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1. Introduction. Let P be a set partially ordered by a (reflexive, anti
symmetric, and transitive) binary relation <. Let $ be the family of all sub
sets K of P having the property that x Ç P and y Ç K and y < x imply x Ç K. 
Our principal object is to prove and apply the following: 

THEOREM. With respect to the partial ordering of $ by inclusion (Ki < K* 
means Ki D K2), 

(1) P is isomorphically embedded in $ preserving all suprema that exist in P , 
and 

(2) $ is a complete distributive lattice. 

COROLLARY. Every partially ordered set can be embedded in a complete distri
butive lattice, preserving suprema. 

This corollary is also a consequence of a two-stage embedding construction 
of MacNeille's (2, §11, 12) consisting of an initial completion by cuts, pre
serving both suprema and infima, followed by a certain complete-distributive-
lattice embedding which preserves suprema and distributive infima. Our 
construction is much simpler than MacNeille's but does not in general preserve 
infima, even when they are distributive. 

Following some related remarks concerning lattices of topologies in §3, 
an application of this theorem is indicated in §4. The author is indebted to the 
referee for suggestions leading to the recasting of results in essentially their 
present form, and to E. E. Floyd for a simplifying observation. 

2. Proof of the theorem. We see at once that every subfamily $ i of S 
has an infimum (supremum) in $, namely the union (intersection) of the sets 
of the family $ i . That is, $ is a complete lattice. And now, since $t is a sub-
lattice of the Boolean algebra of all subsets of P , it is obvious that $ is distri
butive. 

It is easily seen that the correspondence 

K(x) = {y:x < y] (x Ç P) 

is an isomorphism of P into $. We verify that it preserves suprema. Take any 
family {xa} of elements of P having a supremum 
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in P. For each a, xa < x, so that 

{3>: x < y) C Oa{y: 
xa •%, y \. 

That is, 
(2.1) K(S/axa) CV*K(xa). 

Now take any 

z£ VaK(xa) = Cialy: xa < y}. 

For each a, xa < z, whence 

X = = Y a Xa "^ Z» 

Thus 
z € K{Vaxa). 

That is, 

i £ ( V « x a ) D V « # ( x a ) , 

which with (2.1) yields 

K(WaXa) = V a ^ ( x a ) 

as desired, completing the proof. 

To see that this embedding does not always preserve distributive infima, 
let P be the rationals of the closed unit interval [0, 1], partially ordered by < . 
The family {xn} of positive such rationals has the distributive infimum 

so that 

K(Anxn) = {y: 0<y} = [0,1]. 

On the other hand, 

AnK(xn) = [}n{y: xn<y} = (0,1]. 

3. Lattices of topologies. We review some well-known facts. A topology 
T on a set 5 may be specified in any of several equivalent ways: in particular, 
by a closure function C(X) on 2 s to 2 s such that 

(3.1) C(0) = tf> (« = empty set), 

(3.2) C(X) U C(F) = C(Z U F), 

(3.3) X C C(Z), 

(3.4) C(C(X)) = C(X). 

The various topologies on 5 form a lattice LT(S) under the partial order 
T\ < T2 defined by the requirement 

(3.5) Ci(X) D Ct(X), X£ S. 
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This lattice is not in general distributive (4, p. 134). The definitive statement 
in this connection is very simple but seems not to have been elsewhere 
recorded : 

(3.6) Given a set S these statements are equivalent: 
(a) LT(S) is modular. 

(jS) LT(S) is distributive, 

(y) The cardinality of S is < 3 . 

Proof. If (7) holds, LT(S) has at most four elements and so is distributive 
by (1, p. 134, Theorem 2). That (/3) implies (a) is trivial. To'see that whenever 
(7) fails (a) fails, assume |S| > 3, fix distinct points x and y of 5, and consider 
these three closure topologies on S: 

Ti: d(X) - X if x iX; d(X) = X U {y}, ^ 1 , 

7V C2(X) = I U {*}, (X*4>), 

r 3 : C*(X) =X\J {y}, (X**). 

One verifies easily that 

{Tx V T2) ATz=Td<T1=T1V (T2 A Tz). 

Since |5 | > 3 implies T\ y^ J"3, this contradicts modularity. 
By dropping requirement (3.4) on closure functions, Wada (5) arrived at 

the larger lattice LA(S) of what he termed the "additive topologies" on S; 
and by dropping (3.3) as well he obtained the still larger lattice L(S) of Tukey 
topologies (3, p. 24). He observed that L(S) is complete and distributive and 
that it embeds LA(S) as a sublattice and LT(S) as a partially ordered set, 
preserving suprema. 

4. Channel structures. Application of our embedding theorem to 
LA (S) yields a suprema-preserving embedding of LA (5) in a complete distribu
tive lattice LC(S) whose elements, termed channel structures on S, are of con
siderable intrinsic interest. The notion of channel structure is due, in its 
original somewhat different form, to McShane1. Here we content ourselves 
with a very brief indication of this original form. 

We first note (cf. 3, p. 19, Theorem 3.14) that an additive topology on a set 
S can be equivalently defined by a neighbourhood function -ft associating with 
each point x Ç 5 a non-empty class Sfl(x) of subsets of S such that 

(4.1) x e N for each N € $t(x); 

(4.2) if 5 D M D N and N £ 5R(*)f then M G SR(«) ; if M, N 6 3l(x), then 
M r\N£ $R(*). 

1Channel structures will form the subject of a forthcoming joint study by E. J. McShane, 
E. E. Floyd, and the present author. 
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The partial order (3.5) on LA(S) is then equivalently defined (3, p. 24) by 
the requirement 

(4.3) for each y G S, %i(x) C $R2(*). 

Suppose now we define a channel to x £ S as a non-empty class 9^(x) of 
subsets of 5 satisfying (4.1) and (4.2). It is then not difficult to see that each 
channel structure ( = element of LC(S)) on 5 consists essentially of a function 
-^which assigns to each x £ 5 a collection ^{x) of channels to x with the 
following property: if 9ii(x) and 9Î 2(x) are channels to x and 3li(x) 6 ^{x) 
and 9̂ 2 (x) D ïïli(x), then $ft2 (x) £ ^(x). We conclude by remarking that 
because the lattice LA(S) has a unit I (the discrete topology on 5), none of 
these collections ^V{x) can be empty. 
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