikzz/Lz + iφ), where kz
is the vertical wavenumber taking positive integer values, A is a constant amplitude and
φ ∈ [0, 2π) is a random phase, giving a kinetic energy spectrum of k−2

z representative
of the GM spectrum. We assume that this spectrum is pre-existent at large scales in our
flow domain, summing shear modes over kz ≤ 7. In contrast to Howland et al. (2020)
however, the amplitude of the perturbation velocity field ũ is assumed to be relatively small
compared with the background flow, though importantly are still finite amplitude. For
the range of Fr0 considered here, we will show that |ũ| ∼ 0.01 (compared with |ū| ∼ 1)
results in horizontal layers in the streamwise velocity field u that are transiently amplified
and reach a similar magnitude to the initial background flow. Note that, for simplicity,
the density field ρ and the vertical velocity field w remain unperturbed. The streamwise
perturbations ũ(z) are not strictly necessary for the lift-up mechanism to take place, but are
included nonetheless to demonstrate that they do not inhibit the growth of the instability.
We stress that the finite-amplitude perturbations we consider are by no means optimal in
any mathematical sense, but we find they are sufficient for producing conditions that can
induce a transition to energetic turbulence whilst maintaining a strong stratification in the
sense that Frh � 1.

2.3. Numerical simulations
The equations of motion are solved in a channel domain (x, y, z) ∈ [0, Lx] ×
[−Ly/2, Ly/2] × [0, Lz] that is periodic in the vertical and streamwise x directions. In
the y direction the boundary conditions at the walls y = ±Ly/2 are free slip, no flux,
i.e. ∂ρ/∂y = 0 and ∂u/∂y = 0. The domain size in the streamwise direction Lx = 28.56
is taken to be twice the wavelength of the most unstable two-dimensional mode of
classical shear instability, whilst Lz = Lx/2 = 14.28 and Ly = 66.3, which is sufficiently
large such that the channel boundaries do not influence the flow in the centre of the
domain. Direct numerical simulations are performed using DIABLO (Taylor 2008), which
treats periodic coordinate directions pseudo-spectrally with a 2/3 aliasing rule applied to
the nonlinear terms and wall-bounded directions using a second-order finite-difference
spatial discretisation. Time stepping is achieved using a third-order mixed implicit/explicit
Runge–Kutta/Crank–Nicolson scheme. A stretched grid is used in the y direction so that
the spacing is finer in the centre of the shear layer −12.5 ≤ y ≤ 12.5 where small-scale
turbulence occurs. To absorb internal waves that propagate through the stratification
away from the centre of the shear layer, a sponge layer occupies the regions −Ly/2 <

y < −Ly/2 + 7 and Ly/2 − 7 < y < Ly/2, within which perturbations are quadratically
damped to zero.

Since the dynamics are laminar before columnar billows start to develop, to speed
up computation, this initial phase of each simulation is carried out at half the final full
resolution in each coordinate direction, before, for flows in which fully three-dimensional

983 A20-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.121


S.F. Lewin and C.P. Caulfield

Simulation Fr0 Ri0 Re0 (Lx, Ly, Lz) (Nx, Ny, Nz)

F05 0.5 4 2000 (28.56, 66.34, 14.28) (512, 673, 256)

F07 0.71 2 2000 (28.56, 66.34, 14.28) (1024, 896, 512)

F1 1 1 2000 (28.56, 66.34, 14.28) (1024, 896, 512)

F2 2 0.25 2000 (28.56, 66.34, 14.28) (1024, 896, 512)

Table 1. Flow parameters and grid sizes for each DNS, where Ri0 is included for comparison with the DNS
of BS06. Here Nx and Nz are the maximum number of grid points in the streamwise and vertical directions,
respectively, whilst Ny is the maximum number of grid points in the spanwise central region −12.5 ≤ y ≤ 12.5.
All simulations have Pr = 1.

turbulence subsequently develops, the velocity and density fields are upscaled onto the full
resolution grid using Fourier resampling in the x and z directions and linear interpolation
in the y direction. At this stage the flow is still laminar and only larger-scale motions
are present so that any noise introduced by interpolation has little impact. The final
resolution is sufficiently fine to ensure that kmaxLk > 1 throughout flow evolution, where
Lk = (Re−3

0 /ε)1/4 is the Kolmogorov length scale for domain-averaged turbulent kinetic
energy dissipation ε, and kmax = 2knyq/3 is the maximum resolved wavenumber for
Nyquist wavenumber knyq = πNx/Lx = πNz/Lz after dealiasing. Simulations are stopped
around 30 dimensionless time units after billow pairing takes place, as the dynamics after
this become constrained artificially by the periodicity of the domain. The majority of the
dynamics and turbulence we study below occurs either before or during pairing, giving us
a good level of confidence that the domain size we use is sufficiently large.

Table 1 summarises the initial parameters and grid sizes for the DNS performed. We
investigate the dynamics and evolution associated with the initial condition (2.9) for a
range of initial Froude numbers Fr0. The same shape of the initial perturbation ũ is used
for each simulation. To prescribe the amplitude |ũ|, we observed that trial runs indicated
perturbations u′ to the background velocity field ū grew linearly with time with rate |ṽ|
(so that |u′| ∝ |ṽ|t according to the lift-up mechanism, as detailed for the full DNS in § 3
below) before saturating in amplitude at a dimensionless time of approximately 4πFr0. We
therefore select a target maximum amplitude |u′| = 0.2 giving |ũ| = 0.2/(4πFr0), hence
determining a typical order of magnitude |ũ| ∼ O(10−2) for the narrow range of Fr0 ∼
O(1) investigated here. The target amplitude of |u′| = 0.2 is the same for each simulation
and is chosen so that the local gradient Richardson number

Rig(x, t) = 1 − ∂ρ/∂z

Fr2
0|∂u/∂z|2 (2.10)

remains above the marginal stability value of 1/4 at the interfaces between the layers
that grow, preventing the onset of vertically stratified shear instability. For the sake of
simplicity, and for arguably a better comparison with other DNS from the literature
exhibiting LAST sustained by large-scale vortical motions, we focus on this limiting
case where turbulent transition requires additional energy obtained from the onset and
development of columnar vortices produced by horizontal shear instability, occurring
once transient layer growth has taken place. The opposite limit, where the dynamics are
dominated by the early development and breakdown of Kelvin–Helmholtz billows at the
layer interfaces, has been well studied at least on the individual layer scale, and in the
absence of the large-scale horizontal shear layer (see, e.g. the recent review by Caulfield
2021).
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Figure 1. (a) Vertical profiles of streamwise velocity u(0, 0, z) taken at time t ≈ 48 for simulations F05 (red
solid line), F1 (blue dashed line) and F2 (orange dot-dashed line). The black dotted line shows the shape of
the initial spanwise velocity profile ˆ̃v(z) normalised to a similar amplitude for comparison. (b,c) Contour plots
showing vertical slices from simulation F1 in the y and x planes of the streamwise velocity field (b) u(x, 0, z)
and (c) u(0, y, z). The directory including the data and Jupyter notebook for producing the figure can be found
at https://cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/files/fig1.

3. Results

3.1. Amplification of vertical shear
We begin by studying the transient growth of the initial state defined in (2.9) for the
simulations F05, F1 and F2, where the results from simulation F07 follow a similar pattern
and are omitted from this section for clarity. The initial perturbation (ũ(z), ṽ(z), 0) causes
the magnitude of the streamwise velocity u to increase rapidly before saturating at around
O(1), which we investigate in detail below. First, figure 1 shows visualisations of the
streamwise velocity field u at time t ≈ 48 after saturation of the initial growth. Panel (a)

shows the vertical profile of the centreline velocity u(0, 0, z) for simulations F05 (red
solid line), F1 (blue dashed line) and F2 (orange dot-dashed line). The black dotted line
shows the shape of the initial perturbation ṽ(z) of the spanwise velocity normalised to
have similar amplitude for ease of visualisation. A distinct vertical mode structure in u is
present, in all cases taking a similar (reflected) shape to the initial profile, which strongly
suggests the growth in u is locally determined by ṽ in a manner consistent with (2.8).

There are small but noticeable differences between the simulations with different initial
Froude number Fr0: in general, a lower Froude number results in more pronounced higher
wavenumber modes. Recalling that ṽ is constructed of a sum of randomly phased Fourier
modes eimz for the lowest seven permissible wavenumbers in the vertical, this means that
the higher wavenumber modes exhibit enhanced growth for smaller Fr0. This is entirely
consistent with the results of Deloncle et al. (2007) who show that, for the same base flow
without the additional vertical perturbations, three-dimensional infinitesimal normal mode
perturbations with vertical wavenumber m less than 1/Fr0 grow almost equally as fast as
the most unstable two-dimensional mode with m = 0 corresponding to that of classical
unstratified shear instability, with a larger growth rate for smaller Fr0. It is important to
stress here that, though there exists a clear scaling similarity, the finite-amplitude modes
we are considering here are entirely different and grow over a much shorter time scale than
the infinitesimal perturbations considered by Deloncle et al. (2007), the latter of which can
be seen emerging in the form of a vertical column defect length scale in the fully nonlinear
simulations of BS06.

The quasi-steady state reached by the algebraic growth consists of horizontal layers in
the streamwise velocity field that are localised at the velocity interface in the y direction
and extend across the whole domain in the x direction, as can be seen by looking at
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Figure 2. The evolution of streamwise velocity magnitude evaluated at y = 0 and integrated over the x and z
directions (right axis), as well as the corresponding terms in the linearised evolution equation (2.8) (left axis).
Results are shown for simulations (a) F05, (c) F1 and (c) F2. The directory including the data and Jupyter
notebook for producing the figure can be found at https://cocalc.com/Cambridge/S0022112024001216/JFM-
Notebooks/files/fig2.

panels (b,c) of figure 1. We note that v, w and ρ are small in comparison to u and only
grow substantially once horizontal shear instability occurs later during the flow evolution.
Panel (c) shows that the interface in the y direction is distorted by the layering, though
the magnitude of the maximum velocity gradient ∂u/∂y remains similar and, hence, as
we will see, this distortion does not prevent the rolling up of the sheet of vorticity into
Kelvin–Helmholtz billows in the x–y plane caused by inflectional shear instability.

We now investigate the dynamics of the transient growth in detail. In figure 2 the
centreline streamwise velocity magnitude 〈|u( y = 0)|〉 averaged over the x and z directions
can be seen to increase linearly with time initially, matching the algebraic growth
predicted by the lift-up mechanism of Ellingsen & Palm (1975). Moreover, we can plot
the corresponding x- and z-averaged terms from (2.8) to find a very good match with the
predicted growth rate 〈|v∂ ū/∂y( y = 0)|〉. The streamwise velocity magnitude continues
to grow until it starts to saturate at a time proportional to Fr0, so that the saturation
time for F1 is approximately double that of F05 and so on. Noting that the dimensionless
buoyancy frequency is given by 1/Fr0, this indicates that the stratification is responsible
for equilibrating the flow to a quasi-steady vertical layered state approximately over two
buoyancy periods 4πFr0, which is then sustained until the growth of the horizontal shear
instability becomes significant. Perhaps somewhat surprisingly, the agreement with (2.8)
is maintained throughout the saturation of the layered state. This is because, as suggested
by figure 1(b), u and p continue to remain independent of the streamwise coordinate x as
the perturbations grow. Meanwhile, v decays and w remains small, with the result being
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Evidence for LAST in a freely evolving horizontal shear flow

that the nonlinearities and pressure gradient term in the streamwise momentum equation
are negligible (along with the viscous term) meaning it still reduces to the form (2.8).

It is worth briefly comparing the transient growth observed here to that seen in existing
studies of the hyperbolic tangent shear layer profile. For the case of the unstratified shear
layer (here obtained by taking Fr0 → ∞), Arratia et al. (2013) show that infinitesimal
perturbations of the form u0( y) exp(ikxx + ikzz) optimizing the (linear) energy growth
over sufficiently short time horizons are inherently three dimensional, i.e. both horizontal
and vertical wavenumbers kx and kz are non-zero, in contrast to the classical most unstable
two-dimensional shear instability mode with kz = 0 obtained from linear stability analysis.
Kaminski et al. (2014) find similar results for the stratified shear layer in the case where the
shear is parallel to gravity (equivalent to gravity acting in the y direction in the coordinate
system we use here). In both studies, optimal perturbations over short time horizons consist
of oblique waves localised at the centre of the shear layer and tilted against the shear,
growing through a combination of the lift-up and Orr mechanisms (Orr 1907; Farrell
& Ioannou 1993), though the behaviour may be markedly different in the presence of
stratification due to the excitation of internal gravity waves at some distance from the
central interface. The inviscid linear evolution of non-normal perturbations to the initial
condition (2.1a,b) used in this work where shear is orthogonal to gravity is studied by
Arratia (2011). This system is also discussed by Bakas & Farrell (2009a,b) as an extension
of a more general investigation on the behaviour of internal wave perturbations on a flow
with constant linear background shear. For the study here in which we focus primarily on
the nonlinear flow evolution, it suffices to say that in both cases, optimal perturbations
in the limit of kx → 0 exhibit linear streamwise velocity growth with time purely via the
lift-up mechanism, precisely as we have observed here.

3.2. Turbulent transition
The initial conditions of BS06 are equivalent to ours in the absence of the vertical
perturbations leading to horizontal layer formation. They observe the development of
horizontal shear instability in the form of columnar vortices that interact with adjacent
vortices over a characteristic vertical length scale dependent on Fr0. However, this length
scale only becomes substantially smaller than the length scale of the horizontal shear mode
for Fr0 � 1. Even when this is the case, the induced three-dimensional behaviour does not
lead to a transition to small-scale turbulence. In our DNS, the lift-up mechanism enables
the transient growth of layers with a significantly smaller vertical scale than the vertical
length scale observed in BS06 associated with the fastest growing three-dimensional
normal mode of the background flow. As discussed at the end of § 2.3, the magnitudes
of vertical perturbations we impose on top of the set-up of BS06 are chosen so that the
transient growth and saturation of the vertically sheared layers does not by itself destabilize
the flow. Here we show that the subsequent onset of horizontal shear instability facilitates
a transition to small-scale turbulence by interacting with the existing horizontal layers and
enhancing the vertical shear between them, as well as creating local statically unstable
overturns, or regions where the total density gradient −1 + ∂ρ/∂z > 0.

In figure 3 we use sequential violin plots (see the caption for a detailed description) to
illustrate the evolution of the shape of the probability density function (p.d.f.) of the local
gradient Richardson number Rig(x, 0, z, t) defined in (2.10), evaluated in the plane y = 0
at the centre of the horizontal shear layer. For clarity, only those values −0.5 < Rig < 2
are considered. At time t = 55, the horizontal layers in u have saturated in magnitude
as is evident from figure 2. As per our design, the vertical shear at this point between
the layers alone is not strong enough to trigger vertical shear instability and growing
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Figure 3. Violin plots showing the evolution of the shape of the p.d.f. of the gradient Richardson number
−0.5 < Rig < 2 in the central plane y = 0. Each plot is centred at its corresponding time on the x axis. The
breadth of the shaded region corresponds to the magnitude of the p.d.f. evaluated at the corresponding value
of Rig shown on the y axis. Results are shown for simulations (a) F07, (b) F1 and (c) F2. The black dot-dashed
lines correspond to the notional marginal value of Rig = 1/4. Red lines (right axis) show the evolution of the
spanwise perturbation velocity 〈v′2〉 as an indicator for the onset of horizontal shear instability.

Kelvin–Helmholtz billows. This is reflected in the distributions of Rig, which do not
exhibit values less than 1/4 corresponding to the classical marginal stability value from the
Miles–Howard criterion (though this is strictly only valid for normal mode perturbations
to parallel inviscid stratified shear flows (Howard 1961; Miles 1961)) for any value of Fr0.

To trigger a transition to turbulence, the onset of horizontal shear instability is required.
A proxy for the growth of this instability is the root-mean-square magnitude of the
spanwise velocity 〈v2〉, here averaged over y = 0, whose evolution is shown by the solid
red lines in figure 3. Because the fastest growing mode of instability is purely horizontal
(Deloncle et al. 2007), the onset and development is not expected to be influenced strongly
by Fr0, as is consistent with the figure. However, the growing horizontal perturbation
clearly interacts with and enhances the vertical shear between the existing layers, distinctly
modifying both the shape and centre of the distribution of Rig. The effect is more
pronounced for weaker stratification, or larger Fr0. The growth of the horizontal mode
results in the existence of local values of Rig < 1/4 for all simulations, with an increasing
relative density for smaller Fr0. This indicates the potential for vertical shear instability
(though we emphasise again that Rig < 1/4 is only a notional, indicative proxy), which
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Evidence for LAST in a freely evolving horizontal shear flow

has often been assumed to be the canonical route to turbulence in LAST (e.g. Brethouwer
et al. 2007). Moreover, values of Rig < 0 corresponding to regions of static instability are
observed, suggesting the advection of denser fluid over lighter fluid. One way this may
be achieved is through the strong vertical shearing of horizontal gradients in density that
arise due to the fact that the density perturbation field is strongly coupled to the vertical
vorticity field, a feature that is discussed in detail in BS06.

In general, figure 3 illustrates how the growth of the horizontal shear mode renders
the flow increasingly locally unstable and, hence, facilitates turbulent transition at small
scales, provided Fr0 is not too small. As the trend in the distribution shape with Fr0
suggests, for simulation F05, it was found that Rig remains larger than 1/4 everywhere
even after the growth of the horizontal mode and, correspondingly, turbulence did not
develop. This simulation is therefore excluded from the remainder of the discussion, where
we focus on F07, F1 and F2. We stress that, by design, the existence of the horizontal layers
formed by transient growth and the subsequent development of horizontal shear instability
are both necessary for turbulent transition. In the absence of either, insufficient regions
of vertical shear and static instability are generated for the development of small-scale
instabilities. Though they are not considered here, it seems likely that initial perturbations
with increasingly large amplitudes would eventually lead to local vertical shear instability
dominating proceedings as discussed in § 2.3.

To illustrate the highly three-dimensional transition to turbulence fully, figures 4 and
5 show horizontal and vertical slices of the vertical vorticity field ζz = ∂v/∂x − ∂u/∂y
for simulations F07, F1 and F2 at various times throughout the flow evolution, following
the initial development of horizontal layers. Despite the significant early growth of the
horizontal layers described above, the subsequent flow still develops vertically coherent
columnar billow structures due to horizontal shear instability in the manner described in
BS06. This can clearly be seen in the left-hand panels of the two figures. Note that, in order
to resolve small-scale turbulence, our simulations have a significantly smaller domain size
in both the x and z directions than those of BS06 and, as a result, we do not see the
billow interlocking behaviour they observe that occurs on vertical length scales close to
the horizontal extent of the primary instability for Fr0 = 1, though we note there is clear
large-scale vertical decorrelation of billow pairing visible in figures 5(b) and 5(c) for the
simulation F07 with the lowest Fr0.

We observe distinctly different behaviour to that reported by BS06 occurring once
columnar billows have formed, with the horizontal layers in the streamwise velocity
field arising due to the lift-up mechanism strongly distorting the billow in the vertical
at scales much smaller than its horizontal extent. This has the greatest effect on the outer
regions, most notably the ‘braid’ structure that joins the two billows as can be seen in
the left panels of figure 5. A breakdown to three-dimensional turbulence characterised
by small-scale motions in the vorticity field follows the development of positive vertical
vorticity structures in the braid seen in simulations F1 and F2, shown in figures 5(d) and
5(g). The braid vortex structures are not formed in flow F07, presumably due to the stronger
influence of the stratification, though fully three-dimensional turbulence still eventually
develops, as shown in panels (b,c).

At the same time, the enhancement of local vertical shear by the growing horizontal
mode of instability means that the distributions of Rig shown in figure 3 for each simulation
have an increased density of points with Rig < 1/4. Moreover, the existence of horizontal
gradients in density aligned with the structures in the vertical vorticity field in the presence
of this vertical shear generates statically unstable regions with Rig < 0 as discussed above.
Thus, conditions are created consistent with both shear and convective instability leading
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Figure 4. Horizontal planes z = 0 showing contours of the vertical vorticity field for simulations (a–c) F07,
(d– f ) F1, (g–i) F2. Plots (a,d,g) are taken at time t = 88, (b,e,h) at t = 118 and (c, f,i) at time t = 148. Blue
and red colours denote negative and positive values. An animated movie for simulation F1 is included in the
supplementary materials available at https://doi.org/10.1017/jfm.2024.121. The directory including the data and
Jupyter notebook for producing the figure can be found at https://cocalc.com/Cambridge/S0022112024001216/
JFM-Notebooks/files/fig4.

to turbulence production. Based on the results of Parker et al. (2021) who study optimal
perturbations on a breaking internal gravity wave through its interaction with a vertical
shear layer, we think it reasonable to suppose here that the precise sequence of mechanisms
leading to turbulence will depend on the energy available to growing perturbations from
the time-evolving background flow, whose evolution itself is governed (at least) by the
initial conditions and parameters Re0, Fr0 and Pr. This same complexity is also apparent
during the breakdown of Kelvin–Helmholtz billows in a stratified shear layer, which
develop a ‘zoo’ of secondary instabilities facilitating transition to small-scale turbulence
that vary strongly with the strength of the background stratification, as well as Re0 and Pr
(Mashayek & Peltier 2012a,b; Salehipour, Peltier & Mashayek 2015).

The spatial locality of regions where turbulence is produced leads to obvious large-scale
intermittency that is present in all simulations. Horizontal intermittency is mainly due to
the coherent billow core structure, with both figures demonstrating the columnar vortices
eventually pairing that is noticeably decorrelated at different heights for flows F07 and F1,
as can be seen most clearly in figure 5(b). At these smaller values of Fr0, an increasing
fraction of the vertical extent of the domain remains mostly laminar, likely due to the fact
that the breakdown of the braid is inhibited by early pairing in these regions. Despite the
differences in intermittency however, the centre and right-hand panels of figure 5 show
that in general, where they are present, turbulent regions exhibit vertical anisotropy for
all Froude numbers investigated, where emerging layered structures have a horizontal to
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Figure 5. Similar to figure 4 but this time vertical planes y = 0 showing contours of the vertical vorticity field
for simulations (a–c) F07, (d– f ) F1, (g–i) F2. Plots (a,d,g) are taken at time t = 88, (b,e,h) at t = 118 and (c, f,i)
at time t = 148. Blue and red colours denote negative and positive values. An animated movie for simulation F1
is included in the supplementary materials. The directory including the data and Jupyter notebook for producing
the figure can be found at https://cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/files/fig5.

vertical aspect ratio that increases with decreasing Fr0. This is in qualitative agreement
with the LAST regime.

3.3. Computation of turbulent statistics
Before exploring the dynamics of the three-dimensional flow regime quantitatively, we
briefly outline how relevant statistics are calculated. Due to the presence of the initial
background horizontal shear in the problem, the perturbation velocity field u′(x, t) is
defined in the same manner as in BS06 as the perturbation of the total velocity field u
away from the ‘background profile’ obtained by averaging in the x and z directions:

u′(x, t) = u(x, t) − 1
LxLz

∫ Lx

x=0

∫ Lz

z=0
u dx dz. (3.1)

As seen above, the flows we are considering are transient and, especially at points
early during turbulence development, highly spatially intermittent in both the vertical
and horizontal directions. This makes computing representative bulk turbulent statistics
challenging, since any box average will contain an a priori unknown volume fraction
of quiescent regions. Perhaps the most obvious approach is to average statistics over a
time-evolving three-dimensional turbulent region identified according to some threshold
criterion on a field variable such as the turbulent kinetic energy, however the disk-space
requirements for saving fully three-dimensional flow fields are too demanding to achieve
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a satisfactory resolution in time by this method. Since turbulence is generally centred on
the location of the initial strip of vertical vorticity at y = 0, we suggest that a reasonable
compromise for computing statistics is to consider vertical snapshots in the plane y = 0 as
illustrated in figure 5. Bulk statistics for the field variable f (x, y, z, t) are then calculated
by a plane average over the active turbulent region denoted by angle brackets 〈·〉T with a
subscript T ,

〈 f (x, y, z)〉T(t) = 1
Lx(Lz − zmin)

∫ Lx

x=0

∫ Lz

z=zmin

f (x, 0, z) dx dz, (3.2)

where zmin is chosen to neglect the largely quiescent lower regions in simulations F07 and
F1. Specifically, we take zmin = Lz/2 = 7.14 for simulation F07, zmin = 4.0 for simulation
F1 and zmin = 0 for simulation F2. This approach removes the majority of the vertical
intermittency and, on average, minimises the horizontal intermittency, though fluctuations
in bulk values are expected as localised regions of turbulence are swept around the central
part of the domain by the spinning and merging columnar billow structures seen in figure 4.
The trade-off for a high time resolution is therefore that computed statistics are at best
only broadly representative of flow behaviour. Nonetheless, we find that they prove to
be sufficiently effective for characterising the key features of the flows we consider, as
we show below. It is also worth pointing out the clear practical similarities between this
problem and its observational analogue when dealing with experimental and field data:
particularly relevant for the motivation of this study are oceanographic microstructure
observations, for which the present most complete spatio-temporal datasets come from
a chain of moored sensors (see, e.g. Ivey, Bluteau & Jones 2018).

3.4. Stratified turbulence characteristics
At least qualitatively, turbulence in all simulations exhibits behaviour that is consistent
with the LAST regime. It is natural to ask whether this behaviour, despite arising in
a highly spatially localised horizontal shear flow whose fully turbulent behaviour has
not previously been considered, can be characterised by an appropriately defined set of
turbulence parameters as discussed in the introduction. As argued by Zhou & Diamessis
(2019) and Portwood et al. (2016), since the flow we are considering is highly transient,
it is perhaps most appropriate to define the horizontal Reynolds and Froude numbers Reh
and Frh directly in terms of diagnosed energy-containing integral length scales L and Lv in
the horizontal and vertical directions rather than indirectly appealing to the inertial scaling
ε ∼ U3/L often used in forced statistically stationary DNS (Brethouwer et al. 2007). To
determine L and Lv , we integrate the spectra of horizontal velocities in the plane y = 0
using the method described in the appendix of Zhou & Diamessis (2019). The results
are shown in figure 6 for times t > 80 following the onset of billow roll up. Figure 6(a)
demonstrates that, despite the onset of turbulence, L remains largely determined by the
horizontal extent of the columnar billow structures throughout turbulent flow evolution.
Billow pairing is clearly indicated by the rapid increase in L (though the timing depends
non-monotonically on Fr0 due to the vertical decorrelation seen in figure 5). Consistent
with the qualitative horizontal evolution shown in figure 4, this indicates that the horizontal
kinetic energy and momentum balances are dominated by the emerging and interacting
vortex columns. Looking at figure 6(b), the integral vertical scale Lv is set by the layer
growth that occurs prior to billow formation and notionally represents a dimensionless
layer length scale. Despite some reasonable fluctuations (likely due to the manner in which
it is calculated, as discussed above), Lv maintains a similar magnitude over time, indicating
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Figure 6. Evolution of the horizontal and vertical integral length scales (a) L and (b) Lv for simulations F07
(blue lines), F1 (red lines) and F2 (orange lines). The directory including the data and Jupyter notebook for
producing the figure can be found at https://cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/files/
fig6.

that these layers are maintained throughout turbulence evolution. This behaviour of L
increasing whilst Lv remains a similar magnitude is fairly typical of freely evolving flows
in the LAST regime. In particular, we note the similarities with the freely evolving DNS of
Riley & de Bruyn Kops (2003) initiated from a laminar Taylor–Green vortex configuration,
which quickly develop strong horizontal vertically sheared layers that are maintained in
structure and magnitude throughout the turbulent flow evolution despite the horizontal
length scale increasing significantly. We define Reh and Frh according to (1.1a,b), where
the velocity scale U = K1/2

h for Kh = 〈u′2 + v′2〉T/2 and the average is taken as discussed
above using (3.2). In dimensionless form we have

Reh = Re0K1/2
h L, Frh = Fr0K1/2

h
L

. (3.3a,b)

The evolution of each turbulent flow in Reh-Frh parameter space is shown in figure 7(a)
by plotting Reh against 1/Frh as suggested by Brethouwer et al. (2007), where their
delineation of the ‘strongly stratified’ LAST regime according to Frh < 0.02 and
RehFr2

h > 1 is shaded. According to our estimation of Reh and Frh, flows F1 and F07 can
be seen in the figure to both narrowly fall within this regime during at least some of their
evolution, whilst flow F2 remains only weakly affected by the stratification throughout. It
is interesting to compare our results with Zhou & Diamessis (2019), who, for a stratified
turbulent wake behind a bluff body, derive a predicted turbulent Reynolds number Reh ∼
Re0Fr−2/3

0 based on the initial Reynolds and Froude numbers associated with the size of
the body, using this to estimate empirically that strongly stratified turbulence is accessed
when

Re0Fr−2/3
0 � 5 × 103. (3.4)

Calculating a Reynolds and Froude number associated with the cylindrical billow
structures that form with a diameter approximately Lx/2 = 14.28 in our simulations as
Re†

0 = 14.28Re0 and Fr†
0 = Fr0/14.28, we find that Re†

0Fr†−2/3
0 ≈ 6100 for simulation

F07R1, Re†
0Fr†−2/3

0 ≈ 4900 for F1R1 and Re†
0Fr†−2/3

0 ≈ 3100 for F2. This provides a
perhaps fortuitously good match with the prediction of Zhou & Diamessis (2019) despite
the different flows under consideration, suggesting at least a non-trivial level of underlying
similarity in the dynamics. Indeed, the derivation of their criterion essentially relies on
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Figure 7. (a) Trajectories of Reh vs 1/Frh for simulations F07, F1 and F2. The direction of time is from
left to right, indicated by the grey arrow. Markers indicate the points at which the ‘fully turbulent’ snapshots
considered in figures 8 and 9 are taken. The light blue shaded region denotes the ‘strongly stratified’ region of
parameter space delineated by Brethouwer et al. (2007) according to RehFr2

h > 1 and Frh < 0.02. Panels (b,c)
show the evolution of the buoyancy Reynolds number Reb and vertical Froude number Frv for each simulation,
where the dashed lines correspond to the time instant at which the markers are located in (a). The directory
including the data and Jupyter notebook for producing the figure can be found at https://cocalc.com/Cambridge/
S0022112024001216/JFM-Notebooks/files/fig7.

the assumptions that turbulence parameters are primarily dependent on the large-scale
properties of the flow on top of which turbulence develops, a feature that we also observe
here.

We also define the buoyancy Reynolds number Reb and the vertical Froude number Frv

(using the cyclic buoyancy period 2πFr0 as, for example, in the freely evolving flows of
de Bruyn Kops & Riley 2019; Zhou & Diamessis 2019) by

Reb = Re0Fr2
0ε, Frv = 2πFr0K1/2

h
Lv

, (3.5a,b)

where ε = 〈∂iu′
j∂iu′

j〉T/Re0 is the dimensionless bulk turbulent kinetic energy dissipation
rate. The time evolution of these quantities is shown in figure 7(b,c). Looking first at
figure 7(b), both the maximum value of Reb and the time taken to reach this maximum
depend strongly on the dimensionless buoyancy period Fr0. In particular, just as with the
prior development of the horizontal layers, the time taken for Reb to reach its first local
maximum scales approximately linearly with Fr0, demonstrating that turbulent transition
is affected at leading order by the stratification. Once billow pairing has taken place, Reb
starts to increase again for flows F1 and F2, likely due to the same mechanisms that
caused the initial burst (though as discussed above, the simulations are stopped at this
point as the dynamics start to become constrained by the periodicity). Peak values of
Reb ≈ 10 and Reb ≈ 5 for the strongly stratified simulations F1 and F07 are high enough
for the development of small-scale turbulent motions, though nonetheless imply at best
a modest range of scales between the Ozmidov scale and the Kolmogorov length scale.
Similar to the vertical length scale, the vertical Froude number plotted in figure 7(c)
remains similar to its initial value determined by the shear layers that form prior to billow
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Figure 8. Vertical slices showing the dissipation field ε, with (a,c,e) taken in the plane x = 0 and (b,d, f ) taken
in the plane y = 0. Plots (a,b) are from simulation F07, (c,d) from F1 and (e, f ) from F2. For simulations F07
and F1 that are vertically intermittent, only the fully turbulent section of the vertical domain is shown. The
snapshots are taken at times corresponding to the location of the markers in parameter space in figure 7(a),
indicated explicitly by the dashed lines in 7(b,c). Note the logarithmic colour scale. The directory including
the data and Jupyter notebook for producing the figure can be found at https://cocalc.com/Cambridge/
S0022112024001216/JFM-Notebooks/files/fig8.

development and turbulence, and importantly, is O(1) throughout turbulence evolution
that is a characteristic signal of the stratified turbulence regime.

For each turbulent simulation, we look at a snapshot of the dissipation field ε when
Reb is close to its peak value whilst Frh is either less than 0.02 (for flows F07 and F1)
or as small as possible (for flow F2). The corresponding locations in parameter space are
shown by the markers in figure 7(a) with times indicated by the dashed lines in panels
(b,c). Vertical plane snapshots of the dissipation field are plotted in figure 8. Looking first
at snapshots in the plane x = 0 shown in the left panels, we can see that a range of small
scales are present in all simulations, though remain highly localised to the central strip of
vorticity associated with the initial horizontal shear flow that is distorted in the vertical
by the vertically sheared layers that form. Horizontal layering of dissipation is obvious in
simulations F07 and F1, while for the more weakly stratified flow F2, the distribution is
more sparse. This is also clear from looking at the snapshots in the plane y = 0 in the
right panels where horizontally localised patches of turbulence are apparent in flow F2.
We suggest that the reason for the differences between the spatial patterns in ε is due
to the timing of the development of turbulence, which depends strongly on Fr0, relative
to the evolution of the background horizontal flow set by the vortex columns, which is
similar across all simulations. The results are consistent with a picture of turbulence
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Figure 9. (a) Compensated horizontal (streamwise) spectra of kinetic energy k5/3
x E(kx); (b) compensated

vertical spectra of kinetic energy k3
z E(kz); (c) vertical spectra of kinetic energy as in (b), where this time the

sum is taken over streamwise modes kx > 0. Lines are coloured consistent with the previous figures. Spectra are
evaluated using the full three-dimensional flow fields. The directory including the data and Jupyter notebook
for producing the figure can be found at https://cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/
files/fig9.

onset being highly localised to unstable regions that are advected and extended by the
background horizontal flow, matching the behaviour in the vertical vorticity field shown
in figure 4. When Fr0 is larger, turbulence develops rapidly and Reb is largest whilst the
unstable regions are local to the outer regions of the billows causing the patchiness seen
in figure 8( f ). For smaller Fr0, the time scale of turbulence development is large enough
relative to that of the horizontal flow such that it is distributed throughout the domain by
horizontal motions before decaying.

Finally, we look at the one-dimensional horizontal and vertical spectra of horizontal
kinetic energy for each simulation at the times corresponding to the markers in figure 7(a).
Our pseudo-spectral DNS resolve discrete streamwise Fourier modes exp(ikx) with
wavenumbers kx = 2πnx/Lx for integers nx between 0 and 384 (corresponding to the
maximum wavenumber after dealiasing) and analagous vertical modes exp(ikz) with
wavenumbers kz = 2πnz/Lz for nz between 0 and 170. Spectra are calculated using the
fully three-dimensional flow fields in the central turbulent region −5 < y < 5. Precisely,

E(kx) = 1
2

∫ 5

y=−5

⎛
⎝∑

kz

ûû∗ + v̂v̂∗
⎞
⎠ dy, (3.6)

E(kz) = 1
2

∫ 5

y=−5

⎛
⎝∑

kx

ûû∗ + v̂v̂∗
⎞
⎠ dy, (3.7)

where a hat denotes a Fourier transform in the x and z directions and ∗ denotes complex
conjugation.

Figure 9(a) demonstrates that, whilst Reb is at, or close to, its maximum value, the
horizontal spectrum for each simulation displays a plateau with a k−5/3

x slope indicating
an incipient inertial range in the horizontal scales that is consistent with other vortically
forced simulations at similar Reb by, e.g. Howland et al. (2020), Augier et al. (2015) and
Lindborg (2006). For sufficiently small Frh, the buoyancy wavenumber kb = (Fr0K1/2)−1

becomes a dynamically relevant parameter (Billant & Chomaz 2001) that, under the
fundamental assumption that the vertical Froude number Frv defined in (3.5a,b) is O(1),
scales with the wavenumber 2π/Lv corresponding to the integral vertical scale Lv set by
the initial layers that form. The latter is easily recognisable as the location of the distinctive
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Evidence for LAST in a freely evolving horizontal shear flow

sharp peaks visible in figure 9(b). To draw attention to dynamics at scales influenced
strongly by buoyancy, it is revealing to plot the vertical spectra as a function of the vertical
wavenumber normalised by the Ozmidov wavenumber

kO ≡ (Fr−3
0 /ε)1/2. (3.8)

In the LAST regime a range of anisotropic scales is expected to emerge between kb

and mO where E(kz) ∼ k−3
z , followed at wavenumbers larger than kO by an increase in

gradient towards the isotropic slope k−5/3
z provided that Reb is sufficiently large, that

is, there is a range of turbulent scales between kO and the Kolmogorov wavenumber
kK = (Re−3

0 /ε)−1/4 that do not feel the influence of the stratification. In all of our
simulations there are at most a few decades of scales within the entire range kb < kO < kK
so it is not surprising that these subranges are not distinct in figure 9(b). However, clearly
the range of wavenumbers between kO and the wavenumber of the vertical layers that form
corresponding to the sharp peaks increases with decreasing Fr0. For the lowest Fr0 = 0.71,
a hint of an k−3

z plateau emerges, which is consistent with being at least marginally inside
the strongly stratified turbulent regime. As suggested by Almalkie & de Bruyn Kops (2012)
and explored in detail by Maffioli (2017) and Howland et al. (2020), due to the natural
spatial variation in the vertical length scales associated with a given horizontal scale, the
use of one-dimensional spectra results in the aliasing of some of the energy contained
in small-scale horizontal motions onto relatively low vertical wavenumbers that acts to
obscure the narrow k−3

z plateau at low to moderate values of Reb.
We can remove the low wavenumber peaks in the vertical spectra by noting that the

shear layers that cause them extend horizontally across the entire domain. Therefore, by
computing the power spectral density whilst taking the sum in (3.7) over kx /= 0, we can
isolate the dynamics in the absence of the these largest-scale horizontal motions. The
results are shown in figure 9(c), which somewhat more convincingly demonstrates the
tendency of the vertical spectra towards an k−3

z plateau as Frh decreases, suggesting the
emergence of the associated buoyancy-inertial range. Additionally, as Reb increases from
simulation F07 to simulation F2, the compensated spectra exhibit persistently steeper
slopes towards vertical wavenumbers larger than kO, displaying a plausible tendency
towards the existence of an inertial range whose slope is indicated by the dashed line.
In general, comparing the three spectra demonstrates a clear transition from the behaviour
of stratified turbulence containing wavenumbers mostly smaller than kO (simulation F07)
to that containing wavenumbers mostly at or larger than kO (simulation F2), whilst the
overlap in the buoyancy and inertial subranges at wavenumbers close to kO highlights
the difficulty in performing DNS with a large enough dynamic range to resolve both
simultaneously. As of yet, DNS have not been able to reveal distinctly both the proposed
isotropic and buoyancy-inertial vertical wavenumber range in stratified turbulence due to
present computational limitations. Nonetheless, despite the time-dependent nature of the
flow we are considering, the results here are at least suggestive that our DNS can transiently
access a regime whose corresponding spectra behave in a manner consistent with arguably
the most closely matching vortically forced flows of Maffioli (2017).

3.5. Mixing
We assume the irreversible mixing rate to be equivalent to the rate of destruction of
buoyancy variance χ defined for density perturbations ρ from a uniform background
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Figure 10. Time evolution of (a) χ (solid lines) with ε (dashed lines) superposed; (b) instantaneous and
cumulative flux coefficients Γi (solid lines) and Γc (dotted lines). Each simulation is indicated by the colours
consistent with previous figures. The directory including the data and Jupyter notebook for producing the figure
can be found at https://cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/files/fig10.

density gradient as

χ = 1
Re0PrFr2

0
〈∂iρ∂iρ〉T . (3.9)

Technically, a precise definition describing the evolution of the potential energy associated
with an appropriate background density profile as proposed by Winters & D’Asaro (1996)
should be invoked, however, the practical difficulties in implementing this method and the
feasibility of direct measurements of χ in the ocean have led to (3.9) being regularly taken
to be the definition of the mixing rate. Howland et al. (2021) show that χ as defined above
remains within 10 % of the ‘true’ mixing rate in a variety of forced stratified turbulent
flows, with similarly good agreements being found for freely evolving vertically sheared
flows (Lewin & Caulfield 2021).

An associated mixing efficiency η and flux coefficient Γ can be defined instantaneously
or cumulatively (denoted with subscripts ‘i’ and ‘c’, respectively) as

ηi(t) = χ

χ + ε
, Γi(t) = χ

ε
; (3.10a,b)

ηc(t) =

∫ t

0
χ dt∫ t

0
(χ + ε) dt

, Γc(t) =

∫ t

0
χ dt∫ t

0
ε dt

. (3.11a,b)

Note that η = Γ/(1 + Γ ) in both the instantaneous and cumulative sense. Plots of χ and
the associated dissipation ε are shown in figure 10(a). The behaviour of ε was previously
discussed in the form of Reb = Re0Fr2

0ε, but is included as the dashed lines to facilitate
a direct comparison with χ in the context of mixing. There is a notable similarity in the
early behaviour of both χ and ε in simulations F1 and F2, with both quantities increasing
almost immediately following the formation of columnar billows. The onset of growth
for simulation F07 is substantially more delayed. This may be attributed to the vortex
structures that form in the braid region early during flow evolution for flows F1 and F2 but
not for the more strongly stratified F07, as discussed in § 3.2. Corresponding behaviour is
also marked in the plots of Γi and Γc shown in figure 10(b), where values early during
turbulence development are similar for flows F1 and F2 and significantly larger than those
of F07, representing larger mixing efficiencies during this stage. Indeed, the difference in

983 A20-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/files/fig10
https://doi.org/10.1017/jfm.2024.121


Evidence for LAST in a freely evolving horizontal shear flow

the late-stage values of cumulative Γc between flows F07 and F1 is likely due to this early
behaviour. The pattern of larger values of the mixing efficiency being linked to coherent
small-scale structures formed prior to turbulent transition has an analogue for the stratified
vertical shear layer problem demonstrated by Mashayek, Caulfield & Peltier (2013) and
Lewin & Caulfield (2021) in the context of coherent secondary shear instabilities that
develop on the periphery of the (vertical) Kelvin–Helmholtz billow structures that form.

The behaviour of χ later during flow evolution closely follows that of ε, peaking
at around the same time for each flow. However, the associated ratio Γi adjusts once
turbulence develops so that flows F07 and F1 match very closely with values of Γi between
0.3 and 0.4, whilst flow F2 displays larger values of Γi between 0.4 and 0.5. This is
consistent with the results of Maffioli et al. (2016), who find that, for stratified turbulent
flows maintained by vortical forcing, an appropriately defined Γ appears to exhibit a
maximum value of around 0.5 at moderate values of Frh ≈ 0.3 before decreasing and
eventually tending towards a constant value of Γ ≈ 0.35 as Frh decreases towards around
O(10−2). Based on the results from the previous section, the point at which Γi becomes
roughly equal to this asymptotic value (or rather, for our transient flows, the point at which
Γi settles on the same trajectory for flows F07 and F1) appears to be determined by the
entrance of the flow into the LAST regime, controlled by Frh. The physical reason for
this has been argued through the consideration of the dominant scaling balances in this
regime, for example, by Maffioli et al. (2016) and Garanaik & Venayagamoorthy (2019).
Our values of Γi and their dependence on Frh are consistent with simulations forced with
vertically uniform large-scale vortical modes reported by both Howland et al. (2020) and
Maffioli et al. (2016). Values of (an appropriately defined) Γ ≈ 0.4 were also reported in
stratified turbulence resulting from the freely evolving Taylor–Green vortex configuration
of Riley & de Bruyn Kops (2003), as well as in the simulations of Jacobitz & Sarkar (2000)
forced with uniform horizontal shear.

3.6. Length scales
Motivated by the recent developments in analysing the relationship between important
dynamical length scales in the flow, we define the Ozmidov scale LO = 2π/kO, where kO
is given by (3.8), as well as the Thorpe scale LT as the root-mean-square displacement of
fluid parcels in each individual vertical column from their height in the corresponding
profile that is sorted so that density monotonically decreases with depth. Precisely,

LT =
√

〈δ2
T〉T , where δT(x, t) = z(ρ∗(x, t)) − z(ρ(x, t)) is the displacement of a parcel

at position z(ρ∗(x, t)) in the sorted density field ρ∗(x, t) (obtained by rearranging the
values of ρ in each vertical column to be monotonically increasing with depth) from its
position in the observed density field z(ρ(x, t)). The ratio of Ozmidov to Thorpe scales
ROT = LO/LT has been proposed by Dillon (1982) as a measure of the age of a turbulent
event in the context of vertical shear-driven mixing as discussed in Smyth, Moum &
Caldwell (2001) and more recently, for example, in Lewin & Caulfield (2021), with values
of ROT � 1 associated with early stage turbulence with larger corresponding Γ and values
ROT � 1 with late-stage decay where Γ → 0. For strongly stratified turbulence, Garanaik
& Venayagamoorthy (2019) argue (using the Ellison scale discussed in Lewin & Caulfield
(2021) as a substitute for the Thorpe scale) that ROT may be a reasonable proxy for the
Froude number Frh, though without considering developing turbulence do not cover values
of ROT � 1. They find Γ roughly tends to a constant of O(1) for ROT ∼ 1. Since our
simulations contain both a period of young turbulence, and later of strongly stratified
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Figure 11. (a) Time evolution of the ratio ROT = LO/LT of Ozmidov to Thorpe scales (solid lines, left axis),
where the corresponding shaded regions (right axis) represent the fraction of the domain that has a Thorpe
displacement δT > 0. Lines are coloured as in previous figures. (b) Plots of the p.d.f. of log10 ε over the
turbulent domain at times corresponding to the markers in figure 7, also indicated by the dashed lines in panel
(a). The directory including the data and Jupyter notebook for producing the figure can be found at https://
cocalc.com/Cambridge/S0022112024001216/JFM-Notebooks/files/fig11.

turbulence, we can investigate whether or not a corresponding signal exists in ROT for
each of these stages.

The solid lines in figure 11(a) show the time evolution of ROT for each simulation. In
general, for our simulations, ROT remains O(1) throughout the mixing event that is broadly
consistent with Garanaik & Venayagamoorthy (2019) who predict that Γ should remain
roughly constant at around O(1) in this regime. Actually ROT ∼ 1 also corresponds to the
optimal ‘Goldilocks mixing’ regime of Mashayek et al. (2021) within which Γ ∼ O(1).
Though this is derived within the setting of mixing by Kelvin–Helmholtz instability, which
is in principle entirely different to the LAST regime, we point towards the possibility of
the Kelvin–Helmholtz instability paradigm existing locally at scales below the buoyancy
scale set by the vertically sheared layers within LAST. All flows studied here follow a
pattern of ROT being smaller during transition and then increasing once turbulence is fully
developed, which is at least consistent with the ‘young’ turbulence picture of Mashayek
et al. (2017, 2021), though we do not observe ROT � 1 as would be needed to fully verify
this picture. This is perhaps unsurprising as such a regime would normally be associated
with values of Γ ≥ 1 not seen here. Whether or not there are mechanisms by which
strongly stratified flows can produce local overturns with much larger scale than the global
Ozmidov scale LO and, therefore, access a regime with ROT � 1 and Γ � 1 remains an
open question.

An alternative, though closely related, view comes considering the fraction of the
domain that is statically unstable, or equivalently, has |δT | > 0. This is represented by
the background shaded regions colour matched to the lines in figure 11(a). The behaviour
is as expected, with the fraction of overturning increasing with increasing Fr0. Flow
F2 peaks at around 50 % overturning fraction, F1 around 35 % and F07 at just under
25 %. In their classification of dynamically distinct regions in forced stratified turbulence,
Portwood et al. (2016) determine turbulent patches as having an overturning fraction
greater than 35 %, layers as having a fraction between 20 % and 30 % and quiescent regions
as having less than 20 %. This roughly classifies F2 as a turbulent patch and F1 and F07
as layers, which is consistent with the entering of the latter two into the LAST regime
accompanied by a change in the mixing properties. We have not investigated whether or not
the turbulence we are considering in each simulation can be further subdivided into smaller
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patches with dynamically distinct signatures, which would require a careful filtering
procedure. However, figure 11(b) offers some evidence that, at least when turbulence is
fully developed, this is not necessary for our purposes. Plotted are the p.d.f.s (equivalent
to normalised frequency distributions) of log10(ε) over the domain at the time indicated by
the vertical dashed lines in panel (a). We note that they are close to log-normal as expected
for stratified turbulent flows with a sufficiently broad inertial range (de Bruyn Kops 2015),
and in particular, lack the right ‘shoulder’ feature that was a characteristic signature of
high Reb patches in the flows studied by Portwood et al. (2016) (though flows F07 and F2
exhibit slight shoulders on the left of the distribution indicating the possible presence of
small quiescent regions).

4. Discussion and conclusions

Much of the strongly stratified turbulence literature has focused on flows where turbulence
is maintained in a statistically stationary state by large-scale body forcing. Removing time
dependence from the problem simplifies the process of understanding the flow in terms of
a set of suitably defined turbulence parameters, though there still appears to be significant
variation in the way these flows are organised spatially (Portwood et al. 2016) and the
pathways to energy dissipation (Howland et al. 2020). Furthermore, deviations away
from steady states can produce very efficient mixing potentially important for improving
parameterisation schemes (Mashayek et al. 2021). Freely evolving flows that decay into
the strongly stratified regime from an initially homogeneous and isotropic state provide
valuable insight into the time-dependent characteristics of turbulence, the disadvantage
being that it is not clear how such initial conditions would be generated in a physical
setting. Therefore, it is of broad interest to study the possible transient mechanisms that
can lead to strongly stratified turbulence from physically plausible background flows.

We used DNS to study the evolution of a freely evolving horizontal shear layer in
the presence of a uniform background density gradient for a range of different initial
Froude numbers Fr0 ∈ {0.5, 0.71, 1, 2}. The linear stability of this flow configuration in
the presence of infinitesimal normal mode perturbations was studied by Deloncle et al.
(2007) who demonstrated the existence of a broadening range of unstable vertical modes
with decreasing Fr0. The growth rate of each unstable vertical mode also increased
with decreasing Fr0, though always remained smaller than that of the most unstable
two-dimensional horizontal mode. Analagous behaviour has been reported for a range of
uniformly stratified horizontal flows (see, e.g. Chen, Bai & Le Dizès 2016; Lucas, Caulfield
& Kerswell 2017; Facchini et al. 2018). Notably, in their horizontally forced, linearly
stratified Kolmogorov flow, Lucas et al. (2017) demonstrate that the vertical modes of
instability of the initial flow state exhibit a directly quantifiable influence over the nonlinear
flow evolution, even after turbulent transition has taken place. In the horizontal shear layer
configuration, BS06 show that the nonlinear flow evolution comprised the emergence of
coherent columnar billow structures with distinctive vertical variations and distortions,
which in a similar manner are likely due to the existence of the vertically varying modes
of instability of the initial flow field found by Deloncle et al. (2007). However, in this case
the development of further small-scale instabilities leading to sustained turbulence with
Reb � 1 was absent.

Motivated by this, here we introduced small but finite-amplitude perturbations to the
horizontal components of the velocity field that were independent of the horizontal
directions, resulting in the rapid algebraic growth of thin horizontal layers of streamwise
velocity caused by the interaction with the background sheet of vertical vorticity,
associated with the classical ‘lift-up’ mechanism proposed by Ellingsen & Palm (1975).
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The perturbations were designed to be loosely representative of conditions found, for
example, in the strongly stratified ocean thermocline due to a background internal wave
field or pre-existing structure due to the decay of a previous turbulent event, though we
stress that they are prescribed in a highly idealised manner and that, especially in the
absence of appropriate corresponding density and vertical velocity perturbations, we are
not precisely modelling conditions produced by either of these scenarios. For a detailed
discussion on the transient growth of internal wave perturbations in a horizontal shear
flow, the reader is directed to Bakas & Farrell (2009a,b).

Within the context of this study, the introduction of the lift-up mechanism is intended to
serve as a proof of concept for producing enhanced vertical shear enabling subsequent
turbulent transition in a stratified horizontal shear flow. In the limit of streamwise
perturbation wavenumber kx → 0, transient growth due to this mechanism is in fact
optimal (Arratia 2011) for a given vertical wavenumber kz. Needless to say, a more detailed
investigation on the instability and transient growth of the initial perturbations we impose
here is warranted. For our linear superposition of vertical modes, the observation that the
growth of higher vertical wavenumber modes was enhanced for smaller Fr0 is at least
consistent phenomenologically with the linear stability analysis of Deloncle et al. (2007)
but deserves further attention and quantification in the context of the transient growth
problem. Additionally, the mechanism by which the stratification acts to saturate the
growth of the streamwise velocity amplitude at a time proportional to Fr0 remains unclear.
The results here suggest that the saturated layer state and the corresponding emergent
vertical scale Lv will depend on the vertical spectrum of the initial perturbations as well
as Fr0. Nonetheless, the lift-up mechanism for producing turbulence we demonstrate here
is potentially generic in a geophysical setting, essentially requiring strips of large vertical
vorticity in the presence of a possibly weaker background flow with a layered structure
in the vertical. It would be useful to confirm whether this interaction with the weaker
horizontal layers facilitates turbulent transition in a wider class of stratified flows with
more complex initial vertical vorticity fields.

In the DNS performed here, the early period of transient layer growth was followed by
the onset of horizontal shear instability. The result was the emergence of columnar billow
structures originally studied in BS06, however, the existence of the layers in the streamwise
velocity field facilitated a rapid and previously unseen transition to turbulence through a
sequence of mechanisms that were strongly dependent on Fr0, and which were eventually
cut off completely for Fr0 = 0.5. By analogy with studies of turbulence transition in a
stratified vertical shear layer (Mashayek & Peltier 2012b; Salehipour et al. 2015) and in a
vertically sheared internal gravity wave field (Howland et al. 2021; Parker et al. 2021), we
hypothesise that these mechanisms will also depend on the Reynolds number Re0 and the
Prandtl number Pr, though the computational demands associated with increasing both
of these parameters very quickly become prohibitive. Energetic turbulence was observed
in all DNS that exhibited a transition, supported quantitatively by evidence suggestive of
an inertial range in the horizontal velocity spectra and a maximum buoyancy Reynolds
number Reb that ranged between values of around 5 and 30 for the more strongly and
more weakly stratified flows, respectively. Through consideration of appropriately defined
turbulence parameters Frh and Reh, we presented evidence that, for sufficiently small Fr0,
flows appear to be able to access the strongly stratified flow, or LAST, regime. In particular,
the conditions Frh ≤ 0.02 and RehFr2

h � 1 proposed by Brethouwer et al. (2007) and
Lindborg (2006) based on theoretical reasoning and results from forced simulations appear
also to be a reasonably reliable indicator for the emergence of a range of vertical scales
between the buoyancy wavenumber and the Ozmidov wavenumber, as well as the Ozmidov
wavenumber and the Kolmogorov wavenumber, in the freely evolving flows studied here.
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According to this criterion, flows F07 and F1 fall marginally within the strongly stratified
turbulence regime whilst F2 remains weakly affected by the stratification, which we found
to be consistent with the vertical spectra at a representative time during the period of fully
developed turbulence.

The properties of mixing during the fully developed phase of turbulence were seen to
be consistent with results from other DNS of vortically forced stratified turbulent flows,
in particular agreeing with the observed behaviour of Γ as a function of Frh reported by
Maffioli et al. (2016). Furthermore, values of the ratio of Ozmidov to Thorpe scales ROT =
LO/LT were seen to be of O(1) that are argued to correspond to values of Γ ∼ 1 according
to the proposed parameterisation of Garanaik & Venayagamoorthy (2019). There was an
indication of decreasing ROT during the transitional phase of turbulence development
suggesting a possible link to the ‘young’ behaviour of the inherently more weakly stratified
shear instability paradigm investigated by Mashayek et al. (2017) and Mashayek et al.
(2021), however, smaller values ROT � 1 needed to confirm this behaviour were not
observed. This may be because we are essentially considering an ensemble of multiple
overturning patches in our calculation of LT rather than an isolated individual overturning
event. An analysis of the overturning fraction of the turbulent domain was effective for
classifying flows F07 and F1 as dynamically distinct from flow F2 according to the
criterion of Portwood et al. (2016).

In general, the introduction of transient effects to strongly stratified turbulence motivates
the combination of the ROT parameterisation schemes of Garanaik & Venayagamoorthy
(2019) and Maffioli et al. (2016) based on Frh with the paradigm proposed by Mashayek
et al. (2017) and Mashayek et al. (2021) based on the ‘age’ of a vertically overturning
shear-driven turbulent event. Both schemes are roughly consistent for values of ROT ∼ 1,
though an additional branch seems to be required for ROT � 1 in the Garanaik &
Venayagamoorthy (2019) picture. An appropriate comparison between the two paradigms
requires a careful consideration of the process for identifying turbulent patches within
a stratified flow, which remains somewhat ad hoc. Based on the work of Smyth et al.
(2001), Mater et al. (2015) suggest a criterion based on regions where a suitably defined
cumulative Thorpe scale is positive. This has subsequently been adopted by, for example,
Ijichi & Hibiya (2018), although the approach precludes the possibility for smaller
overturning fractions that would be reasonably expected in strongly stratified turbulence.
Indeed, care must be taken in drawing comparisons between flows in the LAST regime
such as those considered here, and (vertical) shear-driven mixing events where the
Miles–Howard criterion for instability (Howard 1961; Miles 1961) inevitably restricts the
flow to being weakly stratified. Whether or not mixing in strongly stratified turbulence
can be modelled as a collection of smaller-scale moderately or weakly stratified turbulent
events remains an important question for future study.

In the oceanographic setting, further investigations to try and identify regions displaying
signatures of LAST in observational datasets are warranted. Of course, there is still
much uncertainty in making a comparison between existing DNS and observations. One
aforementioned issue is due to present computational limitations: the data from Gargett
et al. (1981) have corresponding buoyancy Reynolds numbers Reb ∼ O(105) giving a
range of small scales far wider than it is currently possible to model. More recently
however, regions with moderate Reb ∼ 10 have been identified in oceanographic datasets
(Jackson & Rehmann 2014; Gregg et al. 2018) and may provide more suitable points of
comparison. However, as we have restricted our simulations to the simplest choice of
Pr = 1, it is important to be cautious about drawing direct comparison with oceanographic
flows where Pr is at least O(10). Another major issue lies in the fact that it is very
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difficult to diagnose a Froude number Frh that correctly corresponds to the definition in
the LAST regime due to the fact that at least a relevant horizontal velocity scale associated
with the top of the horizontal inertial range must be calculated, which is presently not
possible from vertical shear profilers. To this end, efforts to construct a reliable and,
importantly, measurable proxy may prove useful, as has been explored in the context of
mixing efficiency parameterisation by Garanaik & Venayagamoorthy (2019). Based on
the results here, we suggest a basic starting point for identifying comparable regions of
LAST in the ocean might be to locate regions of moderate Reb that are diagnosed over
a greater vertical extent than the usual isolated turbulent patches considered, over which
local values of the dissipation ε remain close to being log-normally distributed but the
fraction of overturning is relatively small.

Supplementary movie. Supplementary movie and computational notebook files are available at https://doi.
org/10.1017/jfm.2024.121. Computational notebooks can also be found online at https://cocalc.com/Cambridge/
S0022112024001216/JFM-Notebooks.
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