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ON SHIMURA'S TRACE FORMULA

SHINJI NIWA

§ 1. Introduction

In [1], G. Shimura gave a very practical formula of the traces of
the Hecke operators acting on the space of cusp forms of rational weight
and there he emphasized that the traces are effectively computable. We
shall practice the computation in some special cases and discuss the
structure of the Hecke algebra, which is not necessarily semi-simple.
Though the theory of new forms is not available in the case of modular
forms of half integral weight, we can clarify the whole structure of the
Hecke algebra in certain cases by using [1], [2] together with our com-
putation in this paper and the following

L E M M A 1. T,(4)2\(4)* = T κ(ί)W ,T K(^)W, = 2(*-1)-1 J + 2(*-1)/2-1.ε TΛ(4)

PF4, where WA is the operator such that (WJ)(z) = /(—l/4s)(—2ίz)~κ/2

9

ε == (Ά\ r.(4) is TiΛ(4) in [2] and Tc(4)* is the adjoint operator of Γβ(4)

(see §4).

In [1], the trace is given in the form Σc J(C) where C runs over
.Γ-conjugacy classes and J(C) is a certain function of C. Most amount
of this paper is devoted to the calculation of ΣcJ(P) and we obtain an
explicit formula of this (see § 2).

We give some definitions to explain more detail. Let Γ' = ΓQ(2M),

β = L = ί* bλe M2(Z) ;c = 0 (2ilί), (α, 2M) = l ] and R = R(Γ', 9), the

abstract Hecke algebra. Let R' be the subring generated by all
Γ / ( θ n ) Γ / ' ( ( n ? 2 M ) = 1 ) # D e f i n e t h e representation pZλ:R-+ EndSU{Γ')

by p2λ(Γ'ξΓ) = [ΓfςΓ% as in [3]. On the other hand, another represen-

tation of R is obtained from [2]. Let namely

G = {(or, φ(z)) a e GL+(2, R), φ(z) = t(det a)-1/A(cz + d)1/2, t e C, |t | = 1}
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and Δ — {(σ, j(σ,z));σeΓ = Γ0(4M)}, as in [2]. Then we get the represen-

tation pκ/2: R -> End Sκ/2(Γ) by

where Sκ/2(Γ) is S/4M, 1) in [2], and [ L is same as in [2]. To show

that pκ/2 is actually a representation of R, it suffices to check the rela-

tion of [ ]κ. For example, let p be a prime, (p, 2M) = 1 and k > 1, then

fp2 ° V P«-"AΔ + iff1 ° V p
o p2*/ / WO p2fc+2/

+ (p - l)/2(zίf+J + Δξ.Δ) ,

where ?± = ( ( j p I ? + 1 ) , ± ε ^ f c / 2 ) , and [Jf+J], = -[J f_J] e .

In [2], the following identities are noted for a prime p and for K ̂  5:

dimSβ/2(Γo(4p)) =

dimSΛ/2(Γ0(4p2)) =

Naturally, one can expect that these identities also hold for all Hecke

operators. Thus, we want to compare tr pκ/2(ξ) with tr ^ ( f ) for ξ e R.

The latter is written in [4] in a form ready to compute. But, the former

is written in [1] in a form which we cannot so immediately compare with

the latter. One of the aims in this paper is to give an explicit form of

the former, as is discussed in § 2 and § 3. We assume K ̂  5 through-

out this paper, and, as a special application of the explicit formula of

the traces, we obtain

α tr pκ/2(ξ) = tr p^ξ) for ξ e R' , when M = p ,

tr pt/2(S) - tr pU?) + tr Wpφ,Λξ) for ξ e R', when M = p> ,

where Wp2 is a normalizer of Γ0(2p2) with the determinant p2 (see [5]).

These formulas are verified in § 3. Though we assume (n, 2M) = 1 in

the next two sections, the traces for n with (n, 2M) Φ 1 are easier to

compute at least in the case M = 1. In fact, the above identity holds

for R. Therefore, in view of Lemma 1, we obtain
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TRACE FORMULA 185

T H E O R E M . βκ/2 ~ pκ_19 when M = 1.

COROLLARY. {Ffft; f eS£/2(Γ0(4)),t square-free} = S,.1(Γ0(2)), wftere

F Λ ί is defined in the same way as in [2], i.e., putting f(z) = Σn«i a(n)e(nz)

and Fftt(z) = Σ«=i At(ή)e(nz),

We close this section by explaining the contents of the following

sections. The proof of Lemma 1 will be found in §4. In §2, we give

an explicit formula of Σ J(C) under rather general assumptions. The

identities in (1) are verified in §3 by specializing the formula in §2.

Then, we are ready to give the proofs of Theorem and Corollary, which

are accomplished in § 4. For the sake of accuracy, we further note that,

besides the identities in (1), a little more discussions, which are them-

selves a part of the aim of §4, are needed to prove Theorem and Cor-

ollary.

I wish to express my hearty thanks to Prof. T. Kubota and Prof.

H. Hijikata for their kind advices and warm encouragement.

General notations

F(X) = X2 - tX + n2 N = AM

vp = ordp N eir) = exp (2πir)

Γ = ΓQ(N)

w = ^ ~ 1 ®) Z+ = {meZ;m> 0}

\m\p = p~OΐάPm

ZΓ(β): the centralizer of β in Γ

(a, d): the Hubert symbol at oo

{—}: the Eichler symbol

J(σ, z) = cz + d f or σ = fr bλ e GL(2, R)

W^Td (see [2])

h(D): the class number of ring ideals of the order with the dis-

criminant D in an imaginary quadratic number field Q(^D)

w(D): a half of the cardinality of the unit group of the above order

φ( ): the Euler function

Various kind of quantities are defined in [1] for an equivalence class C
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Q \Γ9 for example J(C), η> λ and μ, which we do not explain

completely in this p a p e r ; we refer to [1] for them. When βeΓlr, 2jΓ

( n~ι 0\
0 nr' w e denote

J(C), η, λ and μ by J(/3), η(β), λ(β) and μ(β), respectively. We use the nota-

tions, Φ = Φ(ΓK fyΓ/Γ) a n d Φ ( Γ K 2 ) Γ ) i n [ 1 ] w i t h o u t e χ P l a -

nations.

§ 2 . Explicit formula

First we note /v2(r'(J J)/7') = [j((J J8),

In [1], it was proved that tr
In this section, we shall give an explicit form of

As usual, we prefer to divide it into the partial sums. Let p =

% — Έχ2 J(C) a n d h = Σ3 J(C), where, in 2i> Σ2 and Σs> C r u n s o v e r a ^

the parabolic, elliptic and hyperbolic equivalence classes in Φ respectively.

Then, ΣceΦ JiP) = V + e + h + ^(^)2~1((Λ:/2) - 1) vol (H/Γ) where δ(ri) is

0 or 1 according as n Φl or n — 1. We shall discuss p, e and h cor-

responding to the three parts titled afterwards parabolic case, elliptic

case and hyperbolic case respectively. The result is given as the follow-

ing

PROPOSITION 1. Let N = 4M, (M, 2) — 1 and (n, N) = 1, then

p = -2- 1(-l) ( Λ- 3 ) /V(( J

e = -n«-κ)/2 Σi s-\xκ~2 - ^ " 2 ) ( ^ - V)

α-wdl
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where the meaning of the letters is as follows:

s and / run through all natural numbers satisfying 2 \s, P\ s\s2 —

(sj,ri) = 1, s\s2 - An)f-2
 Ξ O O Γ I (4), and besides, s2 - An < 0 in e and

(s2 — An)1/2 e Z + in h. x and y are solutions of X2 — sX + n = 0 and

x > y in £ / ' is such that / = 2' / ' / " , (/7 7 / , 2) = 1, / ' | s, ///21 (s2 - 4n)

and / ' > 0 t equals s2 - 2n. Putting furthermore F{X) = X2 - tX + n2

and pp = ordp/, we define c by

l + W ^ ^ ) " ) for p ^ 2 ,

2 V 2

 P

Σ(-) (1 + «f)) for p = 2 ,

where the summations run over all the representatives ξ of Z/pVp+ppZ

satisfying 2ξ = t (p»), F(ξ) = 0 (pvp+2?p) and besides ξ = 1 (4) in case p = 2,

and ^p(f) is defined by

1 , if (ί2 - 4^2)/"2 = 0 (p) and F(f) = 0

0 , otherwise ,

cp and δp are given by

and

cP = Σ α + •

where the summations run over all the representatives ξ of Z/pVpZ satis-

fying ξ2 = 0 (pVp), and

1 , if ξ2 = 0 (p"*+1) ,

0 , otherwise .

δo(Vn) is 1 or 0 according as n is a square or not.

Now, we propose to rewrite e and h as follows.

PROPOSITION Γ. Under the same assumptions as in Proposition 1,
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h(s"2f'-*D') is2 - 41ΛΛ + (En\ π e(tJjffP)

and

At — —ώj/t' / , o fc/ V̂ vO — ί/^ Lt

φ{s"f-ιJW) 2- Π c(t,f2f',P) ,

where the meaning of the letters is as follows:

s,f2 and / ' run through all natural numbers satisfying 2 | s ,/ ' | s ,

(/', s, w) = 1, f} I (s2 - 4w), (/2, s, n) = 1, (/', 2) = 1, Z)' = (s2 - 4n)/^2 = 0 or

1 (4), and besides, s2 — 4n < 0 in e and (s2 — 4n) 1 / 2 eZ + in £ s;/ equals

s\s\2. The meaning of other letters is same as in Proposition 1.

Proof. Let fm \ (s2 - 4n), / ' | β, (2, / ' / " ) = 1, Do = (s2 - 4^)/"" 2, s =

2*8//,(s//,2) = l,

and

where e1 and e2 run satisfying Dx = Ώ<βLff~12r'ιeγ = 0, 1 (4) and D2 =

Dύs'nf'-22~2e* = 0, 1 (4) respectively. Let DQsmf'~2 = 22ϋd with d = 1 (4)

or d/4 = — 1, 2 (4), and with a non negative integer v. Excluding D ^ " 1

= 22̂ +2,-26! a n d Did-i _ 22«-2e2 o u t of fc( ) in each summand of E(s,ff,f")

and E(β9f',f") respectively, we can put E(s,f',f") = 6(s,f")h(d) and

E(8,f',f") = C(s,f")h(d), and we can easily check C(s,/") = C(β,f") by

classifying n modulo 8 and reviewing the following

Remark 0. Let s = 2s', «' + n = 2s/2, ί = 2t;, 22 e |(ί2 - 4n2), D =

(t2 - 4^2)2"2e, (—} - 1 and c(ί,e) = (4)V«,2%2). Then,

( i ) For t' = - 1 (4), we have c(t, e) = ί 1 ' ( β = 0 ) >

10, (e ^ 1).

(ii) For ί' = 1 (4), we have c(t, 0) - 2 and c(t, 1) - f1' ^ Ξ ? i ^
I — 1 , (L> = l b (oZ)).

(iii) For V = 1 (4) and e ^ 2, we have
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φ = 1 (8) and

( D Ξ I (8) and

φ Ξ 4 (32)) ,

φ = 20 (32)) ,

φ = 0,16 (32))

e =£ 3) ,

e = 3),

189

c(ί, e) =

We can also rewrite Jζ in the same way as e. Thus, we have proved
proposition Γ.

To verify the identities (1) in § 1, more preparations are necessary,
which we leave in §3.

Now, we give some explanations for part 1, 2 and 3 discussed in
the latter part of this §.

Let/3'eΓ^ 1 %)Γ,β = nβr = (£ ^ ) e r ( J °,)r and C be the equiv-

alence class to which β' belongs. Then, J(C) is described as in [1] using
the values η, λ, μ and x for C, which we denote by η(β)y λ(β) and μ(β)
respectively. In order to describe /(C), η(β), λ(β) and μ(β), using the
entries a, b, c and d of β we give some simple remarks. Let n be an

arbitraly natural number prime to N or not, ί a λ e Γ(Q ΛΓ and

(a A φ (~fJl . )> then (α, 6,c, d) = 1, and so prime divisors of n are

classified into following three types of primes pt: (i) PiJ((afc), (ii) p2\(β9c)

and Mb, and (iii) ft 1(0,0,6). Let (J J ) = ( ^ J)(j J ) ( _ ^ w J),

then α7 = a — δiVm, and c! = aNm + c — Nm(Nmb + d) are coprime if
we take an integer m in such a way that m = 0 mod Pi, (^, p2) = 1> ^nd
that m = 0 mod 2>3 for all primes pt of above type. Hence we see

Remark 1. The equivalence class C always contains an element

n"X(c d) s u c h t h a t ^α>c^ = 1 a n d t h a t C ^ °' u n l e s s C = ±1-
Now, let /S7 = n~ιβ be so, then there exist u, v and w eZ such that

* = ( : ϊ) —(β » > -ith " = ( : v ) ^ «* °.=(J ϊ
Therefore, putting τ = ^

τ, Vn)(σ2, j(σ2, z))
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Hence, we see

Remark 2. Under the same assumptions as in Remark 1,

If j8 is an elliptic element fixing zQ in the upper half plane, then

= (—je-*ϊ/J(β, zo)Wn *. On the other hand, for parabolic or hyper-
\ a /

bolic elements, we further note the following

Remark 3. Let βf = n'xβ Φ ± 1 , « be a cusp fixed by β — \c Λ>

c Φ 0 and p = ^ ^ Γ 1 ) ' t h e n

where nv = — C(Λ: — 1 — (α — d)/2c)2 and ^ = α — CAT.

In connection with this remark, we first note sgn v = — sgn c, which

is used in part 1 below for determing μ(β).

Next, if β = (a λ is parabolic, t r β = 2n, c Φ 0 and (α, c) = 1, then

it follows from Remark 1 and 2 that η(β) = ε"4/ — )(CΛ: + d, c). Since Λ:
\ a /

Finally, if /3 = ^ ^ is hyperbolic, ^ = vr% cφO and (α, c) = 1,

then K = (α - d ± ((α + d)2 - 4n2)1/2)/2c and λ = (α + d + ((α + ώ)2 - 4nψ2)/2n

accordingly. Now, if a + d > 2n> then \(β + d + ((a + d)2 — 4nψ2)/.2n\ > 1,

and if a + d < -2n, then \(a + d-((a + d)2 - 4n2)1/2)/2n\ > 1. Therefore,

the upper fixed point of β defined in [1] is κQ — (a — d — sgn (a + d)

((α + cZ)2 - 4^2)1/2)/2c and so ^0 = λ(β) = (α + d + sgn (α + d)((α + cZ)2 -

On the other hand, it follows from Remark 1 and 2 that
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y(β) = εάΊ — W o + d, cλo)(λo, — l)yT0". Since sgn (cκ0 + d) = sgn λ0 =

sgn (β + d)9 η(β) = e"*(-W + d, c

By the way, we can systematically write out all the Γ-conjugacy
classes as well as the entries of the representative of them by' [4].
Thus, all we have to do for the computation of 2ϋσ J(P) ^s to sum up
J(C) neatly, which is done in the following three parts.

1. Parabolic case

Let us write out all the parabolic equivalence classes in φ(r(n^ J

-Γ/r\. We impose the following conditions on/, ζ and S:(i) / is a

representative of (Z/nZ)x, (ii) ζ is a representative of Z/NZ such that
ζ2 = 0 (N), and (iii) S c S(ζ) = {p \ N ζ2 = 0 (p »+1)}. Let

/ Π I l p
pes

Then, n"1^ forms a complete system of representatives of the parabolic

equivalence classes in Γ Λ JΓ in the sence of [1], when /, ζ and S

vary satisfying (i) ~ (iii). Here, by the suitable choice of the represen-
tative, we may assume (iv) / > 0, (v) 4|/, and (vi) (ζ, n) = 1 ζ Φ 0. On
the other hand, ZΓ(β)l{±l} is generated by

and, because of (iv), there exists peGL+(2,R) such that p~xσp = (

and that p"ιβp = ίQ ^ j , in view of [4] and Remark 3. Therefore, x in

[1] equals fn"1. Denote σ = ί ̂  ^ j , let /c be the cusp fixed by σ and let
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= ( ί K 1 *), then (pr\ JJ(PΓ\ z))(σ, j(σ, z)){Pι, VJ(PI, Z))

Λ /)' a n d s o

Π

We denote μ(/3), which depends only on ζ and S, by μζ>)S, and we put

/ = 4/' in view of (v). Then, due to (vi), v(β) = εα-^-ζ) = ε»+V'c

• Ttas

denoting / ' by / ,

= Σ Σ Σ
d ζ d i V S S ( ζ

C; parabolic / modn ζmodiV SdS(ζ) \ Ύl
(/,w)=l ζ%=0(N)

/>0

pγ, f(2- - μζ,s) , ( n = l ) ,

n I \(1 — e(4/»~1))"1 , (n> ΐ) .

Let N = 4M, (M, 2) = 1 and n = 1, then p is the sum of

Pi = 2 Σ Σ (-2-1)
ζ d JIT S S ' i O

and

Σ Σ
ζ mod JIT ScS'iO
ζίsO(Jίf)

ft= Σ Σ
C mod itf 5c5'(C
ζ2=0(Jϋf)
(ζ,2)=l

where S'{ζ) = {p\M;ζ2 = 0 (p-+% Since e(μiζ,s) = Γ' (-l)- Π
2ζ

= r (-l) Π ( — ) " for odd ζ, ̂ 2C,S = 2-1 - ±-ι(—) Π (—) V P There-
pes\ p ) \ K I res \ p /

fore, β2 = 4- I (^:) ΣΣU (—)" = -2- 1 ( - l )<-^ /l(-4)w(-4)-1 Π Σ

(l + δp(ξ)(^—\ ) , where ξ runs over all the representatives of Z/pvpZ

such that ξ2 = 0 (pv*), and

1 for ζ2
 Ξ 0 G

0 otherwise .
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With the same notations, p1 = - Π Σ (1 + Sp(ξ)).
P\M ζ

Next, assume n > 1, then p = pλ + p2 with

ft = 5* Σ Σ
ζmodilf ScS'ί

ζ2 0(iίί)

/ mod 7i
_Σ.
(

and

ζ mod M ScS' {

( C 7 2 ) = l

Σ_ (

Putμ s = 4μ2ζiS. Sincee(~/κ-1)(l-e(-4/«-1))" I= -e(3/%-1χi-e(4/ίz-1))"1,

Σ (-VW^XI - e(4/»-1))"1

Observing ( Π (£)-)(-(=l)) ' "*"" = ( - ( = i ) ) I - > " Π (=5)",

p2 = (_i)<«-3»/2 Σ Σ (Π (—)"?

ζmodM SaS'(ζ) \peS \ 7) /
ζssocaf) ^
(ζ,2)=l

•̂-1 Σ (^)

On the other hand, by the Dirichlet class number formula,

& Σ
/d
/modn \ U

(n = 1 (4)) ,

n ) " 1 , (% = — 1 (4))
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and

1 Σ
fmoάn

-δ0Wn)2"φ(n) , in = 1 (4))

-h(-ri)w(-n)-Wn , (rc = - 1 (4)) ,

fl for VneZ,
where 30(Vtι) = L ,,

[0 otherwise .

Put ep = Σ e ( l + 3p(f)(^.yp) and «; = Σ e ( l + «p(f)(—)"*)» where the sum-

mations run over all the representatives ξ of Z/pVpZ satisfying ξ2 = 0 (py»),

and ί,(0 = {J J g ^ ^ Then p2 is equal to -|V»(-l)*-^(π βj)

times

I h(—4ri)w(—An)'1 , (n = 1 (4)) ,

u ~ I — \\h{—n)w{—n)~ι , (n = —1 (4)) ,

and
/ _ \ ίδo(Vw)p(w) , (n = 1 (4)) ,

p̂iiif p/|2/2,(—n)^(—n)"1Vn , (n = —1 (4)) .

If n = - 1 (4), then cp = «i, εΓ3 = (-1)(Λ"3)/2 and fl - (—\\h(-ri)w{-n)-1

+ &h(—ri)w{—n)~ι = ί l + <——\\h(—n)w(—n)~ι + (1 +

w(-4tn)-\ Therefore, p= -(_i)<«-3)/2.2-i.v

+ {-=^}^(-4«)w(-4«)-^ Π̂ δ'p If « = 1 (4), then ft = -δo(Vn)φ

and p2 = - l V κ ( - ) ( + f ) 0 ( ) Π

These expressions also fit for the case n — 1. Note besides that *JneZ

implies cp = Σ e (1 + 3p(f)).
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2. Elliptic case

Let β = (a λ be an elliptic element in r(Q 2JΓ such that (a, c) = l

and that c Φ 0. Let 20 be the fixed point of β in the upper half plane.

Then, η(β) = ( ^ V / ζ M j V ί r = χ(]8)C(j8)' with χ(/3) = (°λ and ζQ8) =

(2Vnεa)-\V2n + a + d + i (sgn e)j2n - a - d), and so J(β) = 2'1χ(β)ζ(β)-'
/(I - ζ(/3)-4). Thus, it is easy to see that J(-β') = J(β) and Jiwβw) =

7(J8). Let P = Γ U f t and PΓQ8) = [ZΓ (j8): ZΓQ8)], then g = 2
(7; elliptic

= 2 Σ 3 (/Cβ) + J{β))W{βy\
where β in Σi r u n s o v e r ftU the representatives of elliptic Γ-conjugacy
classes, β in Σ2 runs over those of elliptic Γ*-conjugacy classes, and β
in Σs r u n s o v e r those of the elliptic Γ*-conjugacy classes congruent to

(J J) modulo 4. Thus, g = Σs χ(β)Ξ(β)W(β)-1 with Ξ(β) = (ζ(β)-+2 -

ζ(β)κ~2)/(ζ(β)2 - ζ(β)~2) which depends only on trβ. Now, we want to

(1 *\Q ^1 modulo 4, of the

elliptic Γ*-conjugacy classes. For this, let (i) t2 - An2 < 0, (ii) f2 \ (t2 - 4n2),
(iii) (/, ί, n) = 1, and (iv) ξ be a representatives of Z/NfZ such that ί\f)
= 0 (Nf2) with F(Z) = X2 - tX + n2, 2ξ = t (/), and that (ξ, n) = 1. Let (v)
S c S(S) = {p\N;(t2- 4n2)/"2 Ξ 0 (p), F(f) = 0 (p"p+w+i)} with Pp = ordp/.
Let (vi) p be a prime ideal of A with (p, nN(t2 — 4^2)) = 1 representing a

ring ideal class of the order A, where A = / ΓΊ (Q + %>) with / = ( J L

and with

- / Π

(Note that each ideal class contains such p i.e., (p, nN-(t2 — 4^2)) = 1.
This is obvious when A is maximal and for this when A is not, it is
sufficient to refer to Cor. 1 of Prop. 1 in [9].) We denote by h(A) (respec-
tively w(A)) the class number of ring ideals of the order A (respectively
[Ax : Zx]). Let Mp be such an element in GL+(2, Q) that IMP = Ip. Then,
β = MpψMp1 forms a complete system of representatives of the elliptic
Γ*-conjugacy classes whenί,/,£,S and p vary under the above conditions
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(i) ~ (vi). Moreover β satisfies the conditions in Remark 1. Note that

the solution £ does not exist unless <—~ n \ = 1, so that t = 2 (4).

0 1 ) o r ( 0 —1 )

modulo 4 altogether according as £ = 1 (4) or £ = —1(4). Therefore,
g = Σ Σ Σ Σ Σ χ(β)Ξ(β)W (β)'1 where ί,/, £, S and p run under the con-

t f $ S p

ditions (i) - (vi) and (vii) £ = 1 (4). Since W(β) = w(Λ) = [Λx Z x ] =
) and Ξ(β) = Ξt = (ζ;*+2 - CΓ2)/(C - CΓ2) with ζ t =

t + tV2ΐΓ=l), we see that g = Σ £ t Σ Σ Σ
ί f $ S

see Σ Z(i8), let 9 = ( j J) and β = M^M"1 = ( J ^ ) . If p is not princi-

pal, then the cardinality §(A/p) of the residue field Λ/p is a prime p, and

so we can take ί ? -jj or ί ̂  ^) for M̂  such that Ip = /M .̂ When

Λ, it follows from

VO p-1 )\c' d'J\O p)ψ d

~ V c'p-1 c'jp~ι + df

<peM2(Z) and βeM2(Z), that p\cf and (α7,p) = 1 in view of (vi), and so

Since S Ξ « ' = 1(4) and α + d = a' + d' = t,

(p\ __(a'\ fa'\ίa' + d' + 2n\ _ (a'2 + a'd' + 2nα/ \
\αV~\p>/' \p)\ p ) \ v I

_ (an

\
n2 + 6'c' + 2nα'\ /α/2 + n

p

= ί(a' + TO)2\ =

and so (£) = (1±2»). When Λf, = (j J), ̂  = ( ί J l ^ W ) in the
\α / \ p / \U 1/ \ p /

same way. Let Z p = Q((2n + ί)1/2, (t - 2n)1/2), then the conductor of the
extention Kφ/Q((t2 — 4n2)1/2) is equal to (d+,d_) with the conductors d±
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of the extentions Q((t ± 2n)1/2)/Q. Reviewing that (t,f,ri) = 1 and that

ξ = 1 (4), we can easily check that (d+,d_) divides the conductor of the

order A. So, the character χφ of Kφ/Q((t2 — An2)1/2) is welldefined on the

ring ideal class group of A. Since χψ(p) = ί—M for p such that %(A/p)

is a prime p not dividing the conductor of Λ, we have χ(β) — χψ(p)χ(φ).

Hence, ΣPXQ 3) = z(0 Σ P X / P ) *
 a n d so Σ*X*(P) i s either h(A) = ft((ί2 — An2)/'2)

or 0 according as £ + 2n is a square or not. Thus, e — ΣtEt Σ / ^((^2 ~

An2)f~2)w((t2 - An2)f-2)-ιΣtΣisχ(φ), where ί,/,f and S run under the con-

ditions (i) — (v), (vii) and that t + 2n is a square of a non zero integer.

Note that if t + 2n == s2 and s > 0, then ί2 - 4w2 = s2(s2 - An) and ^ =

— s~ιn^~κ)/2{xκ~2 — yκ~2)(x — 7/)"1 with the solutions x and y oί X2 — sX +

n = 0. Thus, e = —-^(4~*)/2 Σ s 8 " 1 ^ * " 2 ~~ Vκ~2)(χ ~ V)~ι Σ / h(s2(s2 — An)f~2)w

(s\s2 — 4^)/~2)"1 Σe Σ s z(0> where s runs under the conditions that s > 0

and that s2 — 4n < 0, and /, ξ and S run under the conditions (ii) — (v)

and (vii) with t = s2 — 2w. Now, we want to find the value of Σ * Σs χ(φ)>

where χ(φ) = (—) = (IΛ Π (^ p l wlp \ a n d f and S run satisfying the
\a/ \ξ/pes\ ξ J

conditions (i) - (v) and (vii) with t = s2 - 2n. Put t = 2f and / =

2' / T ' with / 7 | s , // / 2 |s2 - An and (f'/",%) = l Then,

Therefore, it is easy to see

with

( ( P i r a L 1 ) ) ( p Φ 2)

where the summations run over all the representatives ξ of Z/pVp+ppZ

such that F(ξ) = 0 (pυ^+2^), 2f = t (p»), (ξ,n) = 1 and that £ = 1 (4), and

if p | D = (ί2 - 4?ι2)/-2 and F(£) = 0 (p>p+*»+ί) ,

otherwise .
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Let p Φ 2 and δp(ξ) = 1, then ξ = f (p) and (^λ = Cί\ = (ΪL\ =

/2s'2 - n\ w i t h 8 _ 2 s , t g i n c e D Ξ 0 ^ w e h a y e i g / / > x o r 2̂1 ( g 2 _ 4w)jr//-2#

\ p /

Let p|β and ( s '2 ~ n\ = - 1 , then ordpF(f) Ξ O (2). Therefore,

= 1 if δp(ξ) = 1. Hence, c(ί,/, p) = Σ (l + w ( — — - Y ) , and c(ί,/, 2)
£ \ \ p / /

= Σ (—V' ί1 + Wf)) in the same way.

3. Hyperbolic case

Let i3 = ( , be a hyperbolic element in / Ί π ΛΓ such that

(a, c) = 1 and that c ^ 0 then >Kj3) = (2ri)~ι(a + d + sgn (α + d)((a + d)2

- Anψ2) and η{β) = (—)e?(a + d, c)</Ί(β)\ Therefore, J{-β) = J{β) and

J(wβw) = l^—)(β + d, — ϊ)J(β) due to sgn(α + d) = sgn^(θ). Hence h =
\ a /

- Jiwβw)) = \ Σ2 (J(β) + J{wβw)) = Σs (J(β) + J{wβw))Σi
= 2 Σ i W + /(wjSw))^)-1 - 4ΣJ(βW(βy\ where ^ in Σ i runs over
all the representatives of the hyperbolic jΓ-conjugacy classes, β in Σ2 runs
over those such that either a + d> 0, α = 1 (4) or a + d <Q, a=— 1 (4),
β in Σs r u n s o v e r those such that a + d > 0 and that a = 1(4=), and β
in Σ4 r u n s o v e r those, such that a + d > 0 and that ^ = 1(4), of the
hyperbolic Γ*-conjugacy classes. Let t2 — An2 be the square of a non
zero integer. Let /, ξ, φ, etc. be same as in the elliptic case. Then

ΣΣ
(4) S p

and, in the same way as in the elliptic case, h = —2 Σ Σ Σ Σ
ί>0 f ξsl (4) 5

•χ(0^(0"*/2(l ~ λ(φ)~2)~\ where t runs under the condition that t + 2n is
the square of a positive integer. Thus, in the same way as in the
elliptic case,

s>0 f p\N

where s runs under the condition that s2 — An is the square of a non
zero integer, x and y are the solutions of X2 — sX + n = 0 such that
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x > y, and other notations are same as in the elliptic case.

§ 3 . Explicit formula (special cases)

The aim of this section is to derive the identities (1) of §1 from

Proposition 1'. First, we assume M = 1. Then, observing

h{D')„_! y htf'ψ-'m (s2 - ±n\ =

r w(smf'-2D') \ f ) w(D')

in e of Proposition Γ, we obtain

9 = -""-"•g.fc- - *-•>(* - ̂ -^i1 + { f } )
where s and f2 run in such a way that s2 — 4n < 0, s > 0, f2 > 0, /2

21 (s2 —

Όr = (s2 - 4n)ff2 Ξ O o r l (4) and (/2, n) = 1.

Since of course e depends on a given n9 we denote e by en in the

indexed form. We should further note that T'{n) = Σ

and Γ,.!^) = p^Tin)) imply the fact that T(n) in [4] equals
rf-^-wT^in). Observing now

'/l2 ° 2) ,0 ^/r2/
/ ? | n 0

put e = Σfin~1/2βn/fi Then it is easy to see e coincides with the part
f\\n

of (e) in [4] such that s ^ O with the notation s in [4]. Define h in the

same way, then h equals (h) in [4]. Let p™ (respectively p™) be the

first (respectively second) term in p of Proposition 1. Put v% =

Σlfin~1/2P$fl> (i = 1>2)» t h ^ n p2 equals the part of (e) in [4] such that
fl\n

s = 0 with the notation s in [4] and & equals (p) in [4]. Therefore, we

have verified (1).

Next we assume M = p or p2. Then, to verify (1) in this case, it

suffices to note the following obvious

LEMMA 2. Let p Φ 2, f'\s, f"2\(s2 - 4ri), 2\s, iff",2) = 1 and t =

s2 - 2n.

(i) If vp = l, then c(t,f'f",p) = 1 +
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(ii) If vp = 2, then

6(t,f'f»,p) =

C(89f",p),

p _ (s "" n\ + c(s,/r/,2?) , (p2

p + c(s, / " , p) , (p I

where c(s, / " , p) is same as defined in [4] for Φ(X) = X2 — sX + n and

for v = 2 wίffi ίfee notations Φ,s and v in [4],

Thus, we have completed all necessary steps.

Remark 4. The same type of equalities as in (1) hold for an arbi-

trary cubefree (level) N.

§ 4 . Proof of Theorem and Corollary

In this section, we assume M = 1 and put Tκ(p2) = &//W

which is same as T^(p2) in [2].

First, we prove Lemma 1. In order to make sure, we repeat the

explanation for some of the notations. Namely, let

0 4

0

then Γ,(4) = [ΔξΔ]κ, Γ.(4)* = [J9J]. and TF4 = 4r"i+ι[ΔτΔ\. Now, it is

easy to see that

with £ = J(YQ |V l^J and that [Ξ], = 0. Accordingly, *Yβj ± J V lVσ2

= ((0 1g), 4I^(+t)
1/2) with σ, = ( ( _ * J), (+4« + I)1'2) e Δ and with σ2 =
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= 4'/<-1e±2«"8Γ.(4). Therefore, [j((J I)'1)*], + K ( θ " I ) ' 1 ) " 1 ! "
2(e"1)/2-1e27

e(4)T74. Hence, Lemma 1 is proved.

Now, it follows from Lemma 1 that the eigen value of the self-

adjoint operator TK(A)W4 is either B2{K~1)/2 or _ε2<«-1)/2-1 and therefore that

the eigen value of 7,(4)7,(4)* is either 2*"1 or 2{*-l)-\ By the way, as

stated in § 1, we can easily show that the identities (1) holds for R in

case M = 1, i.e.,

(10 tr pκ/2(ξ) = t r PUξ) for ξ e R ,

but we will skip its proof.

By these remarks, we are ready to prove Theorem and Corollary.

We recall that both representations ρκjι and pκ_x are not necessarily semi-

simple even in the case M = 1 which we treat in this section. Of

course their restrictions to Rr are semi-simple. Choose the basis {g^ of

S/C,1(SL(2, Z)) which are common eigen functions of all the Hecke oper-

ators for SL(2, Z). Let TKmml(p)gi = <o^gt for p Φ 2; then, it follows from

(1) that

where dim iV, = 1, dim Ot = 2 and Tκ(p2)f = ω£ }/ for any p (Φ 2) and

for any / e 0t. Moreover, it follows from (10 that

T (Λ\\ (a b\ r;\
1K(A)\Q — I ) ( l ) ,

\0 dJ

Tκ^{2)\Oi^(a δ Ί . . . (ii),

where Ot — Cg^z) + Cgtφz). Now, we have nothing to say for Ot in

which 2\_i(2) is diagonalizable. So, we assume a = d. Then, a = d =

±2«-D/2-i/2 a n ( j &' ̂  o in (ii). If further b = 0, we would have

(O(*-l)-l

0

which contradicts Lemma 1. Therefore, 6 ^ 0 if a = cϋ, which proves

Theorem. Next, in order to prove Corollary, let fe(z) = J]~= 1 ac(n)e(nz) e Oi9
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and let Ft>t{z) = FΛ > ί(z) = Σ£-i Alit(ri)e(nz). Then

α2(£w2) and a2(ktn2) = ω2a2(tn2). Therefore, A2)ί(2w) = ω2AM(w) + A2>ί(w)

and A2>t(2ri) = cy2A2)ί(^). It follows from this that F l f t 6 0*. Moreover,

we see that F1>t and F 2 # ί are linearly independent for t such that a2(t) Φ 0.

Thus, we have proved Corollary.
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