Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T13:27:37.969Z Has data issue: false hasContentIssue false

Chapter 15 - Amnestic mild cognitive impairment

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The World Alzheimer Report 2013: Journey of Caring: An Analysis of Long-term Care for Dementia. Available from: http://www.alz.co.uk/research/world-report-2013.CrossRefGoogle ScholarPubMed
McKhann, G, Drachman, D, Folstein, M, Katzman, R, Price, D, Stadlan, EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.CrossRefGoogle ScholarPubMed
McKhann, GM, Knopman, DS, Chertkow, H, Hyman, BT, Jack, CR Jr., Kawas, CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.CrossRefGoogle ScholarPubMed
Ebly, EM, Hogan, DB, Parhad, IM. Cognitive impairment in the nondemented elderly. Results from the Canadian Study of Health and Aging. Arch Neurol. 1995;52(6):612–9.CrossRefGoogle ScholarPubMed
Devanand, DP, Folz, M, Gorlyn, M, Moeller, JR, Stern, Y. Questionable dementia: clinical course and predictors of outcome. J Am Geriatr Soc. 1997;45(3):321–8.CrossRefGoogle ScholarPubMed
Forstl, H, Burns, A, Luthert, P, Cairns, N, Levy, R. The Lewy-body variant of Alzheimer’s disease. Clinical and pathological findings. Br J Psychiatry. 1993;162:385–92.CrossRefGoogle Scholar
O'Connor, DW, Pollitt, PA, Roth, M, Brook, PB, Reiss, BB. Memory complaints and impairment in normal, depressed, and demented elderly persons identified in a community survey. Arch Gen Psychiatry. 1990;47(3):224–7.Google ScholarPubMed
Reisberg, B, Ferris, SH, de Leon, MJ, Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139(9):1136–9.CrossRefGoogle ScholarPubMed
Flicker, C, Ferris, SH, Reisberg, B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology. 1991;41(7):1006–9.Google ScholarPubMed
Jonker, C, Hooyer, C. The Amstel project: design and first findings. The course of mild cognitive impairment of the aged; a longitudinal 4-year study. Psychiatr J Univ Ott. 1990;15(4):207–11.CrossRefGoogle ScholarPubMed
Petersen, RC, Smith, GE, Waring, SC, Ivnik, RJ, Tangalos, EG, Kokmen, E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.CrossRefGoogle ScholarPubMed
Petersen, RC, Smith, G, Kokmen, E, Ivnik, RJ, Tangalos, EG. Memory function in normal aging. Neurology. 1992;42(2):396401.CrossRefGoogle Scholar
Winblad, B, Palmer, K, Kivipelto, M, Jelic, V, Fratiglioni, L, Wahlund, LO, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.CrossRefGoogle ScholarPubMed
Petersen, RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.CrossRefGoogle ScholarPubMed
Albert, MS, DeKosky, ST, Dickson, D, Dubois, B, Feldman, HH, Fox, NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.CrossRefGoogle Scholar
O'Brien, J, Beats, B, Hill, K, al. e. Do subjective memory complaints precede dementia? A three-year follow-up of patients with supposed 'benign senescent forgetfulness'. Int J Geriatr Psychiatry. 1992;7:481–6.CrossRefGoogle ScholarPubMed
Geerlings, MI, Jonker, C, Bouter, LM, Ader, HJ, Schmand, B. Association between memory complaints and incident Alzheimer’s disease in elderly people with normal baseline cognition. Am J Psychiatry. 1999;156(4):531–7.CrossRefGoogle ScholarPubMed
St John, P, Montgomery, P. Are cognitively intact seniors with subjective memory loss more likely to develop dementia? Int J Geriatr Psychiatry. 2002;17(9):814–20.CrossRefGoogle ScholarPubMed
Wang, L, van Belle, G, Crane, PK, Kukull, WA, Bowen, JD, McCormick, WC, et al. Subjective memory deterioration and future dementia in people aged 65 and older. J Am Geriatr Soc. 2004;52(12):2045–51.Google Scholar
Sahgal, A, Sahakian, B, Robbins, T, Wray, C, Lloyd, S, Cook, J, et al. Detection of visual memory and learning deficits in Alzheimer’s disease using the Cambridge Neuropsychological Test Automated Battery. Dementia. 1991;2:150–8.CrossRefGoogle ScholarPubMed
Busse, A, Bischkopf, J, Riedel-Heller, SG, Angermeyer, MC. Subclassifications for mild cognitive impairment: prevalence and predictive validity. Psychol Med. 2003;33(6):1029–38.CrossRefGoogle ScholarPubMed
Busse, A, Bischkopf, J, Riedel-Heller, SG, Angermeyer, MC. Mild cognitive impairment: prevalence and predictive validity according to current approaches. Acta Neurol Scand. 2003;108(2):7181.CrossRefGoogle ScholarPubMed
Ahmed, S, Mitchell, J, Arnold, R, Dawson, K, Nestor, PJ, Hodges, JR. Memory complaints in mild cognitive impairment, worried well, and semantic dementia patients. Alzheimer Dis Assoc Disord. 2008;22(3):227–35.CrossRefGoogle ScholarPubMed
Lawton, MP, Brody, EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.CrossRefGoogle ScholarPubMed
Perneczky, R, Pohl, C, Sorg, C, Hartmann, J, Komossa, K, Alexopoulos, P, et al. Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues. Age and Ageing. 2006;35(3):240–5.CrossRefGoogle ScholarPubMed
Mioshi, E, Dawson, K, Mitchell, J, Arnold, R, Hodges, JR. The Addenbrooke’s Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry. 2006;21(11):1078–85.CrossRefGoogle ScholarPubMed
Gauthier, S, Reisberg, B, Zaudig, M, Petersen, RC, Ritchie, K, Broich, K, et al. Mild cognitive impairment. Lancet. 2006;367(9518):1262–70.CrossRefGoogle ScholarPubMed
Celsis, P. Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer’s disease? Ann Med. 2000;32(1):614.CrossRefGoogle Scholar
Petersen, RC, Stevens, JC, Ganguli, M, Tangalos, EG, Cummings, JL, DeKosky, ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1133–42.CrossRefGoogle Scholar
Petersen, R. Conceptual overview. In Petersen, R, editor. Mild Cognitive Impairment: Ageing to Alzheimer’s disease. USA: Oxford University Press Inc; 2003. pp. 114.Google ScholarPubMed
Drago, V, Babiloni, C, Bartres-Faz, D, Caroli, A, Bosch, B, Hensch, T, et al. Disease tracking markers for Alzheimer’s disease at the prodromal (MCI) stage. Journal of Alzheimer’s Disease: JAD. 2011;26 Suppl 3:159–99.Google ScholarPubMed
Gainotti, G, Quaranta, D, Vita, MG, Marra, C. Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD. 2014;38(3):481–95.CrossRefGoogle ScholarPubMed
Morris, JC, Storandt, M, Miller, JP, McKeel, DW, Price, JL, Rubin, EH, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58(3):397405.CrossRefGoogle ScholarPubMed
Petersen, RC, Roberts, RO, Knopman, DS, Geda, YE, Cha, RH, Pankratz, VS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology. 2010;75(10):889–97.CrossRefGoogle ScholarPubMed
Busse, A, Hensel, A, Guhne, U, Angermeyer, MC, Riedel-Heller, SG. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology. 2006;67(12):2176–85.CrossRefGoogle ScholarPubMed
Fisk, JD, Rockwood, K. Outcomes of incident mild cognitive impairment in relation to case definition. J Neurol Neurosurg Psychiatry. 2005;76(8):1175–7.CrossRefGoogle Scholar
Fisk, JD, Merry, HR, Rockwood, K. Variations in case definition affect prevalence but not outcomes of mild cognitive impairment. Neurology. 2003;61(9):1179–84.CrossRefGoogle ScholarPubMed
Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):4150.CrossRefGoogle ScholarPubMed
Tierney, MC, Szalai, JP, Snow, WG, Fisher, RH, Nores, A, Nadon, G, et al. Prediction of probable Alzheimer’s disease in memory-impaired patients: A prospective longitudinal study. Neurology. 1996;46(3):661–5.CrossRefGoogle ScholarPubMed
Chen, P, Ratcliff, G, Belle, SH, Cauley, JA, DeKosky, ST, Ganguli, M. Patterns of cognitive decline in presymptomatic Alzheimer disease: a prospective community study. Arch Gen Psychiatry. 2001;58(9):853–8.CrossRefGoogle ScholarPubMed
Blake, RV, Wroe, SJ, Breen, EK, McCarthy, RA. Accelerated forgetting in patients with epilepsy: evidence for an impairment in memory consolidation. Brain. 2000;123 Pt 3:472–83.CrossRefGoogle Scholar
Bondi, MW, Monsch, AU, Galasko, D, Butters, N, Salmon, DP, Delis, DC. Preclinical cognitive markers of dementia of Alzheimer’s disease. Neuropsychology. 1994;8:374–84.CrossRefGoogle Scholar
Alladi, S, Arnold, R, Mitchell, J, Nestor, PJ, Hodges, JR. Mild cognitive impairment: applicability of research criteria in a memory clinic and characterization of cognitive profile. Psychological Medicine. 2006;36:507–15.CrossRefGoogle ScholarPubMed
Blackwell, AD, Sahakian, BJ, Vesey, R, Semple, JM, Robbins, TW, Hodges, JR. Detecting dementia: novel neuropsychological markers of preclinical Alzheimer’s disease. Dement Geriatr Cogn Disord. 2004;17(1–2):42–8.CrossRefGoogle Scholar
Walsh, CM, Wilkins, S, Bettcher, BM, Butler, CR, Miller, BL, Kramer, JH. Memory consolidation in aging and MCI after 1 week. Neuropsychology. 2014;28(2):273–80.CrossRefGoogle ScholarPubMed
Damasio, AR. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition. 1989;33(1–2):2562.CrossRefGoogle ScholarPubMed
Swainson, R, Hodges, JR, Galton, CJ, Semple, J, Michael, A, Dunn, BD, et al. Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dement Geriatr Cogn Disord. 2001;12(4):265–80.CrossRefGoogle ScholarPubMed
Ahmed, S, Mitchell, J, Arnold, R, Nestor, PJ, Hodges, JR. Predicting rapid clinical progression in amnestic mild cognitive impairment. Dement Geriatr Cogn Disord. 2008;25(2):170–7.CrossRefGoogle Scholar
Salmon, D, Hodges, JR. Neuropsychological assessment of early onset dementia. In Hodges, JR, editor. Early-Onset Dementia: A Multidisciplinary Approach. New York: Oxford University Press; 2001. pp. 4773.Google ScholarPubMed
Hodges, JR, Patterson, K, Oxbury, S, Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain. 1992;115(Pt 6):1783–806.CrossRefGoogle Scholar
Chertkow, H, Bub, D. Semantic memory loss in dementia of the Alzheimer’s type. Brain. 1990;113(2):397417.CrossRefGoogle ScholarPubMed
Hodges, JR, Patterson, K. Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia. 1995;33(4):441–59.CrossRefGoogle ScholarPubMed
Greene, JD, Hodges, JR. Identification of famous faces and famous names in early Alzheimer’s disease. Relationship to anterograde episodic and general semantic memory. Brain. 1996;119(Pt 1):111–28.CrossRefGoogle ScholarPubMed
Thompson, SA, Graham, KS, Patterson, K, Sahakian, BJ, Hodges, JR. Is knowledge of famous people disproportionately impaired in patients with early and questionable Alzheimer’s disease? Neuropsychology. 2002;16(3):344–58.CrossRefGoogle ScholarPubMed
Ahmed, S, Arnold, R, Thompson, SA, Graham, KS, Hodges, JR. Naming of objects, faces and buildings in mild cognitive impairment. Cortex. 2008;44(6):746–52.CrossRefGoogle Scholar
Monsch, A, Bondi, M, Butters, N, Paulsen, J, Salmon, D, Brugger, P, et al. A comparison of category and letter fluency in Alzheimer’s disease and Huntington’s disease. Neuropsychology. 1994;8:2530.CrossRefGoogle ScholarPubMed
Perry, RJ, Hodges, JR. Attention and executive deficits in Alzheimer’s disease. A critical review. Brain. 1999;122 (Pt 3):383404.CrossRefGoogle Scholar
Belanger, S, Belleville, S, Gauthier, S. Inhibition impairments in Alzheimer’s disease, mild cognitive impairment and healthy aging: effect of congruency proportion in a Stroop task. Neuropsychologia. 2010;48(2):581–90.CrossRefGoogle ScholarPubMed
Albert, MS, Moss, MB, Tanzi, R, Jones, K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc. 2001;7(5):631–9.Google ScholarPubMed
Snowdon, DA, Kemper, SJ, Mortimer, JA, Greiner, LH, Wekstein, DR, Markesbery, WR. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. JAMA. 1996;275(7):528–32.Google ScholarPubMed
Garrard, P, Maloney, LM, Hodges, JR, Patterson, K. The effects of very early Alzheimer’s disease on the characteristics of writing by a renowned author. Brain. 2005;128(Pt 2):250–60.CrossRefGoogle ScholarPubMed
Ahmed, S, Haigh, AM, de Jager, CA, Garrard, P. Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease. Brain. 2013;136(Pt 12):3727–37.CrossRefGoogle ScholarPubMed
Freeman, RQ, Giovannetti, T, Lamar, M, Cloud, BS, Stern, RA, Kaplan, E, et al. Visuoconstructional problems in dementia: contribution of executive systems functions. Neuropsychology. 2000;14(3):415–26.CrossRefGoogle ScholarPubMed
Mendez, MF, Mendez, MA, Martin, R, Smyth, KA, Whitehouse, PJ. Complex visual disturbances in Alzheimer’s disease. Neurology. 1990;40(3 Pt 1):439–43.CrossRefGoogle ScholarPubMed
Buccione, I, Perri, R, Carlesimo, GA, Fadda, L, Serra, L, Scalmana, S, et al. Cognitive and behavioural predictors of progression rates in Alzheimer’s disease. Eur J Neurol. 2007;14(4):440–6.Google Scholar
Rey, A. Psychological examination of a case of post traumatic encephalopathy. Archives de Psychologie 1941;28:286340.Google Scholar
Freedman, M, Leach, L, Kaplan, K, Winocnr, G, Shulman, KI, Delis, D. Clock Drawing: A Neuropsychological Analysis. New York: Oxford University Press; 1994.CrossRefGoogle ScholarPubMed
De Jager, CA, Hogervorst, E, Combrinck, M, Budge, MM. Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer’s disease. Psychol Med. 2003;33(6):1039–50.CrossRefGoogle ScholarPubMed
Royall, DR, Cordes, JA, Polk, M. CLOX: an executive clock drawing task. J Neurol Neurosurg Psychiatry. 1998;64(5):588–94.CrossRefGoogle ScholarPubMed
Thomann, PA, Toro, P, Dos Santos, V, Essig, M, Schroder, J. Clock drawing performance and brain morphology in mild cognitive impairment and Alzheimer’s disease. Brain Cogn. 2008;67(1):8893.Google Scholar
Benton, A, Tranel, A. Visuoperceptual, visuospatial, and visuoconstructional disorders. In Heilman, KM, Valenstein, E, editors. Clinical Neuropsychology 3rd edn. New York: Oxford University Press 1993, pp. 165213.CrossRefGoogle ScholarPubMed
Jack, CR Jr., Knopman, DS, Jagust, WJ, Shaw, LM, Aisen, PS, Weiner, MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28.CrossRefGoogle ScholarPubMed
Jack, CR, Knopman, DS, Jagust, WJ, Petersen, RC, Weiner, MW, Aisen, PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology. 2013;12(2):207–16.CrossRefGoogle ScholarPubMed
Hunderfund, AL, Roberts, RO, Slusser, TC, Leibson, CL, Geda, YE, Ivnik, RJ, et al. Mortality in amnestic mild cognitive impairment: a prospective community study. Neurology. 2006;67(10):1764–8.CrossRefGoogle ScholarPubMed
Braskie, MN, Thompson, PM. A focus on structural brain imaging in the Alzheimer’s disease neuroimaging initiative. Biological Psychiatry. 2014;75(7):527–33.CrossRefGoogle ScholarPubMed
Risacher, SL, Saykin, AJ. Neuroimaging and other biomarkers for Alzheimer’s disease: the changing landscape of early detection. Annual Review of Clinical Psychology. 2013;9:621–48.CrossRefGoogle ScholarPubMed
Devanand, DP, Liu, X, Tabert, MH, Pradhaban, G, Cuasay, K, Bell, K, et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biological Psychiatry. 2008;64(10):871–9.CrossRefGoogle ScholarPubMed
Jack, CR Jr., Petersen, RC, Xu, YC, O'Brien, PC, Smith, GE, Ivnik, RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52(7):1397–403.CrossRefGoogle ScholarPubMed
Whitwell, JL, Shiung, MM, Przybelski, SA, Weigand, SD, Knopman, DS, Boeve, BF, et al. MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology. 2008;70(7):512–20.CrossRefGoogle ScholarPubMed
Jack, CR, Shiung, MM, Weigand, SD, O’Brien, PC, Gunter, JL, Boeve, BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology. 2005;65(8):1227–31.CrossRefGoogle ScholarPubMed
Lehmann, M, Koedam, EL, Barnes, J, Bartlett, JW, Barkhof, F, Wattjes, MP, et al. Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiol Aging. 2013;34(1):7382.CrossRefGoogle ScholarPubMed
Querbes, O, Aubry, F, Pariente, J, Lotterie, JA, Demonet, JF, Duret, V, et al. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain. 2009;132(Pt 8):2036–47.CrossRefGoogle ScholarPubMed
Buckner, RL, Snyder, AZ, Shannon, BJ, LaRossa, G, Sachs, R, Fotenos, AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.CrossRefGoogle ScholarPubMed
Langbaum, JB, Chen, K, Lee, W, Reschke, C, Bandy, D, Fleisher, AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage. 2009;45(4):1107–16.CrossRefGoogle ScholarPubMed
Herholz, K, Nordberg, A, Salmon, E, Perani, D, Kessler, J, Mielke, R, et al. Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1999;10(6):494504.CrossRefGoogle ScholarPubMed
Mosconi, L, Perani, D, Sorbi, S, Herholz, K, Nacmias, B, Holthoff, V, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology. 2004;63(12):2332–40.CrossRefGoogle ScholarPubMed
Yuan, Y, Gu, ZX, Wei, WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR American Journal of Neuroradiology. 2009;30(2):404–10.CrossRefGoogle ScholarPubMed
Sojkova, J, Driscoll, I, Iacono, D, Zhou, Y, Codispoti, KE, Kraut, MA, et al. In vivo fibrillar beta-amyloid detected using [11C]PiB positron emission tomography and neuropathologic assessment in older adults. Arch Neurol. 2011;68(2):232–40.CrossRefGoogle ScholarPubMed
Jack, CR Jr., Barrio, JR, Kepe, V. Cerebral amyloid PET imaging in Alzheimer’s disease. Acta Neuropathologica. 2013;126(5):643–57.CrossRefGoogle ScholarPubMed
Jack, CR Jr., Lowe, VJ, Senjem, ML, Weigand, SD, Kemp, BJ, Shiung, MM, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;131(Pt 3):665–80.CrossRefGoogle ScholarPubMed
Jack, CR Jr., Lowe, VJ, Weigand, SD, Wiste, HJ, Senjem, ML, Knopman, DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain. 2009;132(Pt 5):1355–65.CrossRefGoogle ScholarPubMed
Villemagne, VL, Pike, KE, Chetelat, G, Ellis, KA, Mulligan, RS, Bourgeat, P, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–92.CrossRefGoogle ScholarPubMed
Wolk, DA, Price, JC, Saxton, JA, Snitz, BE, James, JA, Lopez, OL, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65(5):557–68.CrossRefGoogle ScholarPubMed
Fagan, AM, Mintun, MA, Shah, AR, Aldea, P, Roe, CM, Mach, RH, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Molecular Medicine. 2009;1(8–9):371–80.CrossRefGoogle ScholarPubMed
Chetelat, G, Villemagne, VL, Villain, N, Jones, G, Ellis, KA, Ames, D, et al. Accelerated cortical atrophy in cognitively normal elderly with high beta-amyloid deposition. Neurology. 2012;78(7):477–84.CrossRefGoogle Scholar
Maruyama, M, Shimada, H, Suhara, T, Shinotoh, H, Ji, B, Maeda, J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.CrossRefGoogle ScholarPubMed
Small, GW, Kepe, V, Ercoli, LM, Siddarth, P, Bookheimer, SY, Miller, KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355(25):2652–63.CrossRefGoogle Scholar
Buchhave, P, Minthon, L, Zetterberg, H, Wallin, AK, Blennow, K, Hansson, O. Cerebrospinal fluid levels of beta-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69(1):98106.CrossRefGoogle ScholarPubMed
Hansson, O, Zetterberg, H, Buchhave, P, Londos, E, Blennow, K, Minthon, L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5(3):228–34.CrossRefGoogle ScholarPubMed
Mattsson, N, Zetterberg, H, Hansson, O, Andreasen, N, Parnetti, L, Jonsson, M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302(4):385–93.CrossRefGoogle ScholarPubMed
Mattsson, N, Andreasson, U, Persson, S, Carrillo, MC, Collins, S, Chalbot, S, et al. CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimers Dement. 2013;9(3):251–61.CrossRefGoogle ScholarPubMed
Doecke, JD, Laws, SM, Faux, NG, Wilson, W, Burnham, SC, Lam, CP, et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 2012;69(10):1318–25.Google ScholarPubMed
Kiddle, SJ, Sattlecker, M, Proitsi, P, Simmons, A, Westman, E, Bazenet, C, et al. Candidate blood proteome markers of Alzheimer’s disease onset and progression: a systematic review and replication study. Journal of Alzheimer’s Disease: JAD. 2014;38(3):515–31.CrossRefGoogle ScholarPubMed
Mapstone, M, Cheema, AK, Fiandaca, MS, Zhong, X, Mhyre, TR, MacArthur, LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nature Medicine. 2014;20(4):415–18.CrossRefGoogle ScholarPubMed
Soares, HD, Potter, WZ, Pickering, E, Kuhn, M, Immermann, FW, Shera, DM, et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol. 2012;69(10):1310–17.CrossRefGoogle ScholarPubMed
Corder, EH, Saunders, AM, Strittmatter, WJ, Schmechel, DE, Gaskell, PC, Small, GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.CrossRefGoogle ScholarPubMed
Elias-Sonnenschein, LS, Viechtbauer, W, Ramakers, IH, Verhey, FR, Visser, PJ. Predictive value of APOE-epsilon4 allele for progression from MCI to AD-type dementia: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(10):1149–56.CrossRefGoogle ScholarPubMed
Jak, AJ, Houston, WS, Nagel, BJ, Corey-Bloom, J, Bondi, MW. Differential cross-sectional and longitudinal impact of APOE genotype on hippocampal volumes in nondemented older adults. Dement Geriatr Cogn Disord. 2007;23(6):382–9.CrossRefGoogle ScholarPubMed
Farlow, MR. Alzheimer’s disease: clinical implications of the apolipoprotein E genotype. Neurology. 1997;48(5 Suppl 6):S30–4.CrossRefGoogle ScholarPubMed
Petersen, RC, Parisi, JE, Dickson, DW, Johnson, KA, Knopman, DS, Boeve, BF, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63(5):665–72.CrossRefGoogle ScholarPubMed
Schneider, JA, Arvanitakis, Z, Leurgans, SE, Bennett, DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009;66(2):200–8.Google ScholarPubMed
Markesbery, WR. Neuropathologic alterations in mild cognitive impairment: a review. Journal of Alzheimer’s Disease: JAD. 2010;19(1):221–8.CrossRefGoogle ScholarPubMed
Raschetti, R, Albanese, E, Vanacore, N, Maggini, M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Medicine. 2007;4(11):e338.Google Scholar
Birks, J, Harvey, RJ. Donepezil for dementia due to Alzheimer’s disease. The Cochrane Database of Systematic Reviews. 2006(1):CD001190.Google Scholar
Loy, C, Schneider, L. Galantamine for Alzheimer’s disease and mild cognitive impairment. The Cochrane Database Of Systematic Reviews. 2006(1):CD001747.CrossRefGoogle ScholarPubMed
Cooper, C, Li, R, Lyketsos, C, Livingston, G. Treatment for mild cognitive impairment: systematic review. Br J Psychiatry. 2013;203(3):255–64.CrossRefGoogle ScholarPubMed
Gates, N, Fiatarone Singh, MA, Sachdev, PS, Valenzuela, M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21(11):1086–97.CrossRefGoogle ScholarPubMed
Fratiglioni, L, Paillard-Borg, S, Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–53.CrossRefGoogle ScholarPubMed
Jack, CR Jr., Dickson, DW, Parisi, JE, Xu, YC, Cha, RH, O'Brien, PC, et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology. 2002;58(5):750–7.Google ScholarPubMed
Snowdon, DA, Greiner, LH, Mortimer, JA, Riley, KP, Greiner, PA, Markesbery, WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997;277(10):813–17.CrossRefGoogle ScholarPubMed
Duara, R, Loewenstein, DA, Greig, MT, Potter, E, Barker, W, Raj, A, et al. Pre-MCI and MCI: neuropsychological, clinical, and imaging features and progression rates. Am J Geriatr Psychiatry. 2011;19(11):951–60.CrossRefGoogle ScholarPubMed
Storandt, M, Grant, EA, Miller, JP, Morris, JC. Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI. Neurology. 2006;67(3):467–73.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×