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Abstract

In the absence of an established gold standard, an understanding of the testing cycle from
individual exposure to test outcome report is required to guide the correct interpretation of
severe acute respiratory syndrome-coronavirus-2 reverse transcriptase real-time polymerase
chain reaction (RT-PCR) results and optimise the testing processes. Bayesian network models
have been used within healthcare to bring clarity to complex problems. We use this modelling
approach to construct a comprehensive framework for understanding the real-world predict-
ive value of individual RT-PCR results.

We elicited knowledge from domain experts to describe the test process through a facili-
tated group workshop. A preliminary model was derived based on the elicited knowledge,
then subsequently refined, parameterised and validated with a second workshop and one-
on-one discussions.

Causal relationships elicited describe the interactions of pre-testing, specimen collection
and laboratory procedures and RT-PCR platform factors, and their impact on the presence
and quantity of virus and thus the test result and its interpretation. By setting the input vari-
ables as ‘evidence’ for a given subject and preliminary parameterisation, four scenarios were
simulated to demonstrate potential uses of the model.

The core value of this model is a deep understanding of the total testing cycle, bridging the
gap between a person’s true infection status and their test outcome. This model can be
adapted to different settings, testing modalities and pathogens, adding much needed nuance
to the interpretations of results.

Introduction

Effective containment of coronavirus disease-2019 (COVID-19) caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) rests upon the rapid and accurate identi-
fication of cases. Although nucleic acid amplification tests, including real-time reverse tran-
scriptase polymerase chain reaction (RT-PCR), are widely used, the absence of an
established gold standard diagnostic method has hindered the assessment of test performance
[1]. The potential for false-negative results is well-recognised; such results can significantly
undermine the public health response, facilitating ongoing chains of transmission. Similarly,
at the patient level, it may delay case recognition, place other patients and healthcare workers
at risk and, importantly, impede the commencement of emerging treatments. A wide variation
in rates of false negatives has been reported, ranging from 1.8 to 58% [2]; this variability may
be attributable to heterogeneity in disease prevalence, patient age, timing of testing, type of
specimen, other components of the pre-analytical phase and the RT-PCR assay employed
across studies [3].

Although better standardisation of data collection and reporting may add further clarity, a
comprehensive understanding of the mechanisms involved in testing is required to help
develop strategies to improve testing systems and importantly, guide the correct interpretation
of test results within the associated context. This includes a true understanding of the positive
and negative predictive values of a test at a national, regional and patient level and the poten-
tial to permit the early identification of false-negative results. The limitations in available data
undermine these efforts. An alternative method is required to bridge the current gaps in
knowledge.
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Bayesian network (BN) modelling offers an approach to
understanding complex problem domains by organising informa-
tion, whether directly observable or not (i.e. latent), under a cau-
sal inference framework [4, 5]. A BN is a probabilistic graph
model that integrates available data with subject-matter knowl-
edge from domain experts to describe how a system operates
[6]. BNs have been used within healthcare to improve clinical
decision-making [7], bringing clarity to complex problems, espe-
cially where there is little quality data available [7]. As a pertinent
example, Fenton and colleagues have highlighted the need for
causal models and showed how different sampling methods, test-
ing and reporting procedures may contribute to the variation in
observed COVID-19 death rates among countries under a BN
framework [8]. We elicited knowledge from a range of domain
experts to construct a causal BN which describes the testing pro-
cess for SARS-CoV-2 by RT-PCR, from individual exposure
through to the interpretation of the laboratory test result. In expli-
citly modelling the latent trajectory of a pathogen through its
diagnostic pathway, we have generated a common framework
which accounts for a range of factors that plausibly influence
test results, and which may be generalisable to other pathogens
and assay formats. This model requires validation with local, real-
world datasets prior to application. We intend for future applica-
tions to integrate with other models that detail local epidemio-
logical factors such as those developed by Fenton et al. [8] to
account for the complex and dynamic interactions between
individual-level factors (e.g. gender [9] and comorbidities) and
population-level behaviours (e.g. public health policies and popu-
lation behaviours) that influence the transmission and prevalence
of SARS-CoV-2.

Methods

A BN comprises two parts: (1) a graph that uses nodes to
represent the factors (or variables) which are relevant to describ-
ing and understanding the system, and arrows to represent the
direct statistical (and often causal) dependencies between them;
and (2) a set of conditional probability distributions that specifies
the strength of each of those dependencies, which then forms a
joint probability distribution over all variables.

Clinical experts in microbiology, infectious diseases, epidemi-
ology, public health and general medicine contributed their rele-
vant subject matter knowledge. Key variables were identified
through literature review and an online discussion with the
experts. Knowledge elicitation was guided by trained facilitators,
defined as knowledge engineers, and supported utilising graphical
representations of interactions between variables within the pro-
posed structure [6, 10]. A preliminary model structure was created
via a subsequent group knowledge elicitation workshop; this was
then reviewed and refined in one-on-one discussions with the
experts. A preliminary parameterisation of the model was per-
formed to produce qualitative behaviour that matched the model-
lers’ and the experts’ high level understanding of the problem
domain. The refined model structure was reviewed and validated
by experts in a second workshop and one-on-one discussions.

We provide a narrative description of the model structure and
illustrate its potential application in four scenarios. All nodes are
labelled and referred to by numbers 1-31. The term ‘virus’ and all
described events relate to SARS-CoV-2, unless stated otherwise.
The model was built in GeNle (https:/www.bayesfusion.com/
downloads/). Appendix A provides a comprehensive variable dic-
tionary for this model, with references to justify each node and arc
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where possible. Detailed conditional probability tables can be
accessed via the OSF platform, which will also include any future
updates.”

Results

Figure 1 shows the simplest possible BN for representing true and
false-positive and -negative rates produced by laboratory results.”
The figure illustrates this simple BN in two scenarios: when a per-
son is infected now (left) and when a person is not infected now
(right). According to this BN, there is an 85% chance of detecting
the virus if a person is infected at the time of testing, giving a cor-
responding false-negative probability of 15%; and a 0.1% chance
of falsely detecting the virus if a person is not infected, giving a
corresponding 99.9% probability of a true negative. Obtaining
accurate estimates of these rates is challenging because we cannot
directly observe (nor perfectly control) the true infection status at
the time of testing — the very reason a test is needed - and hence
must make do with general estimates based on controlled samples.
We can, however, make improved case-specific estimates by
incorporating factors involved in the process of sampling and test-
ing into our model. We can also improve our assessment of
whether a person is truly infected by incorporating background
factors (such as age) that may influence both the prior probability
of an infection as well as other factors related to the testing pro-
cess (such as the chance of finding virus at a particular sample
site). The model we present next describes how we have expanded
this simple model to include other relevant variables that interact
to drive changes to sensitivity, specificity and, ultimately, the
probability of infection.

Model description

The expanded BN (Fig. 2) models the trajectory of SARS-CoV-2
as it’s sampled, transported, extracted and amplified, along with
the conditions and operations that can affect the sample through-
out this process.” The SARS-CoV-2 trajectory itself is modelled
via a sequence of latent nodes (coloured yellow, 1-10), running
down the centre of the graph, with the previously introduced
infected now (3) and detection of target (10) sitting at almost
opposite ends of this sequence. The probability of being infected
by a known viral exposure (2) is driven by the intensity of that
exposure (1). If infected by the known exposure (2), age (11) and
the number of days since the exposure (12) influence the prob-
ability of being infected at the time of testing (3) and also
drive the days since first compatible symptom onset (13).
Upper respiratory symptoms (32) and dyspnoea (33) are used
to illustrate manifestation of disease severity. The probability of
infection from an unknown exposure is possible and currently
parameterised to be low, although this risk is influenced by the
background prevalence of the virus in a given population at a
given time, and therefore needs to be calibrated according to
the setting. The background probability of compatible symptoms
unrelated to a known exposure (potentially non-SARS-CoV-2) is
also set to be low, and as a result, the presence of symptoms pre-
dicts a high probability of being infected by a recent exposure.
However, this background probability is also driven by the circu-
lation of other symptom-compatible pathogens.

"Link to OSF https://osf.io/t834y/
*Node numbers have been kept consistent with the full network in Figure 2.
*For specific variable definitions, see Appendix A, the variable dictionary.
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True positive and false negative
rates in the presence of disease

False positive and true negative
rates in the absence of disease
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Fig. 1. Definitions of true and false positives and negatives
for laboratory results. (Left) The true positive rate is the
probability of Detected amongst those infected and the
false-negative rate is the probability of NotDetected also
amongst those infected. (Right) The false-positive rate is

Detected 85.00% Detected 0.10%] the probability of Detected amongst those who are not
-NotDetectedﬁ-UO% lNolDetected 99 90%=- infected and the true-negative rate is the probability of

L

Among those with SARS-CoV-2 infection at the time of test-
ing (3), the viral load at a given sample site (4) is influenced by
the number of days since first symptom onset (13),* body site
sampled (15) and age (11). In particular, the model assumes
the viral load in the upper airway is initially highest, followed
by increasing amounts in lower respiratory tract and faeces over
time.

When collecting a sample, the quantity of virus obtained from
the viral load at sample site (4), equating to the quantity cap-
tured in sample (pre-transit) (5) depends on the specimen qual-
ity (18), a latent variable which captures the technical and
operator-dependent factors which affect the adequacy of collec-
tion. Specimen quality (18) is therefore improved by a good col-
lection performance (17) (e.g., indicated by collector’s
experience), the use of a flocked type of swab (16) (if applicable)
and a site that requires a simpler collection technique, such as
specimen sampled from saliva and mouth sites (15). The quan-
tity of virus in sample post-transit (6) may be affected by the
quantity of virus in the sample pre-transit (5), the conditions
of transport (19) and body site sampled (15); for example, faecal
specimens may contain substances which accelerate the degrad-
ation of viral nucleic acid.

In the laboratory, the extraction and amplification processes
(21, 24) are assumed to be predominantly automated, meaning a
testing process that is less affected by operator performance (22),
compared with manual methods. In addition, a high level of inhi-
bitors (26) and a poor match of primer to target (in the virus)
(25) can reduce amplification efficiency (27). Low extraction
and amplification efficiency (23, 27) (both latent) may increase
the probability of a false negative result if the quantity of virus
is low in the post-transit (6) and purified samples (7), respect-
ively. The probability of a false-negative result may also increase
if the detection Ct threshold (29) is lowered (e.g. to 35). A false-
positive result may occur if the specimen contains a shared target
from a non-SARS-CoV-2 organism (9). Similarly, if the detec-
tion Ct threshold (29) is set higher (e.g. 40 and above), the
risk of non-specific amplification increases and, consequently,
the risk of a false-positive result. These events are assumed to
be rare by the current model.

Finally, the lab report (30) will be detected if the viral target is
detected (10), often described as a positive result. If the target is
not detected, the test result will be reported as not detected if the
specimen has passed both the specimen and amplification

“The arrow from node (13) to node (4) is the only non-causal link in this model, it
summarises events that occur during the time from first symptom onset to testing that
may affect viral load at sample site (accumulation or decrease).
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NotDetected also amongst those who are not infected.

quality controls (20, 28) (a negative result) and as indeterminate
otherwise (where a repeat test may be requested). In cases where
the SARS-CoV-2 target (10) is not detected, there is a high like-
lihood that this represents a true or false-negative result if the
probability of being infected now (3) is low or high, respectively,
and likewise for true or false positive. This relationship is now
described using the node predicted classification (31). It is
worth noting that this node reports the marginal probability of
any classification being truly positive, truly negative, falsely posi-
tive or falsely negative and corresponds to the (predicted and nor-
malised) confusion matrix. Thus, the probability of a truly positive
case is the joint probability that someone is both infected (i.e.
positive) and classified as positive. It should be kept in mind
that this differs from the definition of the true positive rate, and
other rates, which are conditional on being truly infected (as
described in Fig. 1).

Example scenarios

Four illustrative scenarios were developed in conjunction with the
experts. The model outputs were obtained by setting the input
variables as ‘evidence’ for a given constructed scenario.
Appendix B can be accessed for detailed models with input vari-
ables selected for each scenario. Scenarios 1-3 assume a setting
with low viral prevalence in the population (0.1%) and Scenario
4 compares the low prevalence setting with a high prevalence set-
ting (5%).

Scenario 1: The predicted probability of infection and testing
results influenced by exposure intensity and presence of
symptoms

Consider an older adult (11) who had a light exposure (1) to the
virus 1—7 days ago (12) (e.g. brief contact in a cafe) but with no
symptoms (13) currently. The probability of this person currently
being infected (3) is estimated to be 1.1%, and the probability of
returning a positive nasopharyngeal swab (15) result is 1.0% (30)
with predicted 0.2% chance of a falsely negative result (31I).
However, if the intensity of exposure was heavy (1) (e.g. house-
hold contact), the risk of being infected (3) would be 7.9% and
the probability of returning a positive test result (30) would be
6.4% with falsely negative classifications occurring 1.6% of the
time (31). Rather than having no symptoms, if the person experi-
enced onset of symptoms 0—6 days (13) after that exposure (1),
the probability of being infected (3) is estimated to be 96.5%, and

*Please access models in GeNle via OSF: https:/osf.io/t834y/
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Fig. 2. The causal BN of RT-PCR testing of SARS-CoV-2. This diagram presents the model structure, variable values and marginal distributions (i.e. when nothing is
known, other than that a test has been conducted). Appendix A provides a comprehensive variable dictionary for this model. Detailed conditional probability tables

can be accessed via Appendix B_1.

the probability of returning a positive result (30) is 92.3% (with
falsely negative predictions (31) occurring 4.2% of the time).

Scenario 2: Influence of specimen quality on the probability of a
positive test result in those who are infected

Consider the same older adult (11) who was heavily exposed (1)
to the virus 1—7 days ago (12) and had onset of symptoms 0—6
days afterwards (13). Consider now that this person is infected
(3). A nasopharyngeal swab (15) is taken for testing. If a poor
collection (17) is performed with a non-flocked swab (16) and
the conditions of transport (19) are poor, the probability that
the lab reports a positive result (30) is 89.2%, the probability of
an indeterminate result is 6.5%, and the probability of a falsely
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negative result (31) is 10.8%. However, for a good collection per-
formance (17) using a flocked swab (16) and with good speci-
men transport conditions (19), the probability of a positive
result (30) is 95.9%, the probability of an indeterminate result
is 0.6% and the probability of a falsely negative result (31) is 4.1%.

Scenario 3: Understanding the patient characteristics of those
with false-negative test results

Individuals who are truly infected at the time of testing (3) but
who tested negative (30) (i.e. false negatives) are younger (11)
and have a higher probability (69.8%) of having no symptom
at the time of testing (13) than those who are infected and test
positive (30) (27.6%).
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Scenario 4: Significant impact of baseline prevalence of disease
on false-negative rates

In the model, the baseline prevalence of disease is simulated using
parameters that describe the probability of being infected now (3)
and the probabilities of experiencing compatible symptoms (13,
32 and 33), conditional on not being infected by known expo-
sures. Comparing low and high prevalence (0.1% vs. 5% under-
lying incidence of the virus), for an individual who has
negligible known recent viral exposure (1) and experiences
upper respiratory symptoms (32) but tested negative (30), the
probability of a falsely negative result is 0.3% and 14.6%, respect-
ively. In the high prevalence setting, if the same person experi-
enced dyspnoea (rather than upper respiratory symptom/s), the
simulated falsely negative probability increases to 76.5%.

Discussion

Accurate diagnosis of COVID-19 is critical to guide patient man-
agement, including infection control and public health responses
[11]. Although there is increasing data on the performance of
commercial assays [12], these assessments typically use non-
clinical samples and are performed in closely controlled environ-
ments. A range of variables, from the age of the subject, the nature
of exposure, the presence and duration of symptoms, operator
skill and assay technical complexity can all influence the positive
and negative predictive value of a test and are therefore important
considerations when interpreting any test result. The core value of
this model is its explicit representation of these variables and their
probabilistic interdependencies, allowing a deeper understanding
of test results by explicitly illustrating how truly positive or nega-
tive and falsely positive or negative cases can arise, based on the
discrepancy between a person’s true infection status and what
leads to a particular test outcome. At a population level, the
model demonstrates how different levels of local prevalence can
significantly affect the interpretation of test results (illustrated in
Scenario 4). It can also be used to identify how and where
improvements in processes and procedures may improve the
value of the test. Given a fully parameterised and calibrated
model, tracking changes in the distribution of these variables
(depicted in Scenario 3) over time and across settings can help
understand how public health responses can be optimised for
the timely detection of cases [11] so that effective containment
strategies can be implemented.

When the model is applied to a single patient, it can also
inform individual-level management. The probability that a per-
son is infected can be more correctly inferred by integrating the
test result with knowledge of the background risk (or ‘pre-test
probability’), the intrinsic assay characteristics and the adequacy
of the sampling and laboratory procedures. This is illustrated in
Scenario 1 where there is still a 4.2% chance that a falsely negative
result will be obtained in an older patient with infection and
symptoms, which could have significant ramifications in terms
of that patient’s outcome and the risk of spread. Importantly, if
a negative result was obtained, the model would allow this result
to be reviewed in context, guiding the clinician’s interpretation of
the result through a better understanding of the negative predict-
ive value for that individual patient.

Causal BNs allow the exploration and characterisation of a
complex problem based on elicited knowledge from domain
experts, even when limited data are available; a valuable character-
istic during an outbreak of a novel pathogen. The model allows
inclusion of known components of the testing cycle, including
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specimen collection and transport [13, 14], elements that are often
not known when interpreting the result. Specimen adequacy can
influence the amount of virus present at the site that is ‘collected’
for testing. Poor collection performance may reduce the advantage
of the more technically difficult to collect specimen [15]. Scenario
2 underlines the importance of a good specimen collection, coupled
with other factors, decreasing the probability of a falsely negative
result from 10.9% to 4.1%. Similarly, although mouth and saliva
swabs are technically easier to collect, better tolerated and may facili-
tate self-collection, they have a potentially lower predictive value due
to the lower quantity of virus at that site [15].

The expanding drive for testing and pressure of rapid turn-
around times places enormous strain on laboratory staff and test-
ing systems. Although capacity has increased, the impact of the
human element cannot be underplayed [16] and needs to be
accounted for when considering the predictive value of a result;
inexperienced staff, extended work hours and increased pressure
can impact the numerous intricate steps of laboratory testing
and thereby affect test performance. Automated processes can
mitigate some potential errors, yet are not available in all settings
across the globe. Laboratory quality assurance measures including
extraction controls may help to identify systematic errors and
reduce false negatives secondary to poor extraction or the pres-
ence of inhibitors.

COVID-19 RT-PCR assays have been designed to match the
novel emerged virus. A future concern, included in the model, is
the potential drift and divergence of COVID-19 strains into dis-
tinct lineages. These changes may alter the amplification site, redu-
cing the RT-PCR ability to detect the presence of different lineages.
Similar evolutionary changes have been observed in influenza,
requiring re-tooling of the nucleic acid amplification [17].

The model can be calibrated to account for the changing popu-
lation incidence of COVID-19 and adjusted for low or high viral
incidence rates. Rates of co-circulating pathogens can also be
incorporated into the model. For example, respiratory syncytial
virus and influenza were low in Australia [18] during the winter
of 2020; in the model this would increase the probability that
respiratory symptoms after an exposure would be suggestive of
COVID-19 infection. As the northern hemisphere enters their
winter, the model can be calibrated to reflect their rates over
their typical peak season. The model also has the flexibility to
be modified based on application to account for the different per-
formance of RT-PCR platforms used in different laboratories, as
well as for other pathogens.

Limitations

To guide individual and public health decision-making, the model
will need to be validated using data. Expert opinion may incor-
rectly guide the model, as current knowledge and experiences
may not be generalisable to this outbreak. Further setting-specific
parameterisation and validation of the model is required before
introducing into a real-world setting. These should involve
important parameters such as location and population-specific
prevalence of SARS-CoV-2 and other respiratory viruses with
compatible symptoms, and the changing viral load at each sample
site at the different time points post infection.

Simulated data that support the findings of this study are
openly available on OSF at osf.io/t834y

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/50950268821001357
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