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PROPERLY EMBEDDED AND IMMERSED MINIMAL SURFACES
IN THE HEISENBERG GROUP

J IH-HSIN CHENG AND JENN-FANG HWANG

We study properly embedded and immersed p(pseudohermitian)-minimal surfaces
in the 3-dimensional Heisenberg group. Prom the recent work of Cheng, Hwang,
Maichiodi, and Yang, we learn that such surfaces must be ruled surfaces. There are
two types of such surfaces: band type and annulus type according to their topology.
We give an explicit expression for these surfaces. Among band types there is a class
of properly embedded p-minimal surfaces of so called helicoid type. We classify all
the helicoid type p-minimal surfaces. This class of p-minimal surfaces includes all the
entire p-minimal graphs (except contact planes) over any plane. Moreover, we give
a necessary and sufficient condition for such a p-minimal surface to have no singular
points. For general complete immersed p-minimal surfaces, we prove a half space
theorem and give a criterion for the properness.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In [1] we developed a surface theory in pseudohermitian geometry. In particular we
denned the notion of p (pseudohermitian)-minimal surface. The equation for a graph
(x, y, u(x, y)) in R3 to be p-minimal reads

where F denotes the plane vector (field) (-y, x) (associated with the standard contact
structure of R3). As a differential equation, the above p-minimal surface equation is
degenerate (hyperbolic and elliptic). By analysing the singular set (where Vu + F = 0),
we solved the analogue of the Bernstein problem in the 3-dimensional Heisenberg group
H\ (identified with R3 as a set). Namely we showed that two known families of examples
([15]) are the only entire C2 smooth p-minimal graphs over the zy-plane. In this paper
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508 J-H. Cheng, J-F. Hwang [2]

we want to study general C2 smooth p-minimal surfaces properly embedded in H\ (we
shall often omit "C2 smooth" hereafter).

First let us recall the history of (Riemannian or Euclidean) minimal surface theory
in R3 briefly (for example, [14, 13, 4, 5], et cetera). Until 1980 only a few complete em-
bedded minimal surfaces had been found, such as, for instance, the helicoid, the catenoid,
Scherk's surface, Riemann's examples, and so on. Among these surfaces the catenoid and
the helicoid were the only known complete embedded minimal surfaces with finite genus
in R3 at the turn of 1980. It was only in 1982 that Costa ([3]) discovered a new complete
minimal surface immersed in R3 of genus one. This example was shown to be embedded
soon after it was discovered ([9]). Subsequently various complete embedded minimal sur-
faces were discovered ([9, 8], et cetera; see also [4]). In 1997 Collin ([2]) proved that the
catenoid is the only annulus type, properly embedded minimal surface. Around the year
2000, it was announced that a properly embedded, simply connected minimal surface in
R3 is either a plane or a helicoid ([11]).

In contrast to the Riemannian case, a properly embedded p-minimal surface in R3,
identified with H\, must be a ruled surface with the rulings generated by Legendrian
lines ([1]). A general ruled surface satisfies a 3rd order equation (see [12, p. 225] or [1,
last paragraph of Section 4] for a brief explanation). Requiring the rulings lie in contact
planes (this is what "Legendrian" means) restricts such a surface to satisfy a 2nd order
equation. It is not hard to see that a connected, properly embedded ruled surface must
be homeomorphic to either R2 (band type) or RlxSl (annulus type). So there are no
properly embedded p-minimal surfaces of positive genus type in R3.

A band type, properly embedded p-minimal surface is called of helicoid type if its
Legendrian rulings lie in parallel planes and the union of all such parallel planes is the
whole space Hi (if we remove the latter restriction, we call such a surface of helicoid type
in the weak sense, see Example 4.1). This includes the class of entire p-minimal graphs
(excluding the contact planes) over any plane. To classify all such entire C2 smooth
p-minimal graphs (by "entire" we mean "defined on the whole plane"), we first extend
the class of such graphs to the class of helicoid type. Then we find all the helicoid type
p-minimal surfaces (see Theorem B). Let us explain this idea in detail.

Let E be an entire C2 smooth p-minimal graph over a plane P in H\, identified with
the Euclidean space R3. As mentioned above E is a classical ruled surface with the rulings
generated by Legendrian lines, called characteristic lines. If two such lines intersect, we
can show that I! must be a contact plane past the intersection point (see Proposition
2.1). Otherwise we can project all characteristic lines to a family of parallel lines Tt on P
(note that E is a graph over P). For each Tt we can find a unique plane Pt perpendicular
to P and containing Tt. It follows that all Pt's are parallel to each other. Thus we can
extend the problem of finding entire C2 smooth p-minimal graphs (excluding the contact
planes) to the following one:
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P R O B L E M A. Suppose {Pt : t € R} is a family of disjoint parallel planes in Hi such
that \J Pt = Hi. Find all C2 smooth p-minimal surfaces E such that Tt = E n Pt is a

tefl
characteristic (whole straight) line of E for each t. Equivalently (see Section 2) find all
C2 smooth, helicoid type p-minimal surfaces in Hi.

Take a plane P perpendicular to Pt for all t. Some characteristic lines Ft may be
perpendicular to P. So a solution surface to Problem A may not be a graph over a certain
plane.

In Section 2 we start with a study of general immersed and properly embedded
p-minimal surfaces in Hi. Define X by (2.1), (2.2), and (2.3), describing a C2 smooth
p-minimal surface in Hi. We obtain a necessary and sufficient condition for X being
embedded (implied by X being immersed, injective, and proper). We also obtain a
criterion for a point to be singular (see [1, definition] and the generalised definition in
the proof of Theorem A (b)).

THEOREM A.

(a) X is immersed if and only if for any (s, t) either (2.8a) or (2.8b) fails to

hold.

(b) X is singular at (s, t) if and only if (2.9) holds.

(c) If we take £ = 0 in (2.7), then X is injective if and only if for t\ ^ £2 ?2 ~~ ?i
in (2.15) is not 0 in the case that Ft l n Tt2 consists of exactly one point
while 71 / 72 in the case that Ttl = Tti.

Note that we do not lose generality by assuming £ = 0 in Theorem A (c). We give a
geometric interpretation (see (2.16)) for the formula (2.15) and a direct application (see
(2.18)).

In Section 3 we deal with the helicoid type p-minimal surfaces. We observe that the
following are two families of solutions to Problem A:

(1.1) u = -abx2 + (a2 - b2)xy + aby2 + g(-bx + ay)

(a, b being real constants such that a2 + b2 = I and g 6 C2);

(1.2) {x - x0) cos0(£) + (y- yo)sm6(t) = 0

where t = z — yox + xoy, 9 € C2(R), and xo,yo are real constants

(see also [15] for (1.1)). The following result resolved Problem A.

THEOREM B. Any C2 smooth, helicoid type p-minimal surface in Hi can be

expressed in the form of either (1.1) or (1.2).

We also give a criterion for (1.2) to have no singular points.

THEOREM C . (1.2) has no singular points if and only if6'(t) ^ 0 for all t e R.

Note that (1.1) has no isolated singular points, but does have one (connected) sin-
gular curve ([1]). By taking 6(t) — -cot~l(t) and x0 — yo — 0 in (1.2), we obtain y = xz.
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This is an entire p-minimal graph over the xz-plane having no singular points. We re-
mark that the vertical planes ax + by + c — 0 have been the only known entire p-minimal
graphs having no singular points before ([6]). After this paper was completed, we were
informed that another example of entire p-minimal graph having no singular points and
the result about entire p-minimal graphs over any plane (the graph case of our Theorem
B) are also obtained in a new preprint ([7]).

In Section 4, we discuss the properness (Proposition 4.1) and non-helicoid type
p-minimal surfaces. The first possibility is that |J Pt / Hi where Pt's are the parallel

t€R

planes containing characteristic lines. This can occur as shown in Example 4.1. However,
if we confine the surface to the upper half space R^ = {(x, y, z) € B? : z > 0}, then this
is not possible unless the surface is a contact plane (see Theorem D below and observe
that the xy-plane is the contact plane past the origin). A contact plane P in H\ divides
Hi into two halfspaces P± (Hi\P — P+ U P_). Since P is not perpendicular to the
xy-plane, we can talk about the upper halfspace P+ (containing "(0,0,+oo)") and the
lower halfspace P_ (containing "(0,0, —oo)"). We have the following halfspace theorem.

THEOREM D. Suppose that E is a C2 smooth, connected, complete, immersed
p-minimal surface in the halfspace P+ (oi the halfspace P_J. Then E is a contact plane
parallel to P.

We remark that the halfspace theorem in the Riemannian minimal surface theory
was proved by Hoffman and Meeks III ([10]).

2. GENERAL P-MINIMAL SURFACES AND PROOF OF THEOREM A

We learned from [1] that a C2 smooth p-minimal surface in Hi must be a ruled
surface in i?3 (identified with Hi). Consider a connected, C2 smooth, complete p-minimal
surface E immersed in Hi (by connectedness we mean the domain of the immersion is
connected). First we observe the following fact.

PROPOSITION 2 . 1 . Suppose there are two characteristic lines on E meeting
at a point p locally. Then p is a singular point, the tangent space TPE is the contact
plane past p, and E = TPE.

By "meeting at a point locally", we exclude the possible intersection due to the
"return" of characteristic lines.

PROOF OF PROPOSITION 2.1: Locally we can express E as a graph < (x, y, u(x, y)) \
over the xy-plane. Let p be the projection of p on the xy-plane. First by the definition
of characteristic curves (see [1, Section 1]), p (p) must be a singular point. By [1, The-
orem 3.3], either p is an isolated point in the singular set S(u) or S(u) is a C1 smooth
curve in a neighbourhood of p. In the latter case, only one characteristic line can meet p
according to [1, Corollary 3.6]. So this case is impossible. In the former case, the union
of all characteristic lines passing through p, the contact plane past p, forms the tangent
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space Tp£ by [1, Lemma 4.3]. By completeness £ must contain Tp£. By connectedness
£ must coincide with T p £ . D

Now let us start with [1, (4.9)]: describe a C2 smooth p-minimal surface £ in Hi in
parameters s and t as follows:

(2.1) x = s(sin0(t))+a(t)

(2.2) y =-s(cos0(t)) + P{t)

(2.3)' z = s [P(t) sin 0{t) + a(t) cos 9{t)] + i(t)

where a, P, 7, and 0 are all in C2. Let X(s, t) — (x(s,t),y(s,t),z(s,t)).

PROOF OF PART (A) OF THEOREM A: X being an immersion implies a certain
relation among a, /?, 7, and 0. It is easy to see that dsX = (sin#, — cos6,PsinB + acos9)

a.nd dtX = s9'(cos0,sin6,@cos9-asin9) + s(0,0,0'sind + a'cos9) + (a',P'ii1). Then a
straightforward computation gives the x, y, z components of the cross product d,X x dtX:

(2.4) -sP9' - s cos 6(P' sin 0 + a' cos 9) - P'(P sin 9 + a cos B) - 7' cos 0,

(2.5) sa0' - ssin0(/3'sin0 + a'cosfl) + a'O3sin0 + acosfl) - Vsinfl,

(2.6) s0' + /3'sin0 + a'cos0,

respectively. Write

(2.7) (a(t),/3(t)) = 6(t)(cos0(t),sm0(t)) +C(t)(sin0(*),-cos0(<))

where 6(t) = a(t)cos9(t) + P(t) sin0{t) and £{t) = a(t)sin9(t) -P{t)cos9(t). Substitut-
ing (2.7) into (2.1), (2.2), and (2.3) gives

(2.1')

(2.2')

(2.3')

x=(s + t(t
y = -{s + £

z = s6{t) + -

))sin0(t) +

(t))cos9(t)

6(t) cos 0{t)

+ 6{t)s\n0{t)

We compute dsX = (sin 0, - cos 0,6) and 9tJY = (A cos 0+B sin 0, A sin 0-B cos 0, s8'+y')

where /I = (s + 0^ ' + &' and B = £' - 60'. Then the a;, y, z components of the cross
product d,X x dtX read

(2.4') -cos0(s<5' + y - 5 B ) - AS sin 0,

(2.5') -sin0(s<S' + Y-(JB) + yi(Scos0,

(2.6') A,

respectively. Now we can deduce the condition for a point where X is not immersed
(dsX x dtX = 0) as follows:

(2.8a) (s + Z(t))f{t) + 6'(t) = 0

(2.8b) s8'{t) + T'W - 6(t)(?{t) - 6(t)0'(t)) = 0.
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So X is an immersion if and only if for any (s, t) either (2.8a) or (2.8b) fails to hold. We
have proved part (a) of Theorem A. D

P R O O F OF PART (B) OF THEOREM A: First observe that a singular point is
where dsX x dtX is parallel to the vector {-y,x, 1) (the vector dual to the contact form
dz + xdy — ydx) (we may take this property as the generalised definition of a singular
point where X may not even be an immersion). It follows that s6' + 7 ' - S B = -(s + £)A

at a singular point by comparing (2.4'), (2.5'), (2.6') with (2.2'), (2.1'). Substitution of
A and B gives

(2.9) [(s + Z)2 + S2] & + (2s + £)<5' + i - 6? = 0. Q

Next we shall discuss the injectivity of X. Eliminating s in (2.1), (2.2), and (2.3),
we obtain

(2.10) (x - a(t)) cos6(t) + (y - Pit)) sm6(t) = 0

(2.11) z = P(t)x-a(t)y

For a fixed t, (2.10) is the equation for the xy-plane projection Tt of the characteristic
line Ft while (2.11) together with (2.10) describes Ft. Suppose F(, nF(2 consists of exactly
one point (x,y) for tx ^ t2- Write a(ti),P(ti),y(ti),6(ti) as aupuyu6u respectively for
i = 1,2. Then from (2.10) we can easily deduce

9\ sin 02 — &2 cos 62 sin 6\ — {fii — fli) sin 0\ sin 9-

(2.13) i

sin(02 -0i)
P2 sin 62 cos 91 — Pi sin 6\ cos 82 + (ot2 - Qi) cos 9\ cos 02

" sin(02 - dx)

Let ii = Ax — ony + ji denote the z-coordinate of the point in Fti, projected down to
(x, y) in the xy-plane by (2.11) for i = 1,2. We can then compute the difference of z\
and z2 by the substitution of (2.12) and (2.13):

(2.14)
~ ~ -[(a2-ai)cosO2 + (02-0i)8m02][(a2-al)cos01 + (02-0x)sinOi]
z2- zx = sinffl - 9 ')

— (ot2Pi — ot\P2) +72 — 7i-

Let ip = 92 - 0i. Denote the points (x,y), (aupx), {a2:p2), (0,0) by P,QUQ2,O,

respectively. Assume that PQ\OQ2P is in the order of the counterclockwise direction as
shown in Figure 1.
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0(0,0)

Figure 1

Observe that the first term of the right hand side in (2.14) is

PQ i sin 1PPQ2 sin t/> _
shn/>

= -2Area.(APQ1Q2).

It is easy to see that the second term of the right hand side in (2.14) equals twice the
negative area of the triangle Q\OQ2- Note that if PQ1OQ2P is in the order of the
clockwise direction, then the first and second terms of the right hand side in (2.14) are
twice the positive area of APQXQ2 and AQ1OQ2, respectively. Without loss of generality,
we may take (a, 0) to be proportional to (cos 9, sin 9), the normal to r t , as expressed in
(2.7) with £ = 0. Then we can have a simpler expression for z2 — 2i: (denote 5(U) by 5J

2 — (<Si2 + &22) cos(02 — 1
Z2- Zi = 72-7i-

sin(0 2 -0i )

Here we have combined the first and second terms of the right hand side in (2.14) using
the equality —(c*2/?i — ai/?2) = (5i<52sin(#2 — #i)- The first term of the right hand side in
(2.15) being the negative or positive twice area of the quadrilateral PQ1OQ2 (see Figure
2 below) can be deduced from elementary plane geometry as follows.

Figure 2
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Since APRQ2 is similar to AORQi, we have

PQi | * | + |«i I (cos \-i

1*1 l*i I t a n 4>

(<j> denotes the degree of the angle ZQ2PQi). Note that * , 62 may be negative. It follows
that PQ2 — (|<52| + |*|(cos<j>)~l)cot(t>. Now we compute

(2.16) 2 Area(P<91OQ2) = 2(Aie&(APRQ2) - Area(AORQi))

= (1*1 +|<5i|(cos(£)~1)2co<0- Si2 tan tf>

For the si tuation shown in Figure 2, PQ1OQ2P is in the order of the counterclockwise

direction while 5i is negative, * is positive, and <fi — 82 — 6\. So |<$i*| is in fact -<5i*.

P R O O F O F P A R T ( C ) O F T H E O R E M A: The map X (given by (2.1), (2.2), and

(2.3)) with the above choice of a, /? is injective if and only if z2 — ?i given by the formula

(2.15) is not 0 in the case t h a t F t l n F t 2 consists of exactly one point (x,y) for <i ^ t2.

Suppose F t l coincides with Tt2 (in this case sin(02 — 6\) = 0). Then (cti,f}i) = (c*2,/32).

Therefore in this si tuation a necessary and sufficient condition for the injectivity of X is

-yj ^ 72 by (2.11) (note tha t Tti is parallel to, but not identified with, Tt2 if 71 ^ 72). We

have proved part (c) of Theorem A. D

E X A M P L E 2 . 1 . We take a = 0, /?(£) = t, j(t) = -t, and 0(t) = t a n " 1 1 + n/2 for

- 0 0 < t < +00 in (2.1), (2.2), and (2.3). We claim tha t the associated X = X(s,t)

defined over RxR is a proper embedding. First observe tha t cos#(t) = —t/y/l + t2 and

sin#(£) = l / \ / l + 1 2 . It is then easy to eliminate the parameters s, t to get the equation

in Cartesian coordinates as follows:

(2.17) z(x + 1) = y(x - 1).

Now to prove tha t X is an immersion, we argue tha t (2.8a) and (2.8b) can not hold

simultaneously for some (s, t) (note t h a t 6 = — cos 9(t) = t/\/l + t2 and f = t2/y/l + t2).

Since j(t) = —t is monotonically decreasing and the first two terms of the right hand side

in (2.14) are both nonpositive (—2 Area(P<9iOQ2)) , we conclude tha t z2 - zi is always

negative for t2 > ti. By par t (c) of Theorem A (another situation never occurs), we know

t h a t X is injective. Observe t h a t \X(s, t)\ —> 00 as \(s, t)\ —>• 00. We can then easily

show tha t X is proper and a homeomorphism between RxR and the image of X with

the topology induced from R3. Thus X is a proper embedding.

Also this is an example of helicoid type. Namely, the characteristic lines Tt are

lying in a family of parallel planes as explained below. Observe tha t (sin 6(t), — cos 0(t),

P(t) sin 9(t) + a(t) cos 9(t)) is tangent to Tt. The cross product of two such vectors must

be parallel to a constant vector for all ti / t2 if F t are lying in a family of parallel planes.
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[9] Minimal surfaces in the Heisenberg group 515

Computing the cross product of such vectors for tx = 0 and t2 ^ 0, we obtain the vector
(0, -t2sia9(t2), — cos8(t2)). This is parallel to a constant vector (0, —1,1) for any t2. In
Example 3.1, we shall express this helicoid type p-minimal surface in the form of (1.2).

We now give a direct application of (2.15) and (2.16). Denote Ftj by r \ for
Suppose r ! n r 2 = {P}, r 2 n r 3 = {Q}, and r 3 n r ! = {R} (see Figure 3).

0(0,0)

Figure 3

PROPOSITION 2 . 2 . Suppose we have the situation as described above. Then
the sum of the height differences at t ie intersection points is twice the area of the triangle
region surrounded by Fi, F2, and F3. Tiat is to say,

(2.18) (zx - z2)(P) + (z2 - z3){Q) + [z3 - zi)(R) = 2 Area ARRQ.

PROOF OF PROPOSITION 2.2: Without loss of generality, we consider the sit-
uation as shown in Figure 3. By (2.15) and (2.16) we obtain that (z2 — Z\)(P)
= - 2 Area(PTOS) + 72-71 since PTOS is in the order of the counterclockwise direction
(otherwise we would have the positive sign in front of 2 Area(PTOS)). Similarly we have
(23 - z2){Q) = +2 Area(Q{/O5) + 73-72 and (zx - z3)(R) = +2 Area.(RTOU) + -yx- 73.
Summing up these three identities gives (2.18).

We can also prove (2.18) by integrating the contact form (restricted to a local graph)
along the boundary of APRQ. Recall that the contact form Q = dz + xdy — ydx ([1])
vanishes along a characteristic curve. It follows that

0 - 2l{R) - z,(P) + z3(Q) - z3{R) + z2(P) - z2{Q) + <f (xdy - ydx)
Ja(APRQ)

= (z2 - zx){P) + (z3 - z2)(Q) + (zi - z3)(R) + 2 Area. APRQ

where we have used Green's or Stokes' theorem. We are done. D
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3. HELICOID TYPE P-MINIMAL SURFACES: PROOFS OF THEOREM B AND

THEOREM C

We first prove Theorem B. There are two cases:

CASE 1. Pt's are not perpendicular to the xy-plane.

We observe that the Legendrian line If always contains a point p(t) such that Pt

is the contact plane past p(t). So if we write p^) = (zo(£)>2/o(*)iZo(£)), the vector
(—yo(t),xo(t),l) is normal to Pt. Since Pt's are parallel to each other, we conclude
that (xo(t), yo(t)) is a constant vector (xo, J/O) for all t. Without loss of generality, we
may assume that zo(t) = t and hence Pt is defined by z = yox — xoy + t. Therefore we
can describe E in parameters s and t as follows (see (2.1), (2.2), (2.3) in [1, Section 2 or
(4.9)]):

(3.1) x = s(sin0(t)) + x o

(3.2) y = -s(cos0{t))+yo

(3.3) z = s[y0s\n6(t)+x0cos6(t)]+t

where 6 € C2{R). From (3.1) and (3.2) we obtain

(3.4) (x - x0) cos 0(t) + (y- y0) sin 6(t) = 0.

Substituting s(sin#(t)) = x — x0 and s(cos9(t)) — —(y — y0) into (3.3) gives

(3.5) t = z - 2/0(x - x0) + xo{y - yo) = z - yox + xoy.

We have shown that E is of the form (1.2) by (3.4) and (3.5).

CASE 2. Pt's are perpendicular to the ly-plane.

We may assume Pt's are defined by -bx + ay — t with a2 + b2 — 1 without loss of
generality. So we can describe E in parameters s and t as follows:

(3.6) x — as - bt

(3.7) y-bs + at

(3.8) z = f(t)s + g(t).

Tt being Legendrian (that is, dz+xdy-ydx=0 along Ft) implies that f(t) — t. Expressing
s, t in x, y by (3.6),(3.7) and then substituting the result into (3.8), we obtain (1.1). We
have finished the proof of Theorem B.

Next we shall give a proof of Theorem C. Let F(x, y, z) = (x - x0) cos 6(t)

+ {y — yo) sin 8(t) be a defining function with t given by (3.5) for E. Compute the gradient
V F of F. With the substitution of x — x0 = s(sin8(t)) and y — y0 = — s(cos6(t)), we
obtain

(3.9) VF = (syo9'(t) + cos9{t), -sx0P(t)+nnO(t), -

https://doi.org/10.1017/S0004972700034766 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034766
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It is easy to see that V F never vanishes. Moreover, a point ( i , y, z) € E is a singular

point if and only if V6F=(e"iF)e\ + (e2F)e"2 = 0 where ei = — + y-^-,e2 - -= !•=-.
ox oz ay oz

So the condition for (x, y, z) to be a singular point becomes the following one by (3.9)
through a straightforward computation:

(3.10) cos0(i)(l + s20'(i)) = O,sin0(i)(l + aV(t)) = 0 .

Therefore if 9'{t) ^ 0, then 1 + s26'(t) ^ 1. It follows from (3.10) that cos0(i)
= sin8(t) — 0, a contradiction. Hence E has no singular point. Conversely, if 9'(t) < 0
for some t, we can take s2 = - ( l /0 ' ) ( i ) such that 1 + s26'(t) = 0. So (3.10) holds, and
hence E has a singular point. We have proved Theorem C.

EXAMPLE 3.1. In Example 2.1, we learned that the surface z(x + 1) — y(x — 1) (see
(2.17)) is a C2 smooth, helicoid type p-minimal surface. So by Theorem B, we should be
able to express it in the form of (1.2). Since (0, —1,1) is normal to the associated parallel
planes (see Example 2.1), we know that (xQ,y0) — (—1,0) from the proof of Theorem B
case 1. Now from (1.2) we find that the associated 9(t) must satisfy tan 9(t) = — (x + l)/y.
On the other hand, t = z- y = -(2y)/(x + 1) by (2.17). It follows that tm9{t) = 2/t,
hence 9(t) = cot

4. PROPERNESS AND NON-HELICOID TYPE p-MINIMAL SURFACES

Let X : fi —> Hi be a C2 smooth immersion of the p-minimal surface E = X(£l) in
Hi. Here the domain Q denotes either R2 = R1 x R1 (band type) or R1 x Sl (annulus
type) and the first parameter describes the rulings of E. We say that E is proper if X
is proper, that is, X~l(K !~l E) is compact for any compact subset K of H\. We say
that E is complete if it is complete with respect to the metric induced from the standard
Euclidean metric of R3 identified with Hi. Let lYs denote the rulings of E (t is the
second parameter). Denote the distance between Ft and the origin O by rt. We have the
following result.

PROPOSITION 4.1.

(1) Suppose that an annulus type (that is, Q. — Rl x S1) immersed p-minimal
surface E is complete. Then E is proper.

(2) Suppose that a band type (that is, Q. = Rl x Rl) immersed p-minimal
surface E is complete. Then E is proper if and only if /imt_,±0or( = +oo.

PROOF: First observe that E is proper if and only if X~l (S(p, p) C\ E) is compact
(hence B(p, p) n E is also compact) for any closed ball B(p, p) of centre p and radius p

in R3. The completeness of E implies that I\ C E must be the whole straight line.

For the proof of (2), if E is proper, then the compactness of X~l{B(O,p) n E) in
R2 implies its boundedness for any large p. It follows that I \ lies outside the closed ball
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B(O,p) for |t| large enough. This is just what limt-+±ooTt = +00 means. Conversely, the
condition limt-*±<x'''t — +00 implies that for any p, p > 0, there exist ti,t2 € R, tx < t2,
such that

(4.1) B(p,P)nzc |J ft.
t€[ti,tj]

Since B(p, p) n f t is a compact subset of f (, it is not hard to show that X"1 (B(p, p) D E)
C [si, s2] x [tly t2}. On the other hand, we can easily see that B(p, p)nE is a closed subset
of Hi due to the completeness of E. So X~1(B(p, p) n E) is a closed subset of R2. We
have shown that X~l(E{p,p) D E) is bounded and closed in R2, hence compact.

For the proof of (1), we note that (4.1) holds true with [tu t2) replaced by Sl without
any condition (the right hand side is the whole surface E). A similar argument as in the
above proof of (2) shows that X~l (B(p, p) fl E) is bounded in R? D Rl x S1 and closed
in Rl x S1, hence closed in fl2. D

In the remaining section, we shall discuss the situation of a p-minimal surface being
not of helicoid type. The first possibility is that the union of the parallel planes containing
characteristic lines is no longer the whole space. This can occur as shown in the following
example.

EXAMPLE 4.1. We consider the surface E defined by (z-xy)2 = y in R3. This surface
can be viewed as an example of (1.1) with o = 1, 6 = 0, and a two-valued function
g = ±y/y. We can easily verify that E is a C2 smooth, properly embedded p-minimal
surface with the characteristic lines {y = t2, z = t2x + t, -00 < t < +00} lying in the
parallel planes Pt = {y = t2}. Note that Pt = P_t and \J Pt = {y ^ 0} / R3 or Hx.

t€R

Since the characteristic lines are still lying in the parallel planes, such a surface is called
of helicoid type in the weak sense.
EXAMPLE 4.2. Take (a(t),P(t)) =(cos0(t),sin0(t)) where max0[t) - min0(t) < n
in (2.7) (that is 6 — 1,£ = 0) and 7(£) such that /mzt_>±oo|7(t)| = +00, 7'(t) has
the same sign as 0'(t), and 6'(t) never vanishes (for instance, 6(t) = tan"11 and 7(()
= t). Namely, we consider the C2 smooth map X : R1 x R1 —> Hi defined by X(s,t)
= (x(s, t),y(s, t),z(s, t)) where x,y, z are given in (2.1), (2.2), (2.3) with the above data
(assuming 6,7 € C2). Observe that z = s + j(t). It follows that

Therefore rt = 1 + 72/2(i) by elementary calculus, and hence /imt_>±oort = +00 by our
assumption on 7. Now we can show that X is proper by a similar argument as in the
proof of Proposition 4.1 (noting that we only need that Tt C E — X(R1 x Rl) is a whole
straight line instead of E being complete). We can examine the conditions in Theorem A
(a) and (c) respectively to conclude that X is immersed and injective. A proper injective
immersion must be an embedding.
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Next we claim that the characteristic lines Ft's are not lying in the parallel planes
P('s. If they are, we follow the argument as in the proof of Theorem B to reach a
contradiction. First Case 2 is ruled out apparently. In Case 1, Tt must contain a point
having constant x, y components for any t. This is clearly impossible since IYs are not
having a common intersection point. We have constructed a family of C2 smooth, band
type, properly embedded p-minimal surfaces in Hi, which are not of helicoid type even
in the weak sense (that is, the characteristic lines are not lying in the parallel planes).

The condition (2.9) for a singular point reduces to (s2 + 1)0' + 7' = 0. Since 0' and
7' have the same sign by assumption, the surfaces under consideration are all having no
singular points.

Example 4.1 shows that a properly embedded p-minimal surface can exist in the
"right" halfspace. However, this can not occur for the upper halfspace (see Theorem D).

P R O O F OF T H E O R E M D: The completeness implies that E = uft where each f(

is a whole characteristic line sitting in P+ (or P_), hence parallel to the contact plane
P. Let Pt denote the contact plane parallel to P, containing Tt. Note that P^'s are
not perpendicular to the xy-plane since d/dz is not annihilated by the contact form
dz + xdy - ydx. So a similar argument in the proof of Theorem B, Case 1 shows that ft

must pass through (XQ, J/OI7(^))- Let z<) denote the minimum (or the maximum if in P_)
of 7(t) over t. Our assumptions on E force that 7(i) = ZQ for all t, and E is the contact
plane past (xo, yo, ZQ), parallel to P . D
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