ON THE PERTURBATION CLASSES OF CONTINUOUS SEMI-FREDHOLM OPERATORS*

PIETRO AIENA

Dipartimento di Matematica, Università di Palermo, 90128 Palermo, Italia e-mail: paiena@unipa.it

MANUEL GONZÁLEZ

Departamento de Matemáticas, Universidad de Cantabria, 39071 Santander, Spain e-mail: gonzalem@unican.es

and ANTONIO MARTINÓN

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain e-mail: anmarce@ull.es

(Received 14 June, 2001; accepted 29 October, 2001)

Abstract. We prove that the perturbation class of the upper semi-Fredholm operators from X into Y is the class of the strictly singular operators, whenever X is separable and Y contains a complemented copy of C[0, 1]. We also prove that the perturbation class of the lower semi-Fredholm operators from X into Y is the class of the strictly cosingular operators, whenever X contains a complemented copy of ℓ_1 and Y is separable. We can remove the separability requirements by taking suitable spaces instead of C[0, 1] or ℓ_1 .

2000 Mathematics Subject Classification. 47A53, 47A55.

1. Introduction. The *perturbation class PS* of a class S of continuous operators between Banach spaces is defined by its components:

 $PS(X, Y) := \{ K \in L(X, Y) : K + A \in S(X, Y), \text{ for every } A \in S(X, Y) \},\$

where X and Y are Banach spaces such that $\mathcal{S}(X, Y)$ is non-empty.

The concept of perturbation class has been considered in other situations. For example, it is well known that the perturbation class of the group G of invertible operators in a Banach algebra A is the radical of A [6]. Hence

$$P(G) = \{x \in A : e + ax \in G \text{ for all } a \in G\}.$$

Here we consider the perturbation class PS in the cases $S = \Phi$, the Fredholm operators, $S = \Phi_+$ the upper semi-Fredholm operators, and $S = \Phi_-$, the lower semi-Fredholm operators. It is well known that $P\Phi = In$, the inessential operators [6, 3]. However, the perturbation classes for Φ_+ and Φ_- are not well known. In [7, 26.6.12]

^{*}The first-named author was supported by the M.U.R.S.T. (Italy), Fondi ex 40.

The second-named author was supported by the DGES (Spain), Grant PB 97-1489.

The third-named author was supported by the Gobierno de Canarias (Spain), PI2001/039.

it is stated as an open problem whether $P\Phi_+ = SS$, the strictly singular operators, or $P\Phi_- = SC$, the strictly cosingular operators.

Positive solutions of the above-mentioned problems are interesting because they provide intrinsic characterizations of the operators in $P\Phi_+$ and $P\Phi_-$. For example, the definition of SS is intrinsic because $K \in SS(X, Y)$ only depends on the action of K over the subspaces of X. However, the fact that $K \in P\Phi_+(X, Y)$ depends on the properties of the sums of K with all the operators in $\Phi_+(X, Y)$.

It is known that $P\Phi_+(X, Y) = SS(X, Y)$ in the following cases:

1. *Y* subprojective [11, 3];

2. $X = Y = L_p(\mu), 1 \le p \le \infty$ [9]; and

3. X hereditarily indecomposable [3, Theorem 3.14].

Note that $P\Phi_+(X, Y) = SS(X, Y) = In(X, Y)$ in the first two cases. Also it is known that $P\Phi_-(X, Y) = SC(X, Y)$ in the following cases:

1. X superprojective [11, 3];

2. $X = Y = L_p(\mu), 1 \le p \le \infty$ [9]; and

3. X quotient indecomposable [3, Theorem 3.14].

Note again that $P\Phi_{-}(X, Y) = SC(X, Y) = In(X, Y)$ in the first two cases. However, the problem remains unsolved in general.

We show that $P\Phi_+(X, Y) = SS(X, Y)$ whenever X is separable and Y contains a complemented copy of C[0, 1], and that $P\Phi_-(X, Y) = SC(X, Y)$ whenever X contains a complemented copy of ℓ_1 and Y is separable. Moreover, the separability requirements can be removed by taking suitable spaces $\ell_{\infty}(I)$ and $\ell_1(I)$ instead of C[0, 1] and ℓ_1 , respectively.

Our results provide new examples of pairs X, Y of Banach spaces for which the problem of the perturbation classes for semi-Fredholm operators has a positive answer. Indeed, it is well known that every separable Banach space X is isomorphic to a subspace of C[0, 1]. Hence $\Phi_+(X, C[0, 1]) \neq \emptyset$. Moreover, if X contains no complemented copies of c_0 , then $\mathcal{I}n(X, C[0, 1]) = L(X, C[0, 1])$ [4]. Thus for every infinite dimensional, separable Banach space X containing no copy of c_0 ,

$$P\Phi_+(X, C[0, 1]) = SS(X, C[0, 1]) \neq In(X, C[0, 1]).$$

Analogously, if Y is separable, then Y is isomorphic to a quotient of ℓ_1 . Thus $\Phi_-(\ell_1, Y) \neq \emptyset$. Moreover, if Y contains no complemented copies of ℓ_1 , then $\mathcal{I}n(\ell_1, Y) = L(\ell_1, Y)$. Thus for every infinite dimensional, separable Banach space Y containing no complemented copies of ℓ_1 , we have

$$P\Phi_{-}(\ell_1, Y) = \mathcal{SC}(\ell_1, Y) \neq \mathcal{I}n(\ell_1, Y).$$

We observe that the perturbation classes studied in [5, 10] correspond to not necessarily bounded operators. These classes are smaller than those that we consider here and so most of the results in [10] are not relevant for us.

In relation to the questions we tackle here, it has been open for some time whether $P\Phi$, the inessential operators, coincide with the *improjective operators*, introduced by Tarafdar [8]. The definition of these operators is intrinsic and similar to that of the strictly singular operators. There are many classes of spaces for which these classes of operators coincide [1], but recently it has been proved that the problem has a negative answer in general [2].

Throughout the paper, X, Y, Z, W are Banach spaces and I_X is the identity operator on X. For a closed subspace M of X, J_M is the inclusion of M into X and Q_M is the quotient map onto X/M. An operator $A \in L(X, Y)$ is *upper semi-Fredholm* if its range is closed and its null space is finite dimensional; it is *lower semi-Fredholm* if its range is finite codimensional and so closed. Also it is *Fredholm* if it is upper semi-Fredholm and lower semi-Fredholm. We denote by $\Phi_+(X, Y)$, $\Phi_-(X, Y)$ and $\Phi(X, Y)$ the classes of upper semi-Fredholm, lower semi-Fredholm and Fredholm operators, respectively.

An operator $T \in L(X, Y)$ is *inessential* if $I_X - ST \in \Phi(X, X)$, for every $S \in L(X, Y)$; it is *strictly singular* if no restriction TJ_M of T to a closed infinite dimensional subspace M of X is an isomorphism; and it is *strictly cosingular* if there is no closed infinite codimensional subspace N of Y such that $Q_N T$ is surjective. We denote by In(X, Y), SS(X, Y) and SC(X, Y) the inessential, strictly singular and strictly cosingular operators, respectively.

We shall need the next Lemma, which was proved in [3]. We give a proof for the convenience of the reader.

LEMMA 1. [See 3, Lemma 3.3]. Let S be Φ_+ , Φ_- or Φ . Assume that $S(X, Y) \neq \emptyset$, and let $K \in PS(X, Y)$.

(1) If A is an isomorphism from W onto X and B is an isomorphism from Y onto Z, then $BKA \in PS(W, Z)$.

(2) If $A \in L(X)$ and $B \in L(Y)$, then $BKA \in PS(X, Y)$.

Proof. (1) Note that $S(W, Z) \neq \emptyset$. Let $T \in S(W, Z)$. Then

$$T + BKA = B(B^{-1}TA^{-1} + K)A \in \mathcal{S}(W, Z),$$

because of $B^{-1}TA^{-1} \in \mathcal{S}(X, Y)$.

(2) We write $A = A_1 + A_2$ and $B = B_1 + B_2$, where A_1 , A_2 , B_1 , B_2 are invertible operators. Let $T \in S(X, Y)$. Then

$$T + BKA = T + \sum_{i,j=1}^{2} B_i KA_j \in \mathcal{S}(X, Y),$$

by the first part of this lemma.

2. Main results. Observe that every separable Banach space is isomorphic to a subspace of C[0, 1]. Hence the hypothesis of the following result implies that $\Phi_+(X, Y) \neq \emptyset$.

THEOREM 2. Suppose that X is separable and Y contains a complemented subspace isomorphic to C[0, 1]. Then

$$P\Phi_+(X, Y) = \mathcal{SS}(X, Y).$$

Proof. Since C[0, 1] is isomorphic to $C[0, 1] \times C[0, 1]$, there are closed subspaces W and Z of Y such that W is isomorphic to Y, Z is isomorphic to C[0, 1] and $Y = W \oplus Z$. Let r > 0 such that $||a + b|| \ge r \max\{||a||, ||b||\}$, for every $a \in W$ and $b \in Z$, and let $U \in L(Y)$ be an isomorphism with range equal to W.

Suppose that $K \in L(X, Y)$ is not strictly singular. Let $K_1 := UK \in L(X, Y)$. Without loss of generality, we assume that $||K_1|| = 1$. Then there exist an infinite dimensional subspace M of X and c > 0 so that $||K_1m|| \ge c||m||$, for every $m \in M$. We denote $d := \min\{c/3, 1/3\}$.

Since X is separable, there exists an isomorphism V from X/M into Y with range contained in Z. We define $S \in L(X, Y)$ by $S := VQ_M$. Without loss of generality, we assume that $||Sx|| \ge ||Q_Mx||$, for every $x \in X$.

We shall see that the operator $S + K_1$ is an isomorphism into. Indeed, let $x \in X$ be a norm-one vector. If $||Q_M x|| \ge d$, then

$$\|(S+K_1)x\| \ge r\|Sx\| \ge rd.$$

Otherwise $||Q_M x|| < d$, and we can choose $m \in M$ such that ||x - m|| < d. Hence ||m|| > 2/3, so that

$$||(S + K_1)x|| \ge r||K_1x|| \ge r(||K_1m|| - ||x - m||) \ge r(3d(2/3) - d) = rd.$$

Thus $K_1 \notin P\Phi_+$, because $S + K_1$ is upper semi-Fredholm, but S is not. Hence, $K \notin P\Phi_+$, by Lemma 1.

REMARK 3. Theorem 2 remains valid if we take as hypothesis either (1) or (2) below.

1. X is separable and Y contains a subspace isomorphic to ℓ_{∞} .

2. X is non-separable and Y contains a subspace isomorphic to $\ell_{\infty}(I)$, where the cardinal of the set I is equal to the cardinal of a dense subset of X.

The proofs are similar taking into account the following facts: every Banach space Z (in particular, every quotient of X) is isometric to a subspace of $\ell_{\infty}(I)$ for some set I with card(I) = den(Z) (see [7, C.3.3]), $\ell_{\infty}(I)$ is complemented in every Banach space in which it is contained, and $\ell_{\infty}(I) \times \ell_{\infty}(I)$ is isomorphic to $\ell_{\infty}(I)$.

QUESTION 4. Is it possible to remove the requirement for C[0, 1] to be complemented in Theorem 2?

Observe that every separable Banach space is isomorphic to a quotient of ℓ_1 . Hence the hypothesis of the following result implies that $\Phi_-(X, Y) \neq \emptyset$.

THEOREM 5. Suppose that X contains a complemented subspace isomorphic to ℓ_1 and Y is separable. Then

$$P\Phi_{-}(X; Y) = SC(X, Y).$$

Proof. Since ℓ_1 is isomorphic to $\ell_1 \times \ell_1$, there are closed subspaces W and Z of X such that W is isomorphic to X, Z is isomorphic to ℓ_1 and $X = W \oplus Z$. Let $U \in L(X)$ be an operator which is an isomorphism from W onto X, with kernel equal to Z.

Suppose that $K \in L(X, Y)$ is not strictly cosingular. Then there exists a closed infinite codimensional subspace M of Y such that the operator $Q_M K$ is surjective; that is, M + R(K) = Y. We consider the operator $K_1 := KU \in L(X, Y)$.

Since Y is separable, there exists an operator $S \in L(X, Y)$ with kernel equal to W and range equal to M. Clearly, $S + K_1$ is surjective, but S is not a lower semi-Fredholm operator. Thus $K_1 \notin P\Phi_-$. Hence, $K \notin P\Phi_-$, by Lemma 1.

REMARK 6. Theorem 5 remains valid if we take as hypothesis that Y is nonseparable and X contains a complemented subspace isomorphic to $\ell_1(I)$, where the cardinal of the set I is equal to the cardinal of a dense subset of Y. The proof is similar taking into account that every Banach space Z (in particular, every subspace of Y) is isometric to a quotient of $\ell_1(I)$, for some set I with card(I) = den(Z). (See [7, C.3.7].). Also $\ell_1(I) \times \ell_1(I)$ is isomorphic to $\ell_1(I)$. QUESTION 7. Is it possible to remove the requirement for ℓ_1 to be complemented in Theorem 5?

REFERENCES

1. P. Aiena and M. González, On inessential and improjective operators, *Studia Math.* 131 (1998), 271–287.

2. P. Aiena and M. González, Examples of improjective operators, *Math. Z.* 233 (2000), 471–479.

3. P. Aiena and M. González, Inessential operators between Banach spaces, *Rendiconti* Circ. Mat. Palermo Serie II, Suppl. **68** (2002), 3–26.

4. M. González, On essentially incomparable Banach spaces, Math. Z. 215 (1994), 621-629.

5. R. B. Israel, Perturbations of Fredholm operators, Studia Math. 52 (1974), 1-8.

6. A. Lebow and M. Schechter, Semigroups of operators and measures of non-compactness, J. Funct. Anal. 7 (1971), 1-26.

7. A. Pietsch, Operator ideals (North-Holland, 1980).

8. E. Tarafdar, Improjective operators and ideals in a category of Banach spaces, *J. Austral. Math. Soc.* **14** (1972) 274–292.

9. L. Weis, On perturbation of Fredholm operators in $L_p(\mu)$ -spaces, *Proc. Amer. Math.* Soc. **67** (1977), 287–292.

10. L. Weis, Perturbation classes of semi-Fredholm operators, *Math. Z.* 178 (1981), 429–442.

11. R. J. Whitley, Strictly singular operators and their conjugates, *Trans. Amer. Math. Soc.* 113 (1964), 252–261.