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Abstract

We prove an explicit formula for the arithmetic intersection number of diagonal cycles
on GSpin Rapoport–Zink spaces in the minuscule case. This is a local problem arising
from the arithmetic Gan–Gross–Prasad conjecture for orthogonal Shimura varieties.
Our formula can be viewed as an orthogonal counterpart of the arithmetic–geometric
side of the arithmetic fundamental lemma proved by Rapoport–Terstiege–Zhang in the
minuscule case.
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1. Introduction

1.1 Motivation
The arithmetic Gan–Gross–Prasad conjecture (arithmetic GGP conjecture) generalizes the
celebrated Gross–Zagier formula to higher dimensional Shimura varieties (see [GGP12, § 27]
and [Zha12, § 3.2]). It is a conjectural identity relating the height of certain algebraic cycles on
Shimura varieties to the central derivative of certain Rankin–Selberg L-functions. Let us briefly
recall the rough statement of the conjecture. The diagonal embeddings of unitary groups

H = U(1, n− 1) ↪→ G = U(1, n− 1)×U(1, n)

or of orthogonal groups

H = SO(2, n− 1) ↪→ G = SO(2, n− 1)× SO(2, n)

induce an embedding of Shimura varieties ShH ↪→ ShG. We denote its image by ∆ and call
it the diagonal cycle or the GGP cycle on ShG. Let π be a tempered cuspidal automorphic
representation on G appearing in the middle cohomology of ShG. Let ∆π be the (cohomological
trivialization of the) π-component of ∆. The arithmetic GGP conjecture asserts that the
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(conditional) Beilinson–Bloch–Gillet–Soulé height of ∆π should be given by the central derivative
of a certain Rankin–Selberg L-function L(s, π) up to simpler factors,

〈∆π,∆π〉 ∼ L′(1/2, π).

The Gross–Zagier formula [GZ86] and the work of Gross, Kudla and Schoen [GK92, GS95]
can be viewed as the special cases n = 1 and n = 2 in the orthogonal case correspondingly.
The recent work of Yuan et al. [YZZ13, YZZ12] has proved this conjecture for n = 1, 2 in the
orthogonal case in vast generality.

In the unitary case, Zhang has proposed an approach for general n using the relative trace
formula of Jacquet–Rallis. The relevant arithmetic fundamental lemma relates an arithmetic
intersection number of GGP cycles on unitary Rapoport–Zink spaces with a derivative of orbital
integrals on general linear groups. The arithmetic fundamental lemma has been verified for
n = 1, 2 by Zhang [Zha12] and for general n in the minuscule case by Rapoport et al. [RTZ13].

In the orthogonal case, very little is known currently beyond n = 1, 2 and no relative trace
formula approach has been proposed yet. However, it is notable that Krishna [Kri16] has recently
established a relative trace formula for the case SO(2)×SO(3) and one can hope that his method
will generalize to formulate a relative trace formula approach for general SO(n− 1)× SO(n).

Our goal in this article is to establish an orthogonal counterpart of the arithmetic–geometric
side of the arithmetic fundamental lemma in [RTZ13], namely to formulate and compute the
arithmetic intersection of GGP cycles on GSpin Rapoport–Zink spaces in the minuscule case.

1.2 The main results
Let p be an odd prime. Let k = Fp, W = W (k), K = W [1/p] and σ ∈ Aut(W ) be the lift of the
absolute p-Frobenius on k. Let n > 4.1 Let V [ be a self-dual quadratic space over Zp of rank
n − 1 and let V = V [⊕Zpxn (orthogonal direct sum) be a self-dual quadratic space over Zp of
rank n, where xn has norm 1. Associated to the embedding of quadratic spaces V [ ↪→ V we have
an embedding of algebraic groups G[ = GSpin(V [) ↪→ G = GSpin(V ) over Zp. After suitably
choosing compatible local unramified Shimura–Hodge data (G[, b[, µ[, C(V [)) ↪→ (G, b, µ, C(V )),
we obtain a closed immersion of the associated GSpin Rapoport–Zink spaces

δ : RZ[ ↪→ RZ .

See § 2 for precise definitions and see § 3.2 for the moduli interpretation of δ. The space RZ
is an example of Rapoport–Zink spaces of Hodge type, recently constructed by Kim [Kim13]
and Howard and Pappas [HP17]. It is a formal scheme over Spf W , parameterizing deformations
(up to quasi-isogeny) of a p-divisible group X0/k with certain crystalline Tate tensors (coming
from the defining tensors of G inside some GLN ). Roughly speaking, if X[ is the p-divisible
group underlying a point x ∈ RZ[, then the p-divisible group underlying δ(x) ∈ RZ is given by
X = X[⊕X[.

Remark 1.2.1. The datum (G, b, µ, C(V )) is chosen in such a way that the space RZ provides a

p-adic uniformization of (ŜW )/Sss
, the formal completion of SW along Sss. Here SW is the base

change to W of Kisin’s integral model [Kis10] of a GSpin Shimura variety (which is of Hodge
type) at a good prime p and Sss is the supersingular locus (= the basic locus in this case) of the
special fiber of SW . For more details, see [HP17, § 7.2].

1 When n = 3, one can formulate the arithmetic fundamental lemma for SO(2)×SO(3) building on the work [Kri16].
We have verified it in the minuscule case by explicit calculation and so we exclude n = 3 for notational convenience.
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The group Jb(Qp) = {g ∈ G(K) : gb = bσ(g)} consists of the Qp-points of an inner form of
G and acts on RZ via its action on the fixed p-divisible group X0. Let g ∈ Jb(Qp). As explained

in § 3, the intersection of the GGP cycle ∆ on RZ[×W RZ and its g-translate leads to study of
the formal scheme

δ(RZ[) ∩ RZg, (1.2.1.1)

where RZg denotes the g-fixed points of RZ.
We call g ∈ Jb(Qp) regular semisimple if

L(g) := Zpxn + Zpgxn + · · ·+ Zpgn−1xn

is a free Zp-module of rank n. Let L(g)∨ denote the dual lattice of L(g). We further call g
minuscule if L(g) ⊂ L(g)∨ (i.e. the quadratic form restricted to L(g) is valued in Zp) and
L(g)∨/L(g) is a Fp-vector space. See Definition 3.3.2 for equivalent formulations. When g ∈
Jb(Qp) is regular semisimple and minuscule, we will show that the formal scheme (1.2.1.1) is in
fact a zero-dimensional scheme of characteristic p. Our main theorem is an explicit formula for
its arithmetic intersection number (i.e. the total W -length of its local rings).

To state the formula, assume that g is regular semisimple and minuscule and assume that
RZg is non-empty. Then g stabilizes both L(g)∨ and L(g) and thus acts on the Fp-vector space
L(g)∨/L(g). Let P (T ) ∈ Fp[T ] be the characteristic polynomial of g acting on L(g)∨/L(g).
For any irreducible polynomial R(T ) ∈ Fp[T ], we denote its multiplicity in P (T ) by m(R(T )).
Moreover, for any polynomial R(T ), we define its reciprocal by

R∗(T ) := T degR(T ) ·R(1/T ).

We say that R(T ) is self-reciprocal if R(T ) = R∗(T ). Now we are ready to state our main theorem.

Theorem A. Let g ∈ Jb(Qp) be regular semisimple and minuscule. Assume that RZg is non-
empty. Then we have the following.

(1) (Corollary 5.1.2) δ(RZ[) ∩ RZg is a scheme of characteristic p.

(2) (Theorem 3.6.4) δ(RZ[)∩RZg is non-empty if and only if P (T ) has a unique self-reciprocal
monic irreducible factor Q(T )|P (T ) such that m(Q(T )) is odd. In this case, pZ\(δ(RZ[)∩RZg)(k)
is finite and has cardinality

degQ(T ) ·
∏
R(T )

(1 +m(R(T ))),

where R(T ) runs over all non-self-reciprocal monic irreducible factors of P (T ). Here the group
pZ acts on RZ via the central embedding pZ ↪→ Jb(Qp) and the action stabilizes δ(RZ[) ∩ RZg.

(3) (Corollary 5.4.2) Let c = (m(Q(T )) + 1)/2. Then 1 6 c 6 n/2. Assume that p > c. Then
δ(RZ[) ∩ RZg is a disjoint union over its k-points of copies of Spec k[X]/Xc. In particular, the
intersection multiplicity at each k-point of δ(RZ[) ∩ RZg is the same and equals c.

Along the way we also prove a result that should be of independent interest. In [HP17],
Howard and Pappas defined closed formal subschemes RZΛ of RZ for each vertex lattice Λ
(recalled in § 2). Howard and Pappas studied the reduced subschemes RZred

Λ in detail and proved
that they form a nice stratification of RZred. We prove the following.

Theorem B (Theorem 4.2.11). RZΛ = RZred
Λ for each vertex lattice Λ.
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1.3 Novelty of the method
The results (Theorems A and B) are parallel to the results in [RTZ13] for unitary Rapoport–Zink
spaces. The main new difficulty in the GSpin case is due to the fact that, unlike the unitary case,
the GSpin Rapoport–Zink spaces are not of PEL type. They are only of Hodge type and as for
now they lack full moduli interpretations that are easy to work with directly (see Remark 2.4.1).

In [RTZ13], the most difficult parts are the reducedness of minuscule special cycles [RTZ13,
Theorem 10.1] and the intersection length formula [RTZ13, Theorem 9.5]. They are the analogues
of Theorems B and A(3), respectively. In [RTZ13], they are proved using Zink’s theory of windows
and displays of p-divisible groups and involve rather delicate linear algebra computation. In
contrast, in our method we rarely directly work with p-divisible groups and we completely avoid
computations with windows or displays. Instead we make use of what are essentially consequences
of Kisin’s construction of integral models of Hodge-type Shimura varieties to abstractly reduce
the problem to algebraic geometry over k. More specifically, we reduce the intersection length
computation to the study of a certain scheme of the form S ḡΛ (Proposition 5.1.4), where SΛ is
a smooth projective k-variety closely related to orthogonal Grassmannians and ḡ is a certain
finite-order automorphism of S. Thus, our method overcomes the difficulty of non-PEL type and
also makes the actual computation much more elementary.

It is worth mentioning that our method also applies to the unitary case considered in [RTZ13].
Even in this PEL-type case, our method gives a new and arguably simpler proof of the arithmetic
fundamental lemma in the minuscule case (see [LZ17]).

It is also worth mentioning that the very recent work of Bueltel and Pappas [BP17]
gives a new moduli interpretation for Rapoport–Zink spaces of Hodge type when restricted to
p-nilpotent noetherian algebras. Their moduli description is purely group theoretic (in terms of
(G,µ)-displays) and does not involve p-divisible groups. Although we do not use (G,µ)-displays
in this article, it would be interesting to see if it is possible to extend the results of this article
using their group-theoretic description (e.g. to certain non-minuscule cases).

1.4 Strategy of the proofs
Our key observation is that in order to prove these theorems, we only need to understandO-points
of RZ for very special choices of W -algebras O.

To prove Theorem B, it turns out that we only need to understand RZ(W/p2) and
RZ(k[ε]/ε2). Note that the W -algebras W/p2 and k[ε]/ε2, when viewed as thickenings of Spec k
(under reduction modulo p or ε, respectively), are objects of the crystalline site of Spec k. For
such an object O, we give in Theorem 4.1.7 an explicit description of RZ(O) and more generally
an explicit description of Z(O) for any special cycle Z in RZ. Theorem 4.1.7 is the main
tool to prove Theorem B and is also the only place we use p-divisible groups. This result is
a Rapoport–Zink space analogue of a result of Madapusi Pera [Mad16, Proposition 5.16] for
GSpin Shimura varieties. Its proof also relies on [Mad16, Proposition 5.16] and is ultimately
a consequence of Kisin’s construction of the integral canonical models of Hodge-type Shimura
varieties [Kis10].

To prove the intersection length formula (Theorem A(3)), let Λ be the vertex lattice L(g)∨.
Theorem B allows us to reduce Theorem A(3) to the problem of studying the fixed-point
subscheme of the smooth k-variety SΛ

∼= pZ\RZred
Λ under the induced action ḡ ∈ SO(Λ/Λ∨)

of g. Moreover, Howard and Pappas [HP17] have provided an explicit description of SΛ. Thus,
we now face a problem that purely concerns algebraic geometry over k. Since the fixed point of a
smooth k-variety under a group of order coprime to p is still smooth [Ive72, 1.3], this point of view
immediately explains that when ḡ is semisimple (in which case m(Q(T )) = 1), the intersection

1410

https://doi.org/10.1112/S0010437X18007108 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007108


Arithmetic intersection on GSpin Rapoport–Zink spaces

multiplicity must be 1. More generally, under the simplifying assumption p > c, we further

reduce the intersection length computation to more elementary algebraic geometry of orthogonal

Grassmannians over k (Lemma 5.2.9), which allows us to finally obtain the intersection length

formula.

The remaining parts of Theorem A are relatively easier. From Theorem B, it is not difficult

to deduce Theorem A(1). The set of k-points of RZ is well understood group theoretically in

terms of the affine Deligne–Lusztig set. The point-counting formula (Theorem A(2)) essentially

only relies on this description and we follow the strategy in [RTZ13] to give a short streamlined

proof (Proposition 3.4.4).

1.5 Organization of the paper

In § 2, we review the structure of GSpin Rapoport–Zink spaces and special cycles. In § 3,

we formulate the arithmetic intersection problem of GGP cycles and prove the point-counting

formula for the k-points of the intersection in the minuscule case (Theorem A(2)). In § 4, we

prove reducedness of minuscule special cycles (Theorem B). In § 5, we deduce from Theorem B

that the arithmetic intersection is concentrated in the special fiber (Theorem A(1)) and finally

compute the intersection length when p is sufficiently large (Theorem A(3)).

2. GSpin Rapoport–Zink spaces

In this section we review the structure of GSpin Rapoport–Zink spaces due to Howard and

Pappas [HP17]. We refer to [HP17] for the proofs of these facts.

2.1 Quadratic spaces and GSpin groups

Let p be an odd prime. Let (V, q) be a non-degenerate self-dual quadratic space over Zp of rank

n > 3. By definition, the Clifford algebra C(V ) is the quotient of the tensor algebra V ⊗ by the

two-sided ideal generated by elements of the form v ⊗ v − q(v). It is free of rank 2n over Zp.
The linear map v 7→ −v preserves the quadratic form q on V and induces an involution on C(V ).

This involution decomposes C(V ) = C+(V )⊕C−(V ) into even and odd parts. The image of the

injection V ↪→ C−(V ) generates C(V ) as a Zp-algebra.

We also have a canonical involution ∗ : C(V )→ C(V ), which is a Zp-linear endomorphism

characterized by (v1v2 · · · vk)∗ = vk · · · v2v1 for vi ∈ V . The spinor similitude group G= GSpin(V )

is the reductive group over Zp such that for a Zp-algebra R,

G(R) = {g ∈ C+(V )× : gVRg
−1 = VR, g

∗g ∈ R×}.

The character ηG : G→ Gm given by g 7→ g∗g is called the spinor similitude.

Let G act on C(V ) by the conjugation action g · v := gvg−1. This action stabilizes V and

preserves the quadratic form q. Thus, we obtain a homomorphism

G→ SO(V ).

The kernel of the above morphism is the central Gm inside G given by the natural inclusion

R× ⊂ G(R) for any Zp-algebra R. The restriction of ηG on the central Gm is given by g 7→ g2.

Note that the central Gm in G is equal to the identity component of the center of G and it is

equal to the center of G precisely when n is odd.
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2.2 Basic elements in GSpin groups
Let k = Fp, W = W (k) and K = W [1/p]. Let σ ∈ Aut(W ) be the lift of the absolute p-Frobenius
on k. Let D = HomZp(C(V ),Zp) be the contragredient G-representation of C(V ).

Any b ∈ G(K) determines two isocrystals

(VK ,Φ = b ◦ σ), (DK , F = b ◦ σ).

Denote by T the pro-torus over Qp of character group Q. Recall that b ∈ G(K) is basic if its
slope morphism νb : TK → GK factors through (the identity component of) Z(GK), i.e. factors
through the central Gm. By [HP17, Lemma 4.2.4], b is basic if and only if (VK ,Φ) is isoclinic of
slope 0, if and only if (DK , F ) is isoclinic of slope −νb ∈ Hom(TK ,Gm) ∼= Q. The map b 7→ νb
gives a bijection between the set of basic σ-conjugacy classes and the set 1

2Z. Moreover, the
Qp-quadratic space

V Φ
K = {x ∈ VK : Φx = x}

has the same dimension and determinant as VQp and has Hasse invariant (−1)2νb [HP17,
Proposition 4.2.5].

2.3 Local unramified Shimura–Hodge data
Since V is self-dual, we know that VQp has Hasse invariant +1. In particular, V contains at least
one hyperbolic plane and we can pick a Zp-basis x1, . . . , xn of V such that the Gram matrix of
the quadratic form q under this basis2 is of the form

0 1
1 0

∗
∗

. . .
∗

 .

We will fix x1, . . . , xn once and for all. Define a cocharacter

µ : Gm→ G, t 7→ t−1x1x2 + x2x1.

Pick an explicit element b = x3(p−1x1 + x2) ∈ G(Qp). Then one can show that b is basic with
νb = 1

2 . Thus, V Φ
K has the opposite Hasse invariant −1 (cf. § 2.2).

Fix any δ ∈ C(V )× such that δ∗ = −δ. Then ψδ(c1, c2) = Trd(c1δc
∗
2) defines a non-degenerate

symplectic form on C(V ), where Trd : C(V )→ Zp is the reduced trace (see [HP17, § 4.1.2]). We
have a closed immersion into the symplectic similitude group

G ↪→ GSp(C(V ), ψδ).

By [HP17, Proposition 4.2.6], the tuple (G, b, µ, C(V )) defines a local unramified Shimura–Hodge
datum in the sense of [HP17, Definition 2.2.4]. In fact, for the fixed G and µ, the σ-conjugacy class
of b is the unique basic σ-conjugacy class for which (G, b, µ) is a local unramified Shimura–Hodge
datum (see [HP17, Remark 4.2.7]).

Remark 2.3.1. The tuple (G, b, µ, C(V )) is chosen in such a way that the associated Rapoport–
Zink space (see below) provides a p-adic uniformization for the supersingular locus of a related
GSpin Shimura variety. For more details on the relation with Shimura varieties, see [HP17, § 7].

2 By this we mean the n× n matrix whose (i, j)th entry is q(xi + xj) − q(xi) − q(xj).
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2.4 GSpin Rapoport–Zink spaces
There is a unique (up to isomorphism) p-divisible group X0/k such that its (contravariant)
Dieudonné module D(X0) is given by the W -lattice DW in the isocrystal DK . The non-degenerate
symplectic form ψδ induces a principal polarization λ0 of X0. Fix a collection of tensors (sα) on
C(V ), including the symplectic form ψδ as a member, that cut out G from GL(C(V )). By [HP17,
§ 4.3], we have a GSpin Rapoport–Zink space

RZ := RZ(G, b, µ, C(V ), (sα)).

It is a formal scheme over W , together with a closed immersion into the symplectic Rapoport–
Zink space RZ(X0, λ0). Moreover, the formal scheme RZ itself depends only on the local
unramified Shimura–Hodge datum (G, b, µ, C(V )) and not on the choice of the tensors (sα).

Denote by (X, ρ, λ) the universal triple over RZ(X0, λ0), where X is the universal p-divisible
group, ρ is the universal quasi-isogeny and λ is the universal polarization. Consider the restriction
of this triple to the closed formal subscheme RZ of RZ(X0, λ0). We denote this restricted triple
also by (X, ρ, λ) and call it the universal triple over RZ.

Remark 2.4.1. Let NilpW be the category of W -algebras in which p is nilpotent. As a set-valued
functor on the category NilpW , the symplectic Rapoport–Zink space RZ(X0, λ0) has an explicit
moduli interpretation in terms of triples (X, ρ, λ). In contrast, the subfunctor defined by RZ
does not have an explicit description. In fact, in [HP17] Howard and Pappas only give a moduli
interpretation of RZ when it is viewed as a set-valued functor on a more restricted category
ANilpfsm

W . In this article we do not make use of this last moduli interpretation. All we will need is
the global construction of RZ as a formal subscheme of RZ(X0, λ0) due to Howard and Pappas.

Over RZ, the universal quasi-isogeny ρ respects the polarizations λ and λ0 up to a scalar
c(ρ) ∈ Q×p , i.e. ρ∨ ◦λ ◦ρ = c−1(ρ) ·λ0 (Zariski locally on RZk). Let RZ(`) ⊆ RZ be the closed and
open formal subscheme where ordp(c(ρ)) = `. We have the decomposition into a disjoint union

RZ =
∐
`∈Z

RZ(`) .

In fact, each RZ(`) is connected and they are mutually (non-canonically) isomorphic; see [HP17,
§§ 4.3.3 and 4.3.4].

2.5 The group Jb

The algebraic group Jb = GSpin(V Φ
K ) has Qp-points

Jb(Qp) = {g ∈ G(K) : gb = bσ(g)}

and Jb(Qp) acts on RZ via its action on X0 as quasi-endomorphisms. The action of g ∈ Jb(Qp)
on RZ restricts to isomorphisms

RZ(`) ∼−→ RZ(`+ordp(ηb(g))), ` ∈ Z, (2.5.0.1)

where ηb : Jb(Qp) → Q×p is the spinor similitude. In particular, pZ ⊆ Jb(Qp) acts on RZ and,
since ηb(p) = p2, we have an isomorphism

pZ\RZ ∼= RZ(0)
∐

RZ(1) .
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Remark 2.5.1. In this article we are interested in studying the fixed locus RZg of RZ under

g ∈ Jb(Qp). By (2.5.0.1), this is non-empty only when ordp(ηb(g)) = 0. Since pZ is central in

Jb(Qp), one could also study (pZ\RZ)g for g ∈ Jb(Qp). However, by (2.5.0.1), we know that

(pZ\RZ)g 6= ∅ only if ordp(ηb(g)) is even and in this case

(pZ\RZ)g ∼= pZ\RZg0 ,

where g0 = p−ordp(ηb(g))/2g. Hence, the study of (pZ\RZ)g for general g reduces to the study of

RZg for g satisfying ordp(ηb(g)) = 0.

2.6 Special endomorphisms

Using the injection V ↪→ C(V )op, we can view

V ⊆ EndZp(D)

as special endomorphisms of D: the action of v ∈ V on D is explicitly given by

(vd)(c) = d(vc), d ∈ D, c ∈ C(V ).

Base changing to K gives VK ⊆ EndK(DK). Since the space EndK,F (DK) of F -equivariant

endomorphisms of DK can be identified with the space End0(X0) of quasi-endomorphisms of X0,

we obtain an embedding of Qp-vector spaces

V Φ
K ↪→ End0(X0).

Elements of V Φ
K are thus viewed as quasi-endomorphisms of X0 and we call them special quasi-

endomorphisms.

2.7 Vertex lattices

Definition 2.7.1. A vertex lattice is a Zp-lattice Λ ⊆ V Φ
K such that

pΛ ⊆ Λ∨ ⊆ Λ.

We define

Ω0 = Λ/Λ∨.

Then the quadratic form v 7→ p · q(v) makes Ω0 a non-degenerate quadratic space over Fp. The

type of Λ is defined to be tΛ := dimFp Ω0.

By [HP17, 5.1.2], the type of a vertex lattice is always an even integer t such that 2 6 t6 tmax,

where

tmax =


n− 2 if n is even and det(VQp) = (−1)n/2 ∈ Q×p /(Q×p )2,

n− 1 if n is odd,

n if n is even and det(VQp) 6= (−1)n/2 ∈ Q×p /(Q×p )2.

It follows that the quadratic space Ω0 is always non-split, because otherwise a Lagrangian

subspace L ⊆ Ω0 would provide a vertex lattice Λ∨ + L ⊆ V Φ
K of type 0 (cf. [HP17, 5.3.1]).
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2.8 The variety SΛ

Definition 2.8.1. Define

Ω = Ω0 ⊗Fp k
∼= ΛW /Λ

∨
W .

Let d = tΛ/2. Let OGr(Ω) be the moduli space of Lagrangian subspaces L ⊆ Ω. We define
SΛ ⊆ OGr(Ω) to be the reduced closed subscheme of OGr(Ω) with k-points given as follows:

SΛ(k) = {Lagrangian subspaces L ⊆ Ω : dim(L+ Φ(L)) = d+ 1}
∼= {(Ld−1,Ld) : Ld ⊆ Ω Lagrangian,Ld−1 ⊆ Ld ∩ ΦLd, dimLd−1 = d− 1},

where the last bijection is given by L 7→ (L ∩ ΦL,L).

More precisely, for any k-algebra R, the R-points SΛ(R) is the set of pairs (Ld−1,Ld) such

that:

• Ld is a totally isotropic R-module local direct summand of Ω⊗k R of local rank d;

• Ld−1 is an R-module local direct summand of Ω⊗kR of local rank d− 1;

• Ld−1 ⊂ Ld ∩ ΦLd, where Φ acts on Ω⊗k R = Ω0⊗Fp R via the identity on Ω0 and the

p-Frobenius on R. In particular, Ld−1 is totally isotropic and is a local direct summand of

Ld and of ΦLd. (For the last statement, see Remark 2.8.2 below.)

By [HP17, 5.3.2], SΛ is a k-variety with two isomorphic connected components S±Λ , each being

projective and smooth of dimension tΛ/2−1. For more details, see [HP17, § 5.3] and [HP14, § 3.2].

Remark 2.8.2. In the sequel we will frequently use the following simple fact without explicitly

mentioning it. Let R be a commutative ring and M a free R-module of finite rank. Suppose that

M1,M2 are submodules of M that are local direct summands. Suppose that M1 ⊂M2. Then M1

is a local direct summand of M2 and both M1 and M2 are locally free.

2.9 Structure of the reduced scheme RZred

Definition 2.9.1. For a vertex lattice Λ, we define RZΛ ⊆ RZ to be the locus where ρ◦Λ∨◦ρ−1 ⊆
End(X), i.e. the quasi-endomorphisms ρ ◦ v ◦ ρ−1 lift to actual endomorphisms for any v ∈ Λ∨.

In other words, if we define a locus RZ(X0, λ0)Λ using the same condition inside RZ(X0, λ0)

(so that this locus is a closed formal subscheme by [RZ96, Proposition 2.9]), then RZΛ is the

intersection of RZ with RZ(X0, λ0)Λ inside RZ(X0, λ0). In particular, RZΛ is a closed formal

subscheme of RZ.

Consider the reduced subscheme RZ(`),red of RZ(`). By the result [HP17, Theorem 6.4.1], the

irreducible components of RZ(`),red are precisely {RZ
(`),red
Λ }, where Λ runs through the vertex

lattices of the maximal type tΛ = tmax. Moreover, there is an isomorphism of k-schemes [HP17,

Theorem 6.3.1]

pZ\RZred
Λ

∼−→ SΛ, (2.9.1.1)

which also induces an isomorphism between RZ
(`),red
Λ and S±Λ for each ` ∈ Z. In particular, RZred

is equidimensional of dimension tmax/2− 1.

2.10 The Bruhat–Tits stratification

For any vertex lattices Λ1 and Λ2, the intersection RZred
Λ1
∩RZred

Λ2
is non-empty if and only if

Λ1 ∩ Λ2 is also a vertex lattice, in which case it is equal to RZred
Λ1∩Λ2

[HP17, Corollary 6.2.4].
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In this way we obtain a Bruhat–Tits stratification on RZred. Associated to a vertex lattice Λ, we
define an open subscheme of RZred

Λ given by

BTΛ = RZred
Λ −

⋃
Λ′(Λ

RZred
Λ′ .

Then

RZred =
∐
Λ

BTΛ

is a disjoint union of locally closed subschemes, indexed by all vertex lattices.

2.11 Special lattices
One can further parametrize the k-points in each RZΛ using special lattices.

Definition 2.11.1. We say that a W -lattice L ⊆ VK is a special lattice if L is self-dual and
(L+ Φ(L))/L ∼= W/pW .

We have a bijection [HP17, Proposition 6.2.2]

pZ\RZ(k)
∼−→ {special lattices L ⊆ VK}. (2.11.1.1)

To construct this bijection, one uses the fact [HP17, Corollary 3.2.3] that pZ\RZ(k) can be
identified with the affine Deligne–Lusztig set

XG,b,µσ(k) = {g ∈ G(K) : g−1bσ(g) ∈ G(W )µσ(p)G(W )}/G(W ). (2.11.1.2)

The special lattice associated to g ∈G(K) is then given by gµ(p−1).VW ⊆ VK . Conversely, given a
special lattice L ⊆ VK , there exists some g ∈ G(K) such that gµ(p−1).VW = L and g.VW = Φ(L).
The point in RZ(k) then corresponds to the image of g in XG,b,µσ(k). The Dieudonné module of
the p-divisible group at this point is given by M = gDW ⊆ DK and the image of Verschiebung
is (F−1p)M = g · pµ(p−1)DW .

Lemma 2.11.2. Suppose that x0 ∈ RZ(k) corresponds to a special lattice L under (2.11.1.1). Let
M = D(X0) ⊂ DK be the Dieudonné module of the p-divisible group X0 corresponding to x0.
Then we have

L = {v ∈ VK | v(F−1p)M ⊂ (F−1p)M}, ΦL = {v ∈ VK | vM ⊂M}.

Here we view VK ⊂ EndK(DK) as in § 2.6.

Proof. This follows from [HP17, § 6.2.1 and Proposition 6.2.2]. 2

2.12 Special lattices and vertex lattices
For any vertex lattice Λ, the bijection (2.11.1.1) induces a bijection

pZ\RZΛ(k)
∼−→ {special lattices L⊆ VK : Λ∨W ⊆ L⊆ ΛW }= {special lattices L⊆ VK : Λ∨W ⊆ L}.

(2.12.0.1)
Sending a special lattice L to L := L/Λ∨W ⊆ Ω gives a bijection between the right-hand side of
(2.12.0.1) and SΛ(k), which is the effect of the isomorphism (2.9.1.1) on k-points.
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Definition 2.12.1. For each special lattice L ⊆ VK , there is a unique minimal vertex lattice
Λ(L) ⊆ V Φ

K such that
Λ(L)∨W ⊆ L ⊆ Λ(L)W .

In fact, let L(r) = L + Φ(L) + · · · + Φr(L). Then there exists a unique integer 1 6 d 6 tmax/2
such that L(i) ( L(i+1) for i < d, and L(d) = L(d+1). Then L(i+1)/L(i) all have W -length 1 for
i < d and

Λ(L) := (L(d))Φ ⊆ V Φ
K

is a vertex lattice of type 2d and Λ(L)∨ = LΦ.

Notice that Λ(L)W is the smallest Φ-invariant lattice containing L and Λ(L)∨W is the largest
Φ-invariant lattice contained in L. It follows that the element of RZ(k) corresponding to a special
lattice L lies in RZΛ if and only if Λ(L) ⊆ Λ, and it lies in BTΛ if and only if Λ(L) = Λ. Thus,
we have the bijection

pZ\BTΛ(k)
∼−→ {L special lattices : Λ(L) = Λ}. (2.12.1.1)

2.13 Deligne–Lusztig varieties
For any vertex lattice Λ, by [HP17, Theorem 6.5.6], pZ\BTΛ is a smooth quasi-projective variety
of dimension tΛ/2 − 1, isomorphic to a disjoint union of two Deligne–Lusztig varieties XB(w±)
associated to two Coxeter elements w± in the Weyl group of SO(Ω0). Here Ω0 := Λ/Λ∨ is the
quadratic space over Fp defined in Definition 2.7.1. In particular, the k-variety pZ\BTΛ only
depends on the quadratic space Ω0.

Let us recall the definition of XB(w±). Let d = tΛ/2. Let 〈·, ·〉 be the bilinear pairing on Ω0.
Since Ω0 is a non-degenerate non-split quadratic space over Fp (§ 2.7), one can choose a basis
e1, . . . , ed, fd, . . . , f1 of Ω such that 〈ei, fi〉 = 1 ∀i and all other pairings between the basis vectors
are 0, and Φ fixes ei, fi for i = 1, . . . , d−1 and interchanges ed with fd. This choice of basis gives
a maximal Φ-stable torus T ⊆ SO(Ω) (diagonal under this basis) and a Φ-stable Borel subgroup
B ⊇ T as the common stabilizer of the two complete isotropic flags

F± : 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, . . . , ed−1, e
±
d 〉,

where e+
d := ed and e−d := fd. Let si (i = 1, . . . , d − 2) be the reflection ei ↔ ei+1, fi ↔ fi+1

and let t± be the reflection ed−1 ↔ e±d , fd−1 ↔ e∓d . Then the Weyl group W (T ) = N(T )/T is
generated by s1, . . . , sd−2, t

+, t−. We also know that W (T ) sits in a split exact sequence

0→ (Z/2Z)d−1
→W (T )→ Sd→ 0.

Since Φ fixes si and swaps t+ and t−, we know that the d−1 elements s1, . . . , sd−2, t
+ (respectively

s1, . . . , sd−2, t
−) form a set of representatives of Φ-orbits of the simple reflections. Therefore,

w± := t∓sd−2 · · · s2s1 ∈W (T )

are Coxeter elements of minimal length. The Deligne–Lusztig variety associated to B and the
Coxeter element w± is defined to be

XB(w±) := {g ∈ SO(Ω)/B : inv(g,Φ(g)) = w±},

where inv(g, h) ∈ B\SO(Ω)/B ∼= W (T ) is the relative position between the two Borels gBg−1

and hBh−1. The variety XB(w±) has dimension d − 1. Under the map g 7→ gF±, the disjoint
union XB(w+)

∐
XB(w−) can be identified with the variety of complete isotropic flags

F : F1 ⊆ F2 ⊆ · · · ⊆ Fd
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such that Fi = Fi−1 + Φ(Fi−1) and dimk(Fd + Φ(Fd)) = d + 1. The two components are
interchanged by an orthogonal transformation of determinant −1. Notice that such F is
determined by the isotropic line F1 by

Fi = F1 + Φ(F1) + · · ·+ Φi−1(F1)

and is also determined by the Lagrangian Fd by

Fi = Fd ∩ Φ(Fd) ∩ · · · ∩ Φd−i(Fd).

The bijection (2.12.1.1) induces a bijection

pZ\BTΛ(k)
∼−→ XB(w+)(k)

∐
XB(w−)(k) (2.13.0.2)

by sending a special lattice L with Λ(L) = Λ to the flag determined by the Lagrangian Fd =
L/Λ∨W . This bijection is the restriction of the isomorphism (2.9.1.1) to k-points and we obtain
the desired isomorphism

pZ\BTΛ
∼= XB(w+)

∐
XB(w−). (2.13.0.3)

2.14 Special cycles
Definition 2.14.1. For an m-tuple v = (v1, . . . , vm) of vectors in V Φ

K , define its fundamental
matrix T (v) = (〈vi, vj〉)i,j=1,...,m. We define the special cycle Z(v) ⊆ RZ to be the locus where
ρ ◦ vi ◦ ρ−1 ∈ End(X), i.e. all the quasi-endomorphisms ρ ◦ vi ◦ ρ−1 lift to actual endomorphisms
on X (i = 1, . . . ,m). Similar to Definition 2.9.1, Z(v) is a closed formal subscheme of RZ, which
is the intersection of RZ with the analogously defined cycle inside RZ(X0, λ0). Since Z(v) only
depends on the Zp-submodule spanZp(v) of V Φ

K , we also write Z(spanZp(v)).

Lemma 2.14.2. Let x0 ∈ RZ(k) correspond to L under (2.11.1.1). Let v be an arbitrary Zp-
submodule of V Φ

K . Then x0 ∈ Z(v) if and only if v ⊂ ΦL, if and only if v ⊂ ΦL ∩ L.

Proof. The first equivalence follows from Lemma 2.11.2. The second equivalence holds because
v is Φ-invariant. 2

Definition 2.14.3. When m = n and T (v) is non-singular, we obtain a lattice

L(v) = Zpv1 + · · ·+ Zpvn ⊆ V Φ
K .

By the Cartan decomposition, T (v) ∈ GLn(Zp) diag(pr1 , pr2 , . . . , prn) GLn(Zp) for a unique non-
increasing sequence of integers r1 > · · · > rn. Note that if we view the matrix T (v)−1 as a linear
operator V Φ

K → V Φ
K using the basis v, it sends v to the dual basis of v and in particular it sends

any Zp-basis of L(v) to a Zp-basis of L(v)∨. Therefore, the tuple (r1, . . . , rn) is characterized
by the condition that there is a basis e1, . . . , en of L(v) such that p−r1e1, . . . , p

−rnen form a
basis of L(v)∨. From this characterization, we also see that the tuple (r1, . . . , rn) is an invariant
only depending on the lattice L(v). We say that v is minuscule if T (v) is non-singular and
r1 = 1, rn > 0.

Lemma 2.14.4. Suppose that m = n and T (v) is non-singular. Then v is minuscule if and only
if L(v)∨ is a vertex lattice. In this case Z(v) = RZL(v)∨ .

Proof. The statements immediately follow from the definition. 2
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3. The intersection problem and the point-counting formula

3.1 The GSpin Rapoport–Zink subspace
From now on we assume that n > 4. Suppose that the last basis vector xn ∈ V has norm 1. Then
the quadratic subspace of rank n− 1

V [ = Zpx1 + · · ·+ Zpxn−1

is also self-dual. Let G[ = GSpin(V [). Analogously, we define the element

b[ = x3(p−1x1 + x2) ∈ G[(Qp)

and the cocharacter
µ[ : Gm→ G[, t 7→ t−1x1x2 + x2x1.

As in § 2.4, we have an associated GSpin Rapoport–Zink space

RZ[ = RZ(G[, b[, µ[, C(V [)).

The embedding V [ ↪→ V induces an embedding of Clifford algebras C(V [) ↪→ C(V ) and a closed
embedding of group schemes G[ ↪→ G over Zp, which maps b[ to b and µ[ to µ. Thus, by the
functoriality of Rapoport–Zink spaces [Kim13, 4.9.6], we have a closed immersion

δ : RZ[ ↪→ RZ

of formal schemes over W .

3.2 Relation with the special divisor Z(xn)

For compatible choices of symplectic forms ψ[ on C(V [) and ψ on C(V ), the closed embedding
of group schemes GSp(C(V [), ψ[) ↪→ GSp(C(V ), ψ) induces a closed immersion of symplectic
Rapoport–Zink spaces (§ 2.4)

φ : RZ(X[0, λ[0) ↪→ RZ(X0, λ0).

Since we have a decomposition of GSp(C(V [), ψ[)-representations

C(V ) ∼= C(V [)⊕ C(V [)xn,

we know that the moduli interpretation of φ is given by sending a triple (X[, ρ[, λ[) to the
p-divisible group X = X[⊕X[ with the quasi-isogeny ρ = ρ[⊕ ρ[ and polarization λ = λ[⊕λ[.

By the functoriality of Rapoport–Zink spaces [Kim13, 4.9.6], we have a commutative diagram
of closed immersions

RZ[ �
� δ //
� _

��

RZ� _

��
RZ(X[0, λ[0) �

� φ // RZ(X0, λ0).

(3.2.0.1)

Here the two vertical arrows are induced by the closed immersions GSpin(V [) ↪→ GSp(C(V [), ψ[)
and GSpin(V ) ↪→ GSp(C(V ), ψ) (§ 2.4).

Lemma 3.2.1. Diagram (3.2.0.1) is Cartesian, i.e. we have

δ(RZ[) = φ(RZ(X[0, λ[0)) ∩ RZ (3.2.1.1)

inside RZ(X0, λ0).
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Proof. By flat descent, to show that the closed formal subschemes on the two sides of (3.2.1.1)
agree, it suffices to show that they have the same k-points and the same formal completion at
every k-point (cf. [BP17, 5.2.7]). The claim then follows from the observation that both the
k-points and the formal completions have purely group-theoretic description.

In fact, the k-points of RZ[ = RZG[ , RZ(X[0, λ[0) = RZH and RZ = RZG have the group-
theoretic description as the affine Deligne–Lusztig sets (2.11.1.2) associated to the groups G[ =
GSpin(V [), H = GSp(C(V [), ψ[) and G = GSpin(V ), respectively. Since G[ = H ∩ G inside
GL(C(V )), we know that both sides of (3.2.1.1) have the same k-points. Fix a k-point x ∈ RZ[(k).

Then, by [HP17, 3.2.12], R̂ZG[,x can be identified with Uµx,∧
G[

, where µx : Gm,W → G[W gives a

filtration that lifts the Hodge filtration for x, Uµx
G[
⊆ G[ is the unipotent radical of the opposite

parabolic group defined by µx [HP17, 3.1.6], and Uµx,∧
G[

is its formal completion along its identity

section over W . Similarly, we can identify R̂ZH,x and R̂ZG,x with Uµx,∧H and Uµx,∧G . Again, because
G[ = H ∩ G, we know that the formal completions at x of both sides of (3.2.1.1) agree inside
Uµx,∧GL(C(V )). 2

Lemma 3.2.2. δ(RZ[) = Z(xn).

Proof. Let X[ be the universal p-divisible group over RZ[ and ρ[ be the universal quasi-isogeny.
Then it follows from the commutative diagram (3.2.0.1) that the image of (X[, ρ) under δ is
given by the p-divisible group (X[⊕X[, ρ[⊕ ρ[). Since xn has norm 1, right multiplication by
xn swaps the two factors C(V [) and C(V [)xn. It follows that the quasi-endomorphism

(ρ[ ⊕ ρ[) ◦ xn ◦ (ρ[ ⊕ ρ[)−1 : (X[ ⊕X[)→ (X[ ⊕X[)

(uniquely determined by the rigidity of quasi-isogenies) simply swaps the two factors, which is
an actual endomorphism (i.e. the swapping) of X[⊕X[. By Definition 2.14.1 of Z(xn), we have
δ(RZ[) ⊆ Z(xn).

Conversely, over Z(xn) the universal p-divisible group X admits an action of C(xn)op⊗C(V ),
where C(xn) is the Clifford algebra of the rank-one quadratic space Zpxn. Notice that

C(xn)op ⊗ C(V ) ∼= (C(xn)op ⊗ C(xn))⊕ (C(xn)op ⊗ C(V [)).

It follows that over Z(xn) the universal p-divisible group X admits an action of C(xn)op⊗C(xn),
which is isomorphic to the matrix algebra M2(Zp). The two natural idempotents of M2(Zp) then
decompose X into a direct sum of the form X[⊕X[. Hence, Z(xn) ⊆ φ(RZ(X[0, λ[0)) ∩ RZ. The
latter is equal to δ(RZ[) by (3.2.1.1) and hence Z(xn) ⊆ δ(RZ[). 2

Remark 3.2.3. In the following we will only use the inclusion δ(RZ[) ⊆ Z(xn).

3.3 Arithmetic intersection of GGP cycles
Definition 3.3.1. The closed immersion δ induces a closed immersion of formal schemes

(id, δ) : RZ[→ RZ[×W RZ .

Denote by ∆ the image of (id, δ), which we call the GGP cycle.

The embedding V [ ↪→ V also induces an embedding of quadratic spaces V [,Φ
K ↪→ V Φ

K and
hence we can view

Jb[ = GSpin(V [,Φ
K ) ↪→ Jb

as an algebraic subgroup over Qp.
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For any g ∈ Jb(Qp), we obtain a formal subscheme

g∆ := (id×g)∆ ⊆ RZ[×W RZ,

via the action of g on RZ. Our goal is to compute the arithmetic intersection number

〈∆, g∆〉

when g is regular semisimple and minuscule.

Definition 3.3.2. We say that g ∈ Jb(Qp) is regular semisimple if the

v(g) := (xn, gxn, . . . , g
n−1xn)

forms a Qp-basis of V Φ
K . Equivalently, the fundamental matrix T (g) := T (v(g)) is non-singular

(Definition 2.14.1). We say that g is minuscule if v(g) is minuscule (Definition 2.14.3).

3.4 Fixed points
Let g ∈ Jb(Qp) and let RZg ⊆ RZ be the fixed locus of g. Then by definition we have

∆ ∩ g∆ ∼= δ(RZ[) ∩ RZg .

Definition 3.4.1. Let g ∈ Jb(Qp) be regular semisimple. We define the lattice

L(g) := Zpxn + · · ·+ Zpgn−1xn ⊆ V Φ
K .

Lemma 3.4.2. Inside RZ, both the formal subschemes RZg and δ(RZ[) are stable under pZ.
Moreover, under the bijection (2.11.1.1), we have:

(1) pZ\δ(RZ[(k)) ∼= {L = L[⊕Wxn : L[ ⊆ V [
K special lattices};

(2) pZ\δ(RZ[(k)) ∼= {L special lattices : xn ∈ L};
(3) pZ\RZg(k) ∼= {L special lattices : gL = L};
(4) pZ\(δ(RZ[(k)) ∩ RZg(k)) ∼= {L special lattices : gL = L,L ⊇ L(g)W }.

Proof. Since pZ is central in Jb(Qp), we know that RZg is stable under pZ. The morphism

δ : RZ[ → RZ is equivariant with respect to the natural inclusion Jb[(Qp) → Jb(Qp), and the
morphism Jb[ → Jb restricts to the identity between the centers Gm of Jb[ and of Jb. It follows
that δ is equivariant for the pZ action and so δ(RZ[) is stable under pZ. We now prove the
statements (1) to (4).

(1) For a point L[ ∈ pZ\RZ[(k), we can write L[ = h[µ[(p−1).V [
W ⊆ V [

K for some h[ ∈ G[(K).
Then its image under δ is given by L = hµ(p−1).VW ⊆ VK , where h is the image of h[ in G(K).
By V = V [⊕Zpxn and the compatibility between h, µ and h[, µ[, we know that L = L[⊕Wxn.

(2) Suppose that L is a special lattice with xn ∈ L. Since xn has norm 1, we know that
L = L′⊕Wxn is the direct sum of Wxn and its orthogonal complement L′ in L. One can check
that L′ ⊆ V [

K is also a special lattice. This finishes the proof in view of item (1).

(3) This is clear since RZg(k) is the fixed locus of g.

(4) For a point L ∈ pZ\(δ(RZ[(k)) ∩ RZg(k)), by items (1) (3), we have L = L[⊕Wxn and
gL = L. It follows from xn ∈ L that gxn, . . . , g

n−1xn ∈ L and so L ⊇ L(g)W . Conversely, if a
point L ∈ RZ(k) satisfies gL = L and L ⊃ L(g)W , then L ∈ pZ\(δ(RZ[(k))∩RZg(k)) by items (2)
and (3). 2
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Definition 3.4.3. We say that a vertex lattice Λ is a g-vertex lattice if gΛ = Λ and Λ ⊆ L(g)∨.
Denote the set of all g-vertex lattices by VL(g). In general, if a vertex lattice Λ satisfies gΛ = Λ,
then g induces an action on Ω0 = Λ/Λ∨, which further induces an action ḡ on RZred

Λ and BTΛ.
We denote the fixed locus of ḡ on BTΛ by BTḡ

Λ.

Proposition 3.4.4.

pZ\(δ(RZ[) ∩ RZg)(k) =
∐

Λ∈VL(g)

pZ\BTḡ
Λ(k).

Proof. By Lemma 3.4.2, it suffices to show that the k-points of the right-hand side are in bijection
with special lattices L such that gL = L and L ⊇ L(g)W . Notice that any special lattice L is
self-dual, so the condition L ⊇ L(g)W is equivalent to the condition L ⊆ L(g)∨W . Since Λ(L)W
is the minimal Φ-invariant lattice containing L (§ 2.12) and L(g)∨W is Φ-invariant, we know that
the condition L ⊆ L(g)∨W is equivalent to the condition Λ(L) ⊆ L(g)∨. The result now follows
from taking ḡ-invariants and g-invariants of the two sides of the bijection (2.12.1.1). 2

3.5 Fixed points in a Bruhat–Tits stratum
Let Λ be a vertex lattice and Ω0 = Λ/Λ∨ (§ 2.7). By the isomorphism (2.13.0.3), pZ\BTΛ is the
disjoint union of two isomorphic Deligne–Lusztig varieties XB(w±) associated to the Coxeter
elements w± for SO(Ω0). Write X := XB(w±). To compute pZ\BTḡ

Λ, it suffices to compute the
ḡ-fixed points X ḡ.

Definition 3.5.1. We say that a semisimple element ḡ ∈ SO(Ω0) is regular if Z◦(ḡ), the identity
component of the centralizer of ḡ in SO(Ω0), is a (necessarily maximal) torus.3

Proposition 3.5.2. Let Λ be a vertex lattice and let ḡ ∈ SO(Ω0)(Fp).
(1) X ḡ is non-empty if and only if ḡ is semisimple and contained in a maximal torus of

Coxeter type.

(2) X ḡ is non-empty and finite if and only if ḡ is regular semisimple and contained in a
maximal torus of Coxeter type. In this case, the cardinality of X ḡ is given by tΛ/2.

Remark 3.5.3. Recall that a maximal torus T ′ is of Coxeter type if T ′ = hTh−1 for some
h ∈ SO(Ω0) such that h−1Φ(h) lifts to a Coxeter element w in the Weyl group W (T ) = N(T )/T .
In other words, T ′ is conjugate to T over k but its Frobenius structure is given by w · Φ.
For the Coxeter element w = w± constructed in § 2.13, we know that an element (λ1, . . . , λd,
λ−1
d , . . . , λ−1

1 ) of T (k) is fixed by w · Φ if and only if

(λ1, λ2, . . . , λd−1, λd) = (λ∓pd , λp1, . . . , λ
p
d−2, λ

±p
d−1).

It follows that a semisimple element ḡ ∈ SO(Ω0)(Fp) is contained in a maximal torus of Coxeter
type if and only if the eigenvalues of ḡ on Ω0 ⊗ k belong to a single Galois orbit.

Proof. (1) Suppose that X ḡ is non-empty. Then it is a general fact about Deligne–Lusztig
varieties that ḡ must be semisimple [Lus11, 5.9(a)]. Let T (w) ⊆ SO(Ω0) be a torus of Coxeter
type (associated to w = w+ or w−) and B(w) ⊇ T (w) be a Borel. Assume that ḡ is semisimple.

3 Note the difference with Definition 3.3.2. The conflict of the usage of the word ‘regular’ should hopefully not
cause confusion.
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Then we know from [DL76, Proposition 4.7] that X ḡ is a disjoint union of Deligne–Lusztig
varieties XT ′⊆B′ for the group G′ = Z◦(ḡ) and the pairs

(T ′, B′) = (hT (w)h−1, hB(w)h−1 ∩G′),

where h runs over classes G′(Fp)\ SO(Ω0)(Fp) such that ḡ ∈ hT (w)h−1. Therefore, X ḡ is non-
empty if and only if there exists h ∈ SO(Ω0)(Fp) such that ḡ ∈ hT (w)h−1, if and only if ḡ is
contained in a maximal torus of Coxeter type (as so is T (w)).

(2) By part (1), we know thatX ḡ is further finite if and only if allXT ′⊆B′ are zero dimensional,
if and only if all B′ = hBh−1 ∩ G′ are tori. This happens exactly when G′ = Z◦(ḡ) itself is a
torus, i.e. when ḡ is regular. In this case, G′ is a maximal torus of Coxeter type in SO(Ω0) and
the cardinality of X ḡ is equal to the cardinality of N(T (w))(Fp)/T (w)(Fp). The latter group is
isomorphic to (N(T (w))/T (w))Φ by Lang’s theorem and hence is isomorphic to the Φ-twisted
centralizer of w in the Weyl group W (T ) = N(T )/T :

ZΦ(w) := {x ∈W (T ) : xw = wΦ(x)}.

The cardinality of ZΦ(w) is known as the Coxeter number of the group SO(Ω0), which is equal
to d = tΛ/2 since SO(Ω0) is a non-split even orthogonal group [Lus76/77, 1.15]. 2

3.6 Point counting in the minuscule case
Let g ∈ Jb(Qp) be regular semisimple and minuscule. Then Ω0(g) := L(g)∨/L(g) is a Fp-vector
space (see Definition 2.14.3) and hence L(g)∨ is a vertex lattice.

Remark 3.6.1. If RZg is non-empty, then g fixes some vertex lattice and so we know that the
characteristic polynomial of g has Zp-coefficients. It follows that L(g) is a g-stable lattice, from
which it also follows easily that L(g)∨ is g-stable. Hence, by definition, L(g)∨ is a g-vertex lattice.
The induced action of g on Ω0(g), denoted by ḡ ∈ SO(Ω0(g))(Fp), makes Ω0(g) a ḡ-cyclic Fp-vector
space. It follows that the minimal polynomial of ḡ is equal to its characteristic polynomial.

From now on we assume that RZg is non-empty. Let ḡ ∈ SO(Ω0(g))(Fp) be as in Remark 3.6.1.

Definition 3.6.2. For any polynomial R(T ), we define its reciprocal to be

R∗(T ) := T degR(T ) ·R(1/T ).

We say that R(T ) is self-reciprocal if R(T ) = R∗(T ).

Definition 3.6.3. Let P (T ) ∈ Fp[T ] be the characteristic polynomial of ḡ ∈ SO(Ω0(g)). Then
P (T ) is self-reciprocal. For any monic irreducible factor Q(T ) of P (T ), we denote by m(Q(T ))
the multiplicity of Q(T ) appearing in P (T ).

Theorem 3.6.4. Assume that RZg is non-empty. Then pZ\(δ(RZ[) ∩ RZg)(k) is non-empty if
and only if P (T ) has a unique self-reciprocal monic irreducible factor Q(T ) such that m(Q(T ))
is odd. In this case, pZ\(δ(RZ[) ∩ RZg)(k) is finite and has cardinality

degQ(T ) ·
∏
R(T )

(1 +m(R(T ))),

where R(T ) runs over all non-self-reciprocal monic irreducible factors of P (T ).

1423

https://doi.org/10.1112/S0010437X18007108 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007108


C. Li and Y. Zhu

Proof. By Proposition 3.4.4, we know that pZ\(δ(RZ[) ∩ RZg)(k) is non-empty if and only if
pZ\BTg

Λ is non-empty for some Λ ∈ VL(g). For any Λ ∈ VL(g), by definition we have a chain of
inclusions of lattices

L(g) ⊆ Λ∨ ⊆ Λ ⊆ L(g)∨,

which induces a filtration of Fp-vector spaces

0 ⊆ Λ∨/L(g) ⊆ Λ/L(g) ⊆ Ω0(g).

It follows that the map Λ 7→ Λ∨/L(g) gives a bijection

VL(g) ∼= {totally isotropic ḡ-invariant subspaces U ⊆ Ω0(g)}. (3.6.4.1)

By the bijection (3.6.4.1), VL(g) is non-empty if and only if there is a totally isotropic ḡ-invariant
subspace U of Ω0(g). Such a subspace U induces a filtration

0 ⊆ U ⊆ U⊥ ⊆ Ω0(g). (3.6.4.2)

Since U and U⊥ are ḡ-invariant, we obtain a decomposition of the characteristic polynomial

P (T ) = P1(T )Q(T )P2(T ), (3.6.4.3)

where P1(T ), Q(T ) and P2(T ) are respectively the characteristic polynomials of ḡ acting on the
associated graded U , U⊥/U and Ω0(g)/U⊥. Notice that the non-degenerate quadratic form on
Ω0(g) identifies Ω0(g)/U⊥ with the linear dual of U , from which we know that P2(T ) = P ∗1 (T ).
Similarly, we know that Q(T ) = Q∗(T ), i.e. Q(T ) is self-reciprocal.

Let Λ = L(g) + U⊥ be the g-vertex lattice corresponding to U under the bijection (3.6.4.1)
and let Ω0 = Λ/Λ∨ and ḡ0 ∈ SO(Ω0)(Fp) be the induced action of ḡ on Ω0. Since the minimal
polynomial of ḡ is equal to its characteristic polynomial P (T ) (Remark 3.6.1), we know that the
minimal polynomial of ḡ0 is equal to its characteristic polynomial Q(T ) under the decomposition
(3.6.4.3). If ḡ0 is semisimple, then its eigenvalues are distinct. If ḡ is further contained in a torus of
Coxeter type, then we know that its eigenvalues belong to a single Galois orbit (Remark 3.5.3), so
Q(T ) is irreducible. Conversely, if Q(T ) is irreducible, then clearly ḡ0 is semisimple and contained
in a torus of Coxeter type. Hence, we know that ḡ0 is semisimple and contained in a torus of
Coxeter type if and only if Q(T ) is irreducible.

Therefore, by Proposition 3.5.2(1), BTḡ0

Λ is non-empty if and only if Q(T ) is irreducible. In
this case, ḡ0 is indeed regular semisimple and the cardinality of pZ\BTḡ0

Λ is equal to 2·#X ḡ0 (due
to two connected components), which is equal to dimFp Ω0 = degQ(T ) by Proposition 3.5.2(2).

Since P2(T ) = P ∗1 (T ), we know that the multiplicity of R(T ) in P1(T )P2(T ) is even for any
self-reciprocal factor R(T ). Hence, Q(T ) is the unique self-reciprocal monic irreducible factor
of P (T ) such that m(Q(T )) is odd. Finally, the factorizations (3.6.4.3) with P2(T ) = P ∗1 (T )
correspond bijectively to the filtrations (3.6.4.2). Notice such a factorization is given by a choice
of the polynomial

P1(T ) =
∏

R(T )6=R∗(T )

R(T )e(R(T )) ·
∏

R(T )=R∗(T )

R(T )bm(R(T ))/2c,

where R(T ) runs over all monic irreducible factors of P (T ) and 0 6 e(R(T )) 6m(R(T )). So, the
total number of such factorizations is exactly given by∏

R(T )6=R∗(T )

(1 +m(R(T ))).

The proof is finished. 2
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4. The reducedness of minuscule special cycles

4.1 The analogue of a result of Madapusi Pera on special cycles
Definition 4.1.1. Let O be an arbitrary Z[1/2]-algebra. Assume that O is local. Let L be a
finite free O-module equipped with the structure of a self-dual quadratic space over O. By an
isotropic line in L we mean a direct summand of rank one on which the quadratic form is zero.

We start with a general lemma on Clifford algebras.

Lemma 4.1.2. Let O and L be as in Definition 4.1.1. Let C(L) be the associated Clifford algebra.
Let ξ ∈ L be an O-generator of an isotropic line. Let ker(ξ) be the kernel of the endomorphism
of C(L) given by left multiplication by ξ. Then, for any v ∈ L, left multiplication by v preserves
ker(ξ) if and only if v is orthogonal to ξ.

Proof. Assume that v is orthogonal to ξ. Then vξ = −ξv, so v preserves ker(ξ).
Conversely, assume that v preserves ker(ξ). Write q for the quadratic form and write 〈 , 〉 for

the corresponding bilinear pairing. Since Oξ is a direct summand of L, there exists an O-module
homomorphism L → O sending ξ to 1. Since L is self-dual, we know that there exists ζ ∈ L
representing such a homomorphism. Namely, we have

〈ζ, ξ〉 = 1.

It immediately follows that we have an O-module direct sum L = ξ⊥⊕Oζ. Replacing ζ by
ζ − (q(ζ)/2)ξ, we may arrange that ζ is isotropic. We have

q(ζ + ξ) = 2〈ζ, ξ〉 = 2

and in C(L) we have
q(ζ + ξ) = ζξ + ξζ.

Hence, in C(L), we have
ξζ + ζξ = 2. (4.1.2.1)

Write
v = v1 + λζ,

with v1 ∈ ξ⊥ and λ ∈ O. By the first part of the proof we know that v1 preserves ker(ξ). Therefore,
λζ preserves ker(ξ). Note that ξ ∈ ker(ξ) as ξ is isotropic. It follows that, in C(L),

0
λζ preserves ker(ξ)

============= ξ(λζ)ξ
(4.1.2.1)

======= λ(2− ζξ)ξ ξ isotropic
======== 2λξ.

This is possible only when λ = 0 and hence we have v = v1 ∈ ξ⊥. 2

The next result is a Rapoport–Zink space analogue of [Mad16, Proposition 5.16], which is in
the context of special cycles on GSpin Shimura varieties. We only state a weaker analogue as it
is sufficient for our need. The proof builds on [Mad16, Proposition 5.16], too. We first introduce
some definitions.

Definition 4.1.3. Denote by y00 the distinguished k-point of RZ corresponding to X0 and the
identity quasi-isogeny. Let y0 ∈ RZ(k) be an arbitrary element. Let L be the special lattice
corresponding to y0 under (2.11.1.1). When y0 = y00, we have ΦL = VW (cf. the discussion
below (2.11.1.1)). In this case define Fil1(ΦL)k to be the one-dimensional subspace of Vk defined
by the cocharacter µ of GW and the representation Gk → GL(Vk). For general y0, let g ∈
XG,b,µσ(k) be associated to y0. Then ΦL = gVW and g induces a map Vk → (ΦL)k (cf. [Mad16,
Proposition 5.16]). Define Fil1(ΦL)k to be the image of Fil1 Vk under the last map.
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Remark 4.1.4. By our explicit choice of µ in § 2.3, the submodule Zpx2 in V is of weight 1 with
respect to µ, and

⊕
16i6n,i 6=2 Zpxi is of weight 0 with respect to µ, so Fil1 Vk = kx2.

Remark 4.1.5. In fact, Fil1(ΦL)k is the orthogonal complement in (ΦL)k of (L ∩ ΦL)k. In the
sequel we do not need this description, although one could use this description to give an
alternative proof of Corollary 4.1.8 below.

Definition 4.1.6. Let C be the category defined as follows.
• Objects in C are triples (O,O→ k, δ), where O is a local artinian W -algebra, O→ k is a
W -algebra map and δ is a nilpotent divided power structure on ker(O→ k).

• Morphisms in C are W -algebra maps that are compatible with the structure maps to k and
the divided power structures.

In the following we will abuse notation to write O for an object in C .

Let y0 ∈ RZ(k) be an arbitrary element. Let v be as in Definition 2.14.1 such that the special

cycle Z := Z(v) contains y0. In particular, v ⊂ L ∩ ΦL by Lemma 2.14.2. Let R̂Zy0 and Ẑy0 be
the formal completions of RZ and Z at y0, respectively.

Theorem 4.1.7. For any O ∈ C , there is a bijection

fO : R̂Zy0(O)
∼−→ {isotropic lines in (ΦL)O := ΦL⊗W O lifting Fil1(ΦL)k}

such that the following properties hold. Here we equip (ΦL)O with the O-bilinear form obtained
by extension of scalars of the W -bilinear form on ΦL.

(1) fO is functorial in O ∈ C in the following sense. Let O′ ∈ C be another object of C and
let φ : O→ O′ be a morphism in C . Then we have a commuting diagram

R̂Zy0(O)

fO
��

// R̂Zy0(O′)

fO′

��
im(fO) // im(fO′).

Here the top horizontal map is the natural map induced by φ and the bottom horizontal map is
given by base change along φ.

(2) fO restricts to a bijection

fO,v : Ẑy0(O)
∼−→

{isotropic lines in (ΦL)O lifting Fil1(ΦL)k and orthogonal to the image of v in (ΦL)O}.

Proof. The existence and construction of the bijection fO and the property (1) are consequences
of [Mad16, Proposition 5.16] and the global construction of RZ in [HP17] using the integral
model of the GSpin Shimura variety. We explain this more precisely below.

Consider
S = SUpUp ,

the canonical integral model over Z(p) of the Shimura variety associated to the GSpin Shimura
datum associated to a quadratic space VQ over Q, at a suitable level Up away from p and a
hyperspecial level Up at p. See [HP17, § 7] or [Mad16] for more details on this notion. By [HP17,
7.2.3], we may assume that the following package of data:
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• the Shimura datum associated to VQ;
• the Kuga–Satake Hodge embedding (see [HP17, 4.14]) of the Shimura datum into a GSp

Shimura datum;
• the chosen hyperspecial level at p;
• an element x00 ∈ lim

←−UpSUpUp(k)

induces, in the fashion of [HP17, 3.1.4], the local unramified Shimura–Hodge datum that we used

to define RZ. Let Ŝ be the formal scheme over Zp obtained from p-adic completion of S and let

ŜW be the base change to W of Ŝ . Then, as in [HP17, 3.2.14], we have a morphism of formal
schemes over W :

Θ : RZ→ ŜW .

We know that Θ maps y00 to the k-point of ŜW induced by x00. Moreover, let

x0 := Θ(y0) ∈ ŜW (k) = S (k)

and let Û be the formal completion of S at x0 (or, what amounts to the same thing, the formal

completion of ŜW at x0). By the construction of RZ in [HP17, § 3], we know that Θ induces an

isomorphism R̂Zy0

∼−→ Û .
In [Mad16], two crystals Hcris,Lcris are constructed on Sk. (In fact, [Mad16] works over

Fp, but we always base change from Fp to k.) Here Hcris is by definition the first relative
crystalline cohomology of the Kuga–Satake abelian scheme over Sk in the sense of [Mad16].4

The specialization of Hcris over Spec k via x00 is identified with the Dieudonné module CW ,
which is the covariant Diedonné module of the p-divisible group X0 considered in this article
(and [HP17]) and the contravariant Diedonné module of the Kuga–Satake abelian variety at x00

considered in [Mad16].5 Moreover, the embedding V ↪→ EndZp(C) has a crystalline realization,
which is a sub-crystal Lcris of End(Hcris). For details, see [Mad16, § 4]. Among others, Lcris has
the following structures:
• its specialization Lcris,x0 to any x0 ∈ S (k), viewed as a W -module, has the structure of a
W -quadratic space;

• Lcris,x0 ⊗W k contains a canonical isotropic line Fil1(Lcris,x0 ⊗W k).
By the definition of Θ and the definition of the parametrization of RZ(k) by the affine

Deligne–Lusztig set (cf. [HP17, § 2.4]), we know that when y0 ∈ RZ(k) corresponds to the special
lattice L under (2.11.1.1), the following statements are true.

(a) There is an isomorphism of Dieudonné modules (gC)W
∼−→ Hcris,x0 .

(b) There is a W -linear isometry (ΦL)W
∼−→ Lcris,x0 under which Fil1(ΦL)k is identified with

Fil1(Lcris,x0 ⊗W k).

(c) We have a commutative diagram

ΦL �
� //

��

EndW ((gC)W )

��
Lcris,x0

� � // EndW (Hcris,x0)

4 See footnote 5.
5 Due to different conventions, the Kuga–Satake abelian scheme (and p-divisible group) considered by Madapusi
Pera in [Mad16] is different from that considered by Howard and Pappas in [HP17]. In fact, they are dual to each
other.
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where:

• the right vertical map is induced by the map in (a);

• the left vertical map is the map in (b);

• the bottom horizontal map arises from the fact that Lcris is a sub-crystal of End(Hcris).

In the rest of the proof we make the identifications in (a) and (b) above and omit them from the

notation. Abbreviate H := Hcris,x0 and L := Lcris,x0 .

Now, in [Mad16, Proposition 5.16], Madapusi Pera constructed a bijection

Û(O)
∼−→ {isotropic lines in LO := L⊗W O lifting Fil1 Lk}.

Moreover, by the construction given in [Mad16, Proposition 5.16], the above bijection is

functorial in O ∈ C . We define fO as the above bijection precomposed with the isomorphism

Θ : R̂Zy0

∼−→ Û .

It remains to prove property (2). Note that H = gCW is the covariant Dieudonné module

of the p-divisible group Xy0 over k determined by y0 ∈ RZ(k). Given y ∈ R̂Zy0(O) lifting y0,

by Grothendieck–Messing theory (for covariant Dieudonné modules) we know that y ∈ Ẑy0 if

and only if the image of v in EndO(HO) stabilizes Fil1 HO ⊂ HO, where Fil1 HO is the Hodge

filtration corresponding to the deformation from k to O of the Xy0 determined by y. Now, as is

stated in the proof of [Mad16, Proposition 5.16],6 we know that Fil1 HO is the kernel in HO of

any O-generator ξ of the isotropic line fO(y). Here ξ ∈ LO is viewed as an element of EndO(HO).

By Lemma 4.1.2, v preserves Fil1 HO = ker ξ if and only if v is orthogonal to ξ (inside LO).

Thus, y ∈ Ẑy0 if and only if fO(y) is orthogonal to the image of v in LO = (ΦL)O. 2

Corollary 4.1.8. Fil1(ΦL)k is orthogonal to the image of v in (ΦL)k.

Proof. Consider the bijection fO,v in Theorem 4.1.7(2) for O = k. Since the source of this

bijection is non-empty, so is its target. The corollary then follows. 2

4.2 Reducedness of minuscule special cycles

Proposition 4.2.1. Let Λ be a Zp-lattice in V Φ
K with piΛ ⊂ Λ∨ ⊂ Λ for some i ∈ Z>1.

(Equivalently, Λ∨ has invariant (r1, . . . , rn) such that i > r1 > r2 > · · · > rn > 0.) Then the

special cycle Z(Λ∨) defined by Λ∨ has no (W/pi+1)-points. In particular, taking i = 1, we see

that RZΛ(W/p2) = ∅ for any vertex lattice Λ or equivalently Z(v)(W/p2) = ∅ for any minuscule v.

Proof. Suppose that there exists x ∈ Z(Λ∨)(W/pi+1). Let x0 ∈ Z(Λ∨)(k) be induced by x under

the reduction map W/pi+1
→ W/p = k. Under (2.11.1.1), x0 determines a special lattice L. By

Lemma 2.14.2, Λ∨W ⊂ L∩ΦL. Note that W/pi+1
→ k is a surjection whose kernel admits nilpotent

divided powers. By Theorem 4.1.7, the existence of the lift x of x0 implies that there exists an

isotropic line L (over W/pi+1) in (ΦL)W/pi+1 lifting Fil1(ΦL)k and such that L is orthogonal to

the image of Λ∨ in (ΦL)W/pi+1 . Let l ∈ ΦL be a lift of a generator of L. Then 〈l, λ〉 ∈ pi+1W for

all λ ∈ Λ∨. It follows that p−(i+1)l ∈ ΛW . Hence, p−1l ∈ piΛW ⊂ (Λ∨)W ⊂ ΦL, i.e. l ∈ pΦL. This

contradicts the fact that L lifts a non-zero line in (ΦL)k. 2

6 Madapusi Pera defined Fil1 HO using the contravariant Grothendieck–Messing theory of the p-divisible group
of the Kuga–Satake abelian scheme in his sense, which is the same as the covariant Grothendieck–Messing theory of
the p-divisible group over Û transported via Θ from the universal p-divisible group over RZ in the sense of Howard
and Pappas.
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4.2.2. Let u ∈ V Φ
K − {0}. Suppose that x0 ∈ Z(u)(k). Let T = k[ε]/ε2 be the ring of dual

numbers over k. We equip T with the map T → k, ε 7→ 0. The kernel of this map is (ε) and
it admits nilpotent divided powers (in a unique way). Thus, Theorem 4.1.7 can be applied to
O = T .

Let Tx0 RZk and Tx0Z(u)k be the tangent spaces at x0 to RZk = RZ×Spf W Spec k and to
Z(u)k = Z(u)×Spf W Spec k, respectively. We will always take the point of view that Tx0 RZk is
the preimage of {x0} under the reduction map RZ(T )→ RZ(k) and similarly for Tx0Z(u)k. We
compute Tx0 RZk and Tx0Z(u)k explicitly in the following. The result is given in Corollary 4.2.7.

Let L be the special lattice associated to x0 under (2.11.1.1). Since x0 ∈ Z(u)(k), we have
u ∈ L ∩ ΦL by Lemma 2.14.2. Let ū be the image of u in (ΦL)k. Let Fil1(ΦL)k be as in
Definition 4.1.3. By Corollary 4.1.8, we know that ū is orthogonal to Fil1(ΦL)k.

Define D to be the set of isotropic lines in (ΦL)T lifting Fil1(ΦL)k. Define Du to be the subset
of D consisting of lines which are in addition orthogonal to the image of u in (ΦL)T . Let

G = fT : Tx0 RZk
∼−→ D (4.2.2.1)

be the bijection given in Theorem 4.1.7. By the same theorem, it restricts to a bijection

Tx0Z(u)k
∼−→ Du.

Definition 4.2.3. We identify (ΦL)T with (ΦL)k⊗kT . Fix a k-generator v0 of Fil1(ΦL)k. Define
a map

F̃ : (ΦL)k → {T -submodules of (ΦL)T }
w 7→ spanT {v0 ⊗k 1 + w ⊗k ε}.

Lemma 4.2.4. F̃ factors through (ΦL)k/Fil1(ΦL)k and its image consists of T -module direct
summands of (ΦL)T of rank one.

Proof. For any λ ∈ k, we have

v0 ⊗ 1 + (w + λv0)⊗ ε = (1 + λε)(v0 ⊗ 1 + w ⊗ ε)

and 1 + λε ∈ T×. Hence, F̃ factors through (ΦL)k/Fil1(ΦL)k. For any w ∈ (ΦL)k, we know
that F̃ (w) is a free module of rank one by definition. It remains to show that F̃ (w) is a direct
summand of (ΦL)T . Let A be a k-vector space complement of Fil1(ΦL)k inside (ΦL)k. We easily
check that the following T -submodule of (ΦL)T is a T -module complement of F̃ (w):

spanT {v′ ⊗ 1 + w ⊗ ε | v′ ∈ A}. 2

Corollary 4.2.5. The map F̃ induces a bijection of sets:

F : (Fil1(ΦL)k)
⊥/Fil1(ΦL)k

∼−→ D .

Moreover, F restricts to a bijection

{ū,Fil1(ΦL)k}⊥/Fil1(ΦL)k
∼−→ Du.

Proof. Since 〈v0, v0〉 = 0 ∈ k, the condition that F̃ (w) is isotropic is equivalent to 〈w, v0〉 = 0 ∈ k.
Since v0 is orthogonal to ū, the condition that F̃ (w) is orthogonal to the image of u in (ΦL)T
is equivalent to 〈w, ū〉 = 0 ∈ k. 2
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Lemma 4.2.6. Let G be as in (4.2.2.1) and let F be as in Corollary 4.2.5. The map

G−1 ◦F : (Fil1(ΦL)k)
⊥/Fil1(ΦL)k → Tx0 RZk

is k-linear.

Proof. The proof is a routine check, using the functorial property stated in Theorem 4.1.7.
We first recall the k-vector space structure on Tx0 RZk, from the point of view that Tx0 RZk

is the preimage of {x0} under the map RZ(T )→ RZ(k).

Scalar multiplication: Given a tangent vector v ∈ Tx0 RZk corresponding to vT ∈ RZ(T ) and
given a scalar λ ∈ k, the tangent vector λv corresponds to the following element (λv)T of RZ(T ):

the image of vT under RZ(T )
T→T,ε7→λε−−−−−−−→ RZ(T ). We see that (λv)T is indeed a preimage of x0.

Addition: Let v1, v2 ∈ Tx0 RZk be two tangent vectors. Let Ti = k[εi]/ε
2
i , i = 1, 2, be two

copies of T . We represent vi as an element (vi)Ti in RZ(Ti) that reduces to x0 ∈ RZ(k) for
i = 1, 2. Let T̃ be the fiber product of T1 and T2 over k, in the category of k-algebras. Namely,
T̃ = k[ε1, ε2]/(ε1, ε2)2. Let δ be the k-algebra map

δ : T̃ → T, ε1 7→ ε, ε2 7→ ε.

By the fact that T̃ is the fiber product of T1 and T2, there is a canonical bijection

RZ(T1)× RZ(T2)
∼−→ RZ(T̃ ). (4.2.6.1)

Denote by v1 +̃ v2 the image of ((v1)T1 , (v2)T2) in RZ(T̃ ) under the above bijection. Then the
tangent vector v1 + v2 corresponds to the following element (v1 + v2)T of RZ(T ): the image of
v1 +̃ v2 under δ∗ : RZ(T̃ )→ RZ(T ). This last element is indeed a preimage of x0.

We now check that G−1 ◦ F is k-linear. We first check the compatibility with scalar
multiplication. For any λ ∈ k and w ∈ (Fil1(ΦL)k)

⊥, we have F̃ (w) = spanT {v0 ⊗ 1 + w ⊗k ε}
and F̃ (λw) = spanT {v0 ⊗ 1 + λw ⊗k ε}. Let mλ denote the map T → T, ε 7→ λε. Then we
have F̃ (w) ⊗T,mλ T = F̃ (λw) as submodules of (ΦL)T . By the functoriality in O stated in
Theorem 4.1.7, we know that for all d ∈ D , the element G−1(d⊗T,mλ T ) ∈ RZ(T ) is equal to the

image of G−1(d) under RZ(T )
(mλ)∗−−−→ RZ(T ). It follows that (G−1 ◦F )(λw) is equal to λ times

the tangent vector (G−1 ◦F )(w).
We are left to check the additivity of G−1 ◦F . Let w1, w2 ∈ (Fil1(ΦL)k)

⊥. Let Di,Fi,Gi be
the analogues of D ,F ,G respectively with T replaced by Ti for i = 1, 2. Also, let fT̃ be as in

Theorem 4.1.7 (with O = T̃ , where ker(T̃ → k) is equipped with the unique nilpotent divided
power structure). Let di := Fi(wi), i = 1, 2. Then di = spanTi(v0⊗1+wi⊗εi). We easily see that
the assertion (G−1 ◦F )(w1 +w2) = (G−1 ◦F )(w1) + (G−1 ◦F )(w2) follows from the following
claim.

Claim. Under (4.2.6.1), the element (G−1
1 (d1),G−1

2 (d2)) is sent to the element

f−1
T̃

(spanT̃ {v0 ⊗ 1 + w1 ⊗ ε1 + w2 ⊗ ε2}).

We now prove the claim. Let d̃ be such that the element (G−1
1 (d1),G−1

2 (d2)) is sent under
(4.2.6.1) to f−1

T̃
(d̃). Thus, d̃ is an isotropic line in (ΦL)T̃ . By the functoriality stated in

Theorem 4.1.7 and the functorial definition of (4.2.6.1), we see that d̃ is characterized by the
condition that d̃⊗T̃ Ti = di, i = 1, 2, where the tensor product is with respect to the structure

map T̃ → Ti expressing T̃ as the fiber product of T1, T2 (i.e. reduction modulo εj for j 6= i).
Using this characterization of d̃, we see that d̃ is as predicted in the claim. 2
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Corollary 4.2.7. There is an isomorphism from the tangent space Tx0 RZk to

(Fil1(ΦL)k)
⊥/Fil1(ΦL)k,

which identifies the subspace Tx0Z(u)k of Tx0 RZk with

{ū,Fil1(ΦL)k}⊥/Fil1(ΦL)k.

Proof. This follows from Corollary 4.2.5, Lemma 4.2.6 and the bijectivity of G−1 asserted in
Theorem 4.1.7. 2

Lemma 4.2.8. Let Λ ⊂ V Φ
K be a vertex lattice. Let L be a self-dual W -lattice in VK such that

Λ∨W ⊂ L ⊂ ΛW . Let A be the image of Λ∨W in Lk. Then the following statements hold.

(1) dimk ΛW /L = dimk L/Λ
∨
W . Here both spaces are vector spaces over k because pΛW ⊂ Λ∨W ⊂

L and pL ⊂ pΛW ⊂ Λ∨W .

(2) A ⊃ A⊥. Here A⊥ is the orthogonal complement of A in Lk, under the k-bilinear pairing
on Lk that is the reduction of the W -bilinear pairing on L.

Proof. (1) Consider the W -bilinear pairing

ΛW × ΛW →W

(x, y) 7→ p〈x, y〉,

where 〈 , 〉 is the K-bilinear form on V Φ
K ⊗Qp K = VK . We get an induced k-quadratic space

structure on ΛW /Λ
∨
W . The image of L in ΛW /Λ

∨
W is equal to the orthogonal complement of

itself, i.e. it is a Lagrangian subspace. Statement (1) follows.
(2) By definition, A⊥ is the image in Lk of the W -submodule pΛ∨∨W = pΛW of L. We have

pΛW ⊂ Λ∨W , so A⊥ is a subset of the image of Λ∨W in Lk, which is A. 2

Proposition 4.2.9. Let Λ ⊂ V Φ
K be a vertex lattice of type t (so t > 2 is even). For all x0 ∈

RZΛ(k), we have
dimk Tx0 RZΛ,k = t/2− 1.

Proof. Let L be the special lattice associated to x0 under (2.11.1.1) and let Fil1(ΦL)k be as
in Definition 4.1.3. Then Λ∨W ⊂ L ∩ ΦL. Denote by A the image of Λ∨W in (ΦL)k. Then A
is orthogonal to Fil1(ΦL)k by Corollary 4.1.8. By Corollary 4.2.7, we have an isomorphism of
k-vector spaces

Tx0 RZΛ,k
∼= {A,Fil1(ΦL)k}⊥/Fil1(ΦL)k.

Since A is orthogonal to Fil1(ΦL)k, we have A ⊃ Fil1(ΦL)k by Lemma 4.2.8 applied to the
self-dualW -lattice ΦL. Therefore, Tx0 RZΛ,k

∼=A⊥/Fil1(ΦL)k. Since the bilinear pairing on (ΦL)k
is non-degenerate, we have dimk Tx0 RZΛ,k = dimk(ΦL)k − dimk A− 1 = dimk(ΦL/Λ

∨
W )− 1. By

statement (1) in Lemma 4.2.8 (applied to ΦL), we have dimk(ΦL/Λ
∨
W ) = t/2. 2

Corollary 4.2.10. Let Λ ⊂ V Φ
K be a vertex lattice. The formal scheme RZΛ×Spf W Spec k is

regular.

Proof. Let t be the type of Λ. Denote X := RZred
Λ and Y := RZΛ×Spf W Spec k. Then X is a

formal subscheme of Y over k. Recall from § 2.9 that X is a smooth k-scheme of dimension t/2−1.
It follows that for all x0 ∈ Y (k), the complete local ring of Y at x0 is of dimension > t/2− 1. By
Proposition 4.2.9, the tangent space of Y at x0 has k-dimension equal to t/2 − 1. Hence, Y is
regular at x0. 2
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Theorem 4.2.11. Let Λ ⊂ V Φ
K be a vertex lattice. Then RZΛ = RZred

Λ and is of characteristic p.

Proof. RZΛ does not admit W/p2-points (Proposition 4.2.1) and its special fiber is regular
(Corollary 4.2.10). It follows from [RTZ13, Lemma 10.3] that RZΛ is equal to its special fiber.
Being regular itself, RZΛ is reduced. 2

5. The intersection length formula

5.1 The arithmetic intersection as a fixed point scheme

Recall from § 3.3 that we are interested in computing the intersection of RZg and δ(RZ[) for
g ∈ Jb(Qp).

Proposition 5.1.1. Assume that g ∈ Jb(Qp) is regular semisimple. Then δ(RZ[) ∩ RZg is
contained in Z(v(g)), where v(g) = (xn, gxn, . . . , g

n−1xn).

Proof. By Lemma 3.2.2, we have δ(RZ[) ⊆ Z(xn). Hence, δ(RZ[)∩RZg ⊆ Z(xn)∩RZg ⊆ Z(gxn)
by the definition of special cycles. Repeating this procedure, we obtain

δ(RZ[) ∩ RZg ⊆ Z(xn) ∩ Z(gxn) ∩ · · · ∩ Z(gn−1xn) = Z(v(g)). 2

Corollary 5.1.2. Assume that g ∈ Jb(Qp) is regular semisimple and minuscule. Then

δ(RZ[) ∩ RZg ⊂ RZL(g)∨ = RZred
L(g)∨.

In particular, δ(RZ[) ∩ RZg is a scheme of characteristic p.

Proof. The first statement is an immediate consequence of Lemma 2.14.4, Theorem 4.2.11 and
Proposition 5.1.1. Now both δ(RZ[) and RZg are closed formal subschemes of RZ, so δ(RZ[) ∩
RZg is a closed formal subscheme of the scheme RZL(g)∨ = RZred

L(g)∨ of characteristic p. Hence,

δ(RZ[) ∩ RZg is itself a scheme of characteristic p. 2

5.1.3. In the rest of this section we will fix g ∈ Jb(Qp) regular semisimple and minuscule,
and assume that RZg 6= ∅. Take Λ := L(g)∨. Then Λ is a vertex lattice stable under g; see
Remark 3.6.1. We are interested in computing the intersection length of δ(RZ[) and RZg around
a k-point of intersection. Recall the isomorphism (2.9.1.1) between pZ\RZred

Λ (which we now
know is just pZ\RZΛ) and SΛ. Recall from § 2.8 that SΛ is a projective smooth variety over k of
dimension tΛ/2 − 1. We write d = tΛ/2. Let Ω0 = Λ/Λ∨ and Ω = Ω0 ⊗Fp k = ΛW /Λ

∨
W . Let 〈 , 〉

be the k-bilinear form on Ω (§ 2.7). Let G = SO(Ω),G0 = SO(Ω0). Let ḡ be the induced action
of g on Ω. Then ḡ ∈ G0(Fp) ⊂ G(k).

There is a natural action of ḡ on SΛ via its action on Ω. On R-points ḡ sends (Ld−1,Ld) to
(ḡLd−1, ḡLd). The latter is indeed a point of SΛ because ḡΦ = Φḡ by the fact that ḡ ∈ G0(Fp).
The following proposition allows us to reduce the study of intersection multiplicities to the study
of the non-reduced structure of S ḡΛ.

Proposition 5.1.4. pZ\(δ(RZ[) ∩ RZg) ∼= S ḡΛ.

Proof. In view of Theorem 4.2.11, Corollary 5.1.2 and the observation that the isomorphism
(2.9.1.1) induces an isomorphism pZ\(RZred

Λ )g
∼−→ S ḡΛ, it suffices to show that

(pZ\RZred
Λ ) ∩ (pZ\δ(RZ[)) = (pZ\RZred

Λ ).
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Since both pZ\RZred
Λ and pZ\δ(RZ[) are closed formal subschemes of pZ\RZ and since pZ\RZred

Λ

is a reduced scheme, it suffices to check that

pZ\RZred
Λ (k) ⊂ pZ\δ(RZ[)(k).

Now the left-hand side consists of special lattices L containing Λ∨ and the right-hand side consists
of special lattices L containing xn (see (2.12.0.1) and Lemma 3.4.2). We finish the proof by noting
that by definition xn ∈ Λ∨ = L(g). 2

Proposition 5.1.4 reduces the intersection problem to the study of S ḡΛ.

5.2 Study of Sḡ
Λ

We continue to use the notation in § 5.1. We adopt the following notation from [HP14, § 3.2].

Definition 5.2.1. Let OGr(d−1) (respectively OGr(d)) be the moduli space of totally isotropic
subspaces of Ω of dimension d− 1 (respectively d). For a finite-dimensional vector space W over
k and an integer l with 0 6 l 6 dimW , we write Gr(W, l) for the Grassmannian classifying
l-dimensional subspaces of W . Thus, for j ∈ {d− 1, d} and any k-algebra R, we have

OGr(j)(R) = {R-module local direct summands of Ω⊗k R of local rank j

which are totally isotropic}.

Also,

Gr(W, l)(R) = {R-module local direct summands of W ⊗k R of local rank k}.

Definition 5.2.2. If A is a finite-dimensional k-vector space, we write AA for the affine space
over k defined by A. Thus, for a k-algebra R, we have AA(R) = A⊗k R.

Definition 5.2.3. Let Ld,Md be Lagrangian subspaces of Ω such that Ω = Ld⊕Md. We write
Homanti(Ld,Md) for the space of anti-symmetric k-linear maps Ld → Md. Here we say that
φ : Ld → Md is anti-symmetric if the bilinear form Ld × Ld → k, (x, y) 7→ 〈x, φy〉 is anti-
symmetric.

5.2.4. Recall that, in general, if A is a finite-dimensional vector space over k and B is a
subspace, then we can construct a Zariski open of the Grassmannian Gr(A,dimB) as follows.
Choose a subspace C of A such that A = B⊕C. Then there is an open embedding ιB,C :
AHomk(B,C)

→ Gr(A,dimB), which we now describe. For any k-algebra R and any R-point φ
of AHomk(B,C), we view φ as an element of Homk(B,C)⊗R = HomR(B ⊗R,C ⊗R). Then ιB,C
maps φ to the R-point of Gr(A, dimB) corresponding the following R-submodule of A:

{x+ φ(x) | x ∈ B ⊗R}. (5.2.4.1)

For details, see for instance [Har95, Lecture 6]. In the following we will think of AHomk(B,C) as a
Zariski open of Gr(A,dimB), omitting ιB,C from the notation.

Lemma 5.2.5. Let Ld,Md be complementary Lagrangian subspaces of Ω over k. Then

OGr(d)×Gr(Ω,d) AHom(Ld,Md) = AHomanti(Ld,Md).

In particular, the k-point Ld in OGr(d) has an open neighborhood of the form AHomanti(Ld,Md).
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Proof. Let R be a k-algebra and φ an R-point of AHom(Ld,Md). Then the submodule (5.2.4.1)
(for B = Ld) is Lagrangian if and only if for all x ∈ B ⊗R,

〈x+ φ(x), x+ φ(x)〉 = 0.

But we have 〈x, x〉 = 〈φ(x), φ(x)〉 = 0 since Ld ⊗ R and Md ⊗ R are both Lagrangian. Hence,
(5.2.4.1) is Lagrangian if and only if 〈x, φ(x)〉 = 0 for all x ∈ Md ⊗ R, if and only if φ is an
R-point of AHomanti(Ld,Md). 2

5.2.6. It follows from the assumptions we made on ḡ ∈ G(k) in 5.1.3 that its characteristic
polynomial on Ω is equal to its minimal polynomial on Ω (see Remark 3.6.1). In general, this
property is equivalent to the property that every primary component of the k[ḡ]-module Ω is
a cyclic k[ḡ]-module. This property is inherited by any k[ḡ]-submodule of Ω, since any k[ḡ]-
submodule of a cyclic k[ḡ]-module is cyclic.

From now on we let x0 = (Ld−1,Ld) ∈ SΛ(k) be an element fixed by ḡ. Then ΦLd ⊂ Ω is a k[ḡ]-
submodule. By the previous paragraph, we know that ḡ|ΦLd has its minimal and characteristic
polynomials being equal, and that in its Jordan normal form all the Jordan blocks have distinct
eigenvalues.

Definition 5.2.7. Let λ be the (non-zero) eigenvalue of ḡ on the one-dimensional ΦLd/Ld−1.
Let c be the size of the unique Jordan block of eigenvalue λ of ḡ|ΦLd .

5.2.8. Let x0 = (Ld−1,Ld) ∈ SΛ(k)ḡ as in 5.2.6. Define

Y := Gr(ΦLd, d− 1)×k OGr(d).

Let I ⊂ Y be the sub-functor defined by the incidence relation, i.e. for a k-algebra R,

I(R) = {(L′d−1,L′d) ∈ Gr(ΦLd, d− 1)(R)×OGr(d)(R) | L′d−1 ⊂ L′d}.

The pair (Ld−1,Ld) defines a k-point in I, which we again denote by x0. It is well known that
the incidence sub-functor of Gr(ΦLd, d− 1)×Gr(Ω, d) is represented by a closed subscheme and
it follows that I is a closed subscheme of Y .

Since x0 = (Ld−1,Ld) ∈ SΛ(k) is fixed by ḡ, we have a natural action of ḡ on Y , stabilizing
I and fixing x0 ∈ I. Let

R̃ := OI,x0 , R := OIḡ ,x0
, S̃ := OSΛ,x0 , S := OSḡΛ,x0

be the local rings at x0 of I, I ḡ, SΛ, S
ḡ
Λ, respectively. Let

R̃p := R̃/mp

R̃, Rp := R/mp
R, S̃p := S̃/mp

S̃ , Sp := S/mp
S

be the quotients of the above four local rings modulo the pth powers of their respective maximal
ideals.

The following lemma expresses the observation that I ḡ may serve as a model for S ḡΛ locally
around x0.

Lemma 5.2.9.
(1) There is a k-algebra isomorphism R̃p ∼= S̃p, equivariant for the ḡ-action on both sides.
(2) There is a k-algebra isomorphism Rp ∼= Sp.
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Proof. We first show (1). Let (L′d−1,L′d) be the tautological pair over S̃p for the moduli problem

SΛ, and let (L′′d−1,L′′d) be the tautological pair over R̃p for the moduli problem I. Note that

ΦL′d = (ΦLd)⊗ S̃p

as submodules of Ω⊗k S̃p because Φ : S̃p → S̃p factors through the reduction map S̃p → k. It

follows that (L′d−1,L′d) defines a point in I(S̃p) lifting x0 ∈ I(k). Similarly,

ΦL′′d = (ΦLd)⊗ R̃p

as submodules of Ω⊗k R̃p and hence (L′′d−1,L′′d) defines a point in SΛ(R̃p) lifting x0 ∈ SΛ(k).

The point in I(S̃p) and the point in SΛ(R̃p) constructed above give rise to inverse k-algebra

isomorphisms between R̃p and S̃p, which are obviously ḡ-equivariant.

(2) follows from (1), since Rp (respectively Sp) is the quotient ring of R̃p (respectively S̃p)
modulo the ideal generated by elements of the form r− ḡ ·r with r ∈ R̃p (respectively r ∈ S̃p). 2

5.3 Study of I ḡ

Next we study I ḡ by choosing certain explicit coordinates on I. Choose a k-basis v1, . . . , vd, w1,

. . . , wd of Ω such that:

• Ld−1 is spanned by v1, . . . , vd−1;

• Ld is spanned by v1, . . . , vd;

• ΦLd is spanned by v1, . . . , vd−1, wd;

• 〈vi, vj〉 = 〈wi, wj〉 = 0, 〈vi, wj〉 = δij .

We will denote

v̂i :=

{
vi, 1 6 i 6 d− 1,

wd, i = d.

Also, denote

Md := spank(w1, . . . , wd).

For 1 6 i 6 d− 1, define an element φi ∈ Hom(Ld−1, spank(wd)) by

φi(vj) = δijwd. (5.3.0.1)

Then φ1, . . . , φd−1 is a basis of Hom(Ld−1, spank(wd)).

By § 5.2.4 and Lemma 5.2.5, there is a Zariski open neighborhood of x0 in Y of the form

U := AHom(Ld−1,spank(wd)) × AHomanti(Ld,Md).

Lemma 5.3.1. (1) Let R be a k-algebra. Let y ∈ U(R), corresponding to

(φ, ψ) ∈ Hom(Ld−1, spank(wd))⊗R⊕Homanti(Ld,Md)⊗R.

We view φ ∈ HomR(Ld−1 ⊗ R, spanR(wd)) and ψ ∈ HomR(Ld ⊗ R,Md ⊗ R). Then y is in I if

and only if ψ|Ld−1⊗R = φ.

(2) The projection to the first factor U → AHom(Ld−1,spank(wd)) restricts to an isomorphism

U ∩ I ∼−→ AHom(Ld−1,spank(wd)).
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Proof. (1) We know that y is in I if and only if for all v ∈ Ld−1 ⊗ R, there exists v′ ∈ Ld ⊗ R
such that

v + φ(v) = v′ + ψ(v′)

as elements of Ω⊗R. Decompose v′ = v′1 + v′2 with v′1 ∈ Ld−1⊗R and v′2 ∈ spanR(vd). Then the
above equation reads

v − v′1 = v′2 + (ψ(v′)− φ(v)).

Since v − v′1 ∈ Ld−1 ⊗ R, v′2 ∈ spanR(vd), ψ(v′) − φ(v) ∈ Md ⊗ R, we know that the above
equation holds if and only if v = v′1, v

′
2 = 0, φ(v) = ψ(v). Hence, y ∈ I if and only if for all

v ∈ Ld−1 ⊗R, we have ψ(v) = φ(v). This proves (1).
(2) By (1), we know that U ∩ I is the affine subspace of U associated to the linear subspace

of
Hom(Ld−1, spank(wd))×Homanti(Ld,Md)

consisting of pairs (φ, ψ) such that ψ|Ld−1
= φ. Call this subspace A. We only need to show that

projection to the first factor induces an isomorphism A
∼−→ Hom(Ld−1, spank(wd)).

Note that if ψ ∈ Homanti(Ld,Md), then ψ is determined by ψ|Ld−1
. This is because for each

1 6 i 6 d, we have

〈ψvd, vi〉 =

{
−〈vd, ψvi〉, i 6 d− 1,

0, i = d,
(5.3.1.1)

which means that ψ(vd) is determined by ψ|Ld−1
. Conversely, given φ ∈ Hom(Ld−1, spank(wd)),

we can construct ψ ∈ Homanti(Ld,Md) such that ψ|Ld−1
= φ as follows. For 1 6 j 6 d − 1,

define ψ(vj) to be φ(vj). Define ψ(vd) to be the unique element of Md satisfying (5.3.1.1). In
this way we have defined a linear map ψ : Ld →Md such that ψ|Ld−1

= φ. We now check that
ψ is anti-symmetric. We need to check that for all 1 6 i 6 j 6 d, we have 〈ψvj , vi〉 = −〈ψvi, vj〉.
If j = d, this is true by (5.3.1.1). Suppose that j < d. Then 〈ψvj , vi〉 = 〈ψvi, vj〉 = 0 because
ψvj , ψvi ∈ spank(wd) and 〈wd,Ld−1〉 = 0. Thus, ψ is indeed anti-symmetric. It follows that

A
∼−→ Hom(Ld−1, spank(wd)), as desired. 2

From now on we assume that x0 = (Ld−1,Ld) ∈ S ḡΛ(k).

Definition 5.3.2. Write the matrix over k of ḡ acting on ΦLd under the basis v̂1, . . . , v̂d (see
§ 5.3) as (

H1 H2

H3 H4

)
,

where H1 is of size (d− 1)× (d− 1), H2 is of size (d− 1)× 1, H3 is of size 1× (d− 1) and H4 ∈ k.

Remark 5.3.3. Since ḡ stabilizes Ld−1, we have H3 = 0.

Proposition 5.3.4. Let R be a k-algebra and let y = (φ, ψ) ∈ U(R). Write φ =
∑d−1

i=1 riφi with
each ri ∈ R. Denote by ~r the row vector (r1, . . . , rd−1).

(1) We view φ as an element of Gr(ΦLd, d− 1)(R). It is fixed by ḡ|ΦLd if and only if

~r(H1 +H2~r) = H4~r. (5.3.4.2)

(2) Assume that y ∈ I(R) and that φ ∈ Gr(ΦLd, d− 1) is fixed by ḡ|ΦLd . Then ψ, viewed as an
element of OGr(d)(R), is fixed by ḡ. In other words, y is fixed by ḡ in this case.

1436

https://doi.org/10.1112/S0010437X18007108 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007108


Arithmetic intersection on GSpin Rapoport–Zink spaces

Proof. (1) First we identify (ΦLd)⊗R with Rd using the basis v̂1, . . . , v̂d. As a point of Gr(ΦLd,
d− 1), φ corresponds to the submodule of (ΦLd)⊗R given by the column space of the R-matrix(

Id−1 0
~r 0

)
.

Hence, φ ∈ Gr(ΦLd, d− 1) is fixed by ḡ|ΦLd if and only if the following two R-matrices have the
same column space:

A1 :=

(
Id−1 0
~r 0

)
and A2 :=

(
H1 H2

H3 H4

)(
Id−1 0
~r 0

)
.

Note that since
(
H1 H2
H3 H4

)
is invertible, A1 and A2 have the same column space if and only if the

column space of A2 is contained in that of A1. Since H3 = 0 (Remark 5.3.3), we have

A2 =

(
H1 +H2~r 0
H4~r 0

)
.

But we easily see that the column space of
(
H1+H2~r 0
H4~r 0

)
is contained in that of

(
Id−1 0
~r 0

)
if and only

if (5.3.4.2) holds.
(2) Let OGr(d − 1, d) be the incidence subscheme of OGr(d − 1) × OGr(d). Consider the

natural morphism
f : I → OGr(d− 1, d), (L′d−1,L′d) 7→ (L′d−1,L′d).

Note that U ∩I is connected because it is a linear subspace of the affine space U by Lemma 5.3.1.
Thus, (ḡ · U) ∩ I = ḡ(U ∩ I) is also connected. Since U ∩ I and (ḡ · U) ∩ I share a common
k-point, namely x0, we see that f(U ∩ I) and f((ḡ · U) ∩ I) are in one connected component
of OGr(d − 1, d). We have y ∈ U ∩ I and ḡy ∈ (ḡ · U) ∩ I. In particular, f(y) and f(ḡy) are
R-points of the aforementioned connected component of OGr(d−1, d). Recall from [HP14, § 3.2]
that OGr(d − 1, d) has two connected components and each is isomorphic to OGr(d − 1) via
the projection to the first factor. Our assumptions imply that f(y), f(ḡy) have the same image
in OGr(d − 1). It follows that f(y) = f(ḡy). But by definition f is injective on R-points, so
y = ḡy. 2

Proposition 5.3.5. Assume that x0 ∈ S ḡΛ(k). Then the local ring R = OIḡ ,x0
of I ḡ at x0 is

isomorphic to the local ring at the origin of the subscheme of Ad−1
k defined by the equations

(5.3.4.2), where Ad−1
k has coordinates r1, . . . , rd−1. Moreover, explicitly we have

R ∼= k[X]/Xc.

Proof. The first claim follows from Lemma 5.3.1 and Proposition 5.3.4. To compute R explicitly,
we may and shall assume that the bases chosen in 5.2.8 are such that the matrix H1 is already
in its (upper-triangular) Jordan normal form. Recall from Definition 5.2.7 that all the Jordan
blocks have distinct eigenvalues. Let Jd1(λ1), . . . , Jds−1(λs−1) be the Jordan blocks that have
eigenvalues different from λ. Let λs = λ and let Jds(λs) be the Jordan block of eigenvalue
λs that appears in H1, where we allow ds = 0. Then ds = c − 1. Moreover, we assume that
Jd1(λ1), . . . , Jds(λs) appear in the indicated order. Note that H4 = λ. Write H1 = (hij)16i,j6d−1.
The equation (5.3.4.2) becomes{

ri−1hi−1,i + (hi,i − λ+ ~rH2)ri = 0, 2 6 i 6 d− 1,

(h1,1 − λ+ ~rH2)r1 = 0.
(5.3.5.1)
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Note that when hi,i is not in the Jordan block Jds(λs), we have hi,i − λ ∈ k×, so the element
hi,i − λ + ~rH2 is a unit in the local ring OAd−1,0. Hence, for i 6 d1 + d2 + · · · + ds−1 = d − c,
each ri is solved to be a multiple of ri−1 and this multiple eventually becomes zero when this
procedure is iterated. In other words, the ideal in OAd−1,0 defining R is generated by

r1, r2, . . . , rd−c, (~rH2)rd−c+1, (~rH2)ri + ri−1 (d− c+ 1 < i 6 d− 1).

When c = 1, we have R ∼= k, as expected. Assume now that c > 2. Let h1, . . . , hc−1 be the last
c− 1 entries of the (d− 1)× 1 matrix H2. Make the change of variables{

Xi = rd−c+i, 1 6 i 6 c− 1,

A = ~rH2.

Then we have

R ∼=
(

k[X1, . . . , Xc−1, A]

(A−
∑c−1

i=1 hiXi, AX1, X1 +AX2, X2 +AX3, . . . , Xc−2 +AXc−1)

)
(X1,...,Xc−1)

.

By eliminating the variables X1, . . . , Xc−2, we obtain that

R ∼=
(

k[Xc−1, A]

(Xc−1Ac−1, A−Xc−1
∑c−2

i=0 hc−1−i(−A)i)

)
(Xc−1,A)

.

Note that if hc−1 = 0, then the last two rows of the matrix

λId −
(
H1 H2

0 H4

)
are both zero. This contradicts the fact that the matrix

(
H1 H2
0 H4

)
, which represents ḡ on ΦLd, has

in its Jordan normal form a unique Jordan block of eigenvalue λ (cf. § 5.2.6). Hence, hc−1 6= 0
and

∑c−2
i=0 hc−1−i(−A)i is a unit in k[Xc−1, A](Xc−1,A). It follows that

R ∼=
(
k[X]

(Xc)

)
(X)

= k[X]/Xc,

as desired. 2

5.4 The intersection length formula

We are now ready to determine the structure of the complete local ring of S ḡΛ at a k-point
of it when p is large enough. It is a consequence of Lemma 5.2.9, Proposition 5.3.5 and some
commutative algebra.

Theorem 5.4.1. Let x0 ∈ S ḡΛ(k). Let λ and c be as in Definition 5.2.7. Assume that p > c. Then
the complete local ring of S ḡΛ at x0 is isomorphic to k[X]/Xc as a k-algebra.

Proof. Denote by Ŝ the complete local ring of S ḡΛ at x0. Since SΛ is smooth of dimension d− 1

(see § 2.8), we know that Ŝ is a quotient ring of k[[X1, . . . , Xd−1]]. Let m̄ be the maximal ideal
of Ŝ. By Lemma 5.2.9 and Proposition 5.3.5, there is a k-algebra isomorphism Ŝ/m̄p ∼= k[X]/Xc.
It follows that Ŝ is isomorphic to k[X]/Xc as a k-algebra by [LZ17, Lemma 4.3.6]. 2
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Corollary 5.4.2. Let g ∈ Jb(Qp) be regular semisimple and minuscule. Assume that RZg 6= ∅
and keep the notation of 5.1.3. Let x0 ∈ (δ(RZ[) ∩ RZg)(k). Let (Ld−1,Ld) ∈ SΛ(k) correspond
to x0 via Proposition 5.1.4 and define λ, c as in Definition 5.2.7. Assume that p > c. Then the
complete local ring of δ(RZ[)∩RZg at x0 is isomorphic to k[X]/Xc. Moreover (without assuming
that p > c), we have c = (m(Q(T )) + 1)/2, where Q(T ) is as in Theorem 3.6.4. In particular,
1 6 c 6 n/2.

Proof. The first part follows immediately from Proposition 5.1.4 and Theorem 5.4.1. It remains
to show that

c =
m(Q(T )) + 1

2
.

Suppose that x0 ∈ BTΛ′ for some vertex lattice Λ′ (not necessarily equal to Λ = L(g)∨). Let L
be the associated special lattice. Then we have (§ 2.12)

(Λ′)∨W ⊆ L ⊆ Λ′W , (Λ′)∨W ⊆ Φ(L) ⊆ Λ′W .

Hence, the eigenvalue λ of ḡ on Φ(Ld)/Ld−1
∼= (L+ Φ(L))/L appears among the eigenvalues of ḡ

on Λ′/(Λ′)∨. We know that the characteristic and minimal polynomials of ḡ on Λ′/(Λ′)∨ are both
equal to Q(T ) ∈ Fp[T ] by the proof of Theorem 3.6.4. Let R(T ) be the characteristic polynomial
of ḡ on (Λ′)∨W /L(g), so that R(T )Q(T ) is the characteristic polynomial of ḡ on Λ′W /L(g). Thus,
we know that the characteristic polynomial of ḡ on Φ(Ld) divides R(T )Q(T ) and is divisible by
R(T ). It follows that c, the algebraic multiplicity of λ in ḡ|Φ(Ld), is equal to the multiplicity of
T −λ in R(T )Q(T ) as Q(T ) is irreducible. This number is also equal to the multiplicity of Q(T )
in R(T )Q(T ) since λ is a root of the irreducible polynomial Q(T ). The desired formula for c then
follows since

m(Q(T )) + 1 = 2 · the multiplicity of Q(T ) in R(T )Q(T ).

Finally, we note that m(Q(T )) is a positive odd integer not greater than the degree of P (T ) and
the latter, being the type of the vertex lattice Λ = L(g)∨, is an even integer 6 tmax (see § 2.7).
The bound for c follows from the value of tmax given in § 2.7. 2

Acknowledgements
We are very grateful to B. Howard, M. Kisin, M. Rapoport and W. Zhang for helpful
conversations or comments. We would also like to thank the referee for a careful reading and
numerous suggestions. Our debt to the two papers [RTZ13, HP17] should be clear to readers.

References

BP17 O. Bueltel and G. Pappas, (G,µ)-displays and Rapoport–Zink spaces, Preprint (2017),
arXiv:1702.00291.

DL76 P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math.
(2) 103 (1976), 103–161.

GGP12 W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical L
values, and restriction problems in the representation theory of classical groups, Astérisque
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