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Abstract. We prove that the perturbation class of the upper semi-Fredholm
operators from X into Y is the class of the strictly singular operators, whenever X
is separable and Y contains a complemented copy of C[0, 1]. We also prove that the
perturbation class of the lower semi-Fredholm operators from X into Y is the class of
the strictly cosingular operators, whenever X contains a complemented copy of �1 and
Y is separable. We can remove the separability requirements by taking suitable spaces
instead of C[0, 1] or �1.
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1. Introduction. The perturbation class PS of a class S of continuous operators
between Banach spaces is defined by its components:

PS(X, Y ) := {K ∈ L(X, Y ) : K + A ∈ S(X, Y ), for every A ∈ S(X, Y )},

where X and Y are Banach spaces such that S(X, Y ) is non-empty.
The concept of perturbation class has been considered in other situations. For

example, it is well known that the perturbation class of the group G of invertible
operators in a Banach algebra A is the radical of A [6]. Hence

P(G) = {x ∈ A : e + ax ∈ G for all a ∈ G}.

Here we consider the perturbation class PS in the cases S =�, the Fredholm
operators, S = �+ the upper semi-Fredholm operators, and S = �−, the lower semi-
Fredholm operators. It is well known that P�= In, the inessential operators [6, 3].
However, the perturbation classes for �+ and �− are not well known. In [7, 26.6.12]
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it is stated as an open problem whether P�+ =SS, the strictly singular operators, or
P�− =SC, the strictly cosingular operators.

Positive solutions of the above-mentioned problems are interesting because they
provide intrinsic characterizations of the operators in P�+ and P�−. For example,
the definition of SS is intrinsic because K ∈SS(X, Y ) only depends on the action of
K over the subspaces of X . However, the fact that K ∈ P�+(X, Y ) depends on the
properties of the sums of K with all the operators in �+(X, Y ).

It is known that P�+(X, Y ) =SS(X, Y ) in the following cases:
1. Y subprojective [11, 3];
2. X = Y = Lp(µ), 1 ≤ p ≤ ∞ [9]; and
3. X hereditarily indecomposable [3, Theorem 3.14].

Note that P�+(X, Y ) =SS(X, Y ) = In(X, Y ) in the first two cases. Also it is known
that P�−(X, Y ) =SC(X, Y ) in the following cases:

1. X superprojective [11, 3];
2. X = Y = Lp(µ), 1 ≤ p ≤ ∞ [9]; and
3. X quotient indecomposable [3, Theorem 3.14].

Note again that P�−(X, Y ) =SC(X, Y ) = In(X, Y ) in the first two cases. However,
the problem remains unsolved in general.

We show that P�+(X, Y ) =SS(X, Y ) whenever X is separable and Y contains a
complemented copy of C[0, 1], and that P�−(X, Y ) =SC(X, Y ) whenever X contains
a complemented copy of �1 and Y is separable. Moreover, the separability requirements
can be removed by taking suitable spaces �∞(I) and �1(I) instead of C[0, 1] and �1,
respectively.

Our results provide new examples of pairs X , Y of Banach spaces for which
the problem of the perturbation classes for semi-Fredholm operators has a positive
answer. Indeed, it is well known that every separable Banach space X is isomorphic
to a subspace of C[0, 1]. Hence �+(X, C[0, 1]) �= ∅. Moreover, if X contains no
complemented copies of c0, then In(X, C[0, 1]) = L(X, C[0, 1]) [4]. Thus for every
infinite dimensional, separable Banach space X containing no copy of c0,

P�+(X, C[0, 1]) = SS(X, C[0, 1]) �= In(X, C[0, 1]).

Analogously, if Y is separable, then Y is isomorphic to a quotient of �1. Thus
�−(�1, Y ) �= ∅. Moreover, if Y contains no complemented copies of �1, thenIn(�1, Y ) =
L(�1, Y ). Thus for every infinite dimensional, separable Banach space Y containing
no complemented copies of �1, we have

P�−(�1, Y ) = SC(�1, Y ) �= In(�1, Y ).

We observe that the perturbation classes studied in [5, 10] correspond to not
necessarily bounded operators. These classes are smaller than those that we consider
here and so most of the results in [10] are not relevant for us.

In relation to the questions we tackle here, it has been open for some time whether
P�, the inessential operators, coincide with the improjective operators, introduced by
Tarafdar [8]. The definition of these operators is intrinsic and similar to that of the
strictly singular operators. There are many classes of spaces for which these classes of
operators coincide [1], but recently it has been proved that the problem has a negative
answer in general [2].

Throughout the paper, X, Y, Z, W are Banach spaces and IX is the identity oper-
ator on X . For a closed subspace M of X, JM is the inclusion of M into X and QM is the

https://doi.org/10.1017/S0017089502001027 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502001027


SEMI-FREDHOLM OPERATORS 93

quotient map onto X/M. An operator A ∈ L(X, Y ) is upper semi-Fredholm if its range
is closed and its null space is finite dimensional; it is lower semi-Fredholm if its range
is finite codimensional and so closed. Also it is Fredholm if it is upper semi-Fredholm
and lower semi-Fredholm. We denote by �+(X, Y ), �−(X, Y ) and �(X, Y ) the classes
of upper semi-Fredholm, lower semi-Fredholm and Fredholm operators, respectively.

An operator T ∈ L(X, Y ) is inessential if IX − ST ∈ �(X, X), for every S ∈ L(X, Y );
it is strictly singular if no restriction TJM of T to a closed infinite dimensional
subspace M of X is an isomorphism; and it is strictly cosingular if there is no closed
infinite codimensional subspace N of Y such that QNT is surjective. We denote
by In(X, Y ), SS(X, Y ) and SC(X, Y ) the inessential, strictly singular and strictly
cosingular operators, respectively.

We shall need the next Lemma, which was proved in [3]. We give a proof for the
convenience of the reader.

LEMMA 1. [See 3, Lemma 3.3]. Let S be �+,�− or �. Assume that S(X, Y ) �= ∅,

and let K ∈ PS(X, Y ).
(1) If A is an isomorphism from W onto X and B is an isomorphism from Y onto

Z, then BKA ∈ PS(W, Z).
(2) If A ∈ L(X) and B ∈ L(Y ), then BKA ∈ PS(X, Y ).

Proof. (1) Note that S(W, Z) �= ∅. Let T ∈S(W, Z). Then

T + BKA = B(B−1TA−1 + K)A ∈ S(W, Z),

because of B−1TA−1 ∈S(X, Y ).
(2) We write A = A1 + A2 and B = B1 + B2, where A1, A2, B1, B2 are invertible

operators. Let T ∈S(X, Y ). Then

T + BKA = T +
2∑

i,j =1

BiKAj ∈ S(X, Y ),

by the first part of this lemma. �

2. Main results. Observe that every separable Banach space is isomorphic to
a subspace of C[0, 1]. Hence the hypothesis of the following result implies that
�+(X, Y ) �= ∅.

THEOREM 2. Suppose that X is separable and Y contains a complemented subspace
isomorphic to C[0, 1]. Then

P�+(X, Y ) = SS(X, Y ).

Proof. Since C[0, 1] is isomorphic to C[0, 1] × C[0, 1], there are closed subspaces
W and Z of Y such that W is isomorphic to Y , Z is isomorphic to C[0, 1] and
Y = W ⊕ Z. Let r > 0 such that ‖a + b‖≥ r max{‖a‖, ‖b‖}, for every a ∈ W and b ∈ Z,
and let U ∈ L(Y ) be an isomorphism with range equal to W .

Suppose that K ∈ L(X, Y ) is not strictly singular. Let K1 := UK ∈ L(X, Y ).
Without loss of generality, we assume that ‖K1‖= 1. Then there exist an infinite
dimensional subspace M of X and c > 0 so that ‖K1m‖≥ c‖m‖, for every m ∈ M.
We denote d := min{c/3, 1/3}.
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Since X is separable, there exists an isomorphism V from X/M into Y with range
contained in Z. We define S ∈ L(X, Y ) by S := VQM . Without loss of generality, we
assume that ‖Sx‖ ≥ ‖QMx‖, for every x ∈ X .

We shall see that the operator S + K1 is an isomorphism into. Indeed, let x ∈ X be
a norm-one vector. If ‖QMx‖≥ d, then

‖(S + K1)x‖ ≥ r‖Sx‖ ≥ rd.

Otherwise ‖QMx‖< d, and we can choose m ∈ M such that ‖x − m‖< d. Hence
‖m‖> 2/3, so that

‖(S + K1)x‖ ≥ r‖K1x‖ ≥ r(‖K1m‖ − ‖x − m‖) ≥ r(3d(2/3) − d) = rd.

Thus K1 /∈ P�+, because S + K1 is upper semi-Fredholm, but S is not. Hence,
K /∈ P�+, by Lemma 1. �

REMARK 3. Theorem 2 remains valid if we take as hypothesis either (1) or (2)
below.

1. X is separable and Y contains a subspace isomorphic to �∞.
2. X is non-separable and Y contains a subspace isomorphic to �∞(I), where the

cardinal of the set I is equal to the cardinal of a dense subset of X .
The proofs are similar taking into account the following facts: every Banach space

Z (in particular, every quotient of X) is isometric to a subspace of �∞(I) for some set
I with card(I) = den(Z) (see [7, C.3.3]), �∞(I) is complemented in every Banach space
in which it is contained, and �∞(I) × �∞(I) is isomorphic to �∞(I).

QUESTION 4. Is it possible to remove the requirement for C[0, 1] to be comple-
mented in Theorem 2?

Observe that every separable Banach space is isomorphic to a quotient of �1. Hence
the hypothesis of the following result implies that �−(X, Y ) �= ∅.

THEOREM 5. Suppose that X contains a complemented subspace isomorphic to �1

and Y is separable. Then

P�−(X ; Y ) = SC(X, Y ).

Proof. Since �1 is isomorphic to �1 × �1, there are closed subspaces W and Z of X
such that W is isomorphic to X , Z is isomorphic to �1 and X = W ⊕ Z. Let U ∈ L(X)
be an operator which is an isomorphism from W onto X , with kernel equal to Z.

Suppose that K ∈ L(X, Y ) is not strictly cosingular. Then there exists a closed
infinite codimensional subspace M of Y such that the operator QMK is surjective; that
is, M + R(K) = Y . We consider the operator K1 := KU ∈ L(X, Y ).

Since Y is separable, there exists an operator S ∈ L(X, Y ) with kernel equal to W
and range equal to M. Clearly, S + K1 is surjective, but S is not a lower semi-Fredholm
operator. Thus K1 /∈ P�−. Hence, K /∈ P�−, by Lemma 1. �

REMARK 6. Theorem 5 remains valid if we take as hypothesis that Y is non-
separable and X contains a complemented subspace isomorphic to �1(I), where the
cardinal of the set I is equal to the cardinal of a dense subset of Y . The proof is similar
taking into account that every Banach space Z (in particular, every subspace of Y ) is
isometric to a quotient of �1(I), for some set I with card(I) = den(Z). (See [7, C.3.7].).
Also �1(I) × �1(I) is isomorphic to �1(I).
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QUESTION 7. Is it possible to remove the requirement for �1 to be complemented
in Theorem 5?
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