(C) Canadian Mathematical Society 2012

Inclusion Relations for New Function Spaces on Riemann Surfaces

Rauno Aulaskari and Jouni Rättyä

Abstract

We introduce and study some new function spaces on Riemann surfaces. For certain parameter values these spaces coincide with the classical Dirichlet space, BMOA, or the recently defined Q_{p} space. We establish inclusion relations that generalize earlier known inclusions between the abovementioned spaces.

1 Introduction

Let R be an open Riemann surface that possesses a Green's function, i.e., $R \notin O_{G}$, and let $g_{R}(z, \alpha)$ denote the Green function on R with logarithmic singularity at $\alpha \in R$. Let $A(R)$ denote the collection of all analytic functions on R. The classical Dirichlet space $A D(R)$ consists of those $F \in A(R)$ for which

$$
\int_{R}\left|F^{\prime}(z)\right|^{2} d A(z)<\infty
$$

where $d A(z)$ is the element of the Lebesgue area measure on R. Following [7], we define $\operatorname{BMOA}(R)$ as the set of $F \in A(R)$ such that

$$
\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z)<\infty
$$

For $0<p<\infty$, the space $Q_{p}(R)$, introduced in [2], consists of those $F \in A(R)$ for which

$$
\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(z)\right|^{2} g_{R}^{p}(z, \alpha) d A(z)<\infty
$$

Metzger [7] (see also [5]) showed that $\operatorname{BMOA}(R)$ contains $A D(R)$ analogously to the case of the unit disc. This result was sharpened in [2] by proving that $A D(R) \subset Q_{p}(R)$ for all $p>0$; see also [1]. Notice that $Q_{1}(R)=\operatorname{BMOA}(R)$.

[^0]We will generalize the above-mentioned definitions of function spaces in the following way. For $0<p, q<\infty$, define

$$
\begin{aligned}
A D^{q}(R) & =\left\{F \in A(R): \sup _{\alpha \in R} \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z)<\infty\right\}, \\
H_{\mathrm{BMOA}}^{q}(R) & =\left\{F \in A(R): \sup _{\alpha \in R} \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z)<\infty\right\}, \\
H_{Q_{p}}^{q}(R) & =\left\{F \in A(R): \sup _{\alpha \in R} \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p}(z, \alpha) d A(z)<\infty\right\} .
\end{aligned}
$$

Then $A D^{2}(R)=A D(R), H_{\mathrm{BMOA}}^{q}(R)=\operatorname{BMOA}(R)$ by [12] (see also [10]), and $H_{Q_{p}}^{2}(R)=Q_{p}(R)$ for all $0<p<\infty$.
$2 A D^{q}(R) \subset \mathrm{BMOA}^{(R)}$ for all $0<q<\infty$
For $F \in A(R), 0<q<\infty$ and $\alpha \in R$, let $H_{|F-F(\alpha)|^{q}}$ denote the least harmonic majorant of the subharmonic function $u(z)=|F(z)-F(\alpha)|^{q}$. We set $H_{|F-F(\alpha)|^{q}}(z)=\infty$ if u admits no harmonic majorant. The following result follows by [12, Corollary 2.6]; see also [10, Proposition 1].
Lemma A Let $F \in A(R), 0<q<\infty$ and $\alpha \in R$. Then

$$
H_{|F-F(\alpha)|^{q}}(\alpha)=\frac{q^{2}}{2 \pi} \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z)
$$

An application of [6, Corollary 1] gives

$$
\begin{equation*}
\frac{1}{\pi} \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \geq \frac{2}{q} H_{|F-F(\alpha)|^{q}}(\alpha) \tag{2.1}
\end{equation*}
$$

from which Lemma A yields

$$
A D^{q}(R) \subset H_{\mathrm{BMOA}}^{q}(R)=\mathrm{BMOA}(R)
$$

for all $0<q<\infty$.
$3 \quad H_{Q_{p_{1}}}^{q}(R) \subset H_{Q_{p_{2}}}^{q}(R)$ for all $0<p_{1}<p_{2}<\infty$
To prove this inclusion the following lemma is needed.
Lemma 3.1 Let R be an open Riemann surface that possesses a Green's function, i.e., $R \notin O_{G}$. Let $F \in A(R)$, and let $\alpha \in R, 0<p_{1}<p_{2}<\infty$ and $0<q<\infty$. Then

$$
\begin{aligned}
& \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{2}}(z, \alpha) d A(z) \leq \\
& \quad C \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{1}}(z, \alpha) d A(z)
\end{aligned}
$$

where

$$
C= \begin{cases}p_{2}\left(p_{2}-1\right) e^{q} q^{1-p_{2}} \Gamma\left(p_{2}-1\right)+p_{2}+1, & \text { if } 1 \leq p_{1}<p_{2}<\infty \\ \left(p_{1}\left(\left(p_{1}-1\right) e^{q} q^{1-p_{1}} \Gamma\left(p_{1}-1, q\right)+1\right)\right)^{-1}, & \text { if } 0<p_{1}<p_{2} \leq 1\end{cases}
$$

Proof By considering a regular exhaustion of R, it is sufficient to prove the assertion in the case where R is the interior of a compact bordered Riemann surface \bar{R} and F is analytic on \bar{R}.

Let $\alpha \in R$ and $R_{1, \alpha}=\left\{z \in R: g_{R}(z, \alpha)>1\right\}$. Then clearly

$$
\begin{align*}
& \int_{R \backslash R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{2}}(z, \alpha) d A(z) \leq \tag{3.1}\\
& \int_{R \backslash R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{1}}(z, \alpha) d A(z)
\end{align*}
$$

Let $\alpha, \alpha_{j}, j=1, \ldots, m$, and $\beta_{k}, k=1, \ldots, n$, be the distinct zeros of $F(z)-F(\alpha)$ in $R_{1, \alpha}$ and on $\partial R_{1, \alpha}$, respectively. For $\alpha, \alpha_{j}, \beta_{k}, j=1, \ldots, m$ and $k=1, \ldots, n$, we take the parameter discs $U(\alpha, \varepsilon)$ and $U\left(\alpha_{j}, \varepsilon\right)$ and the half discs $B\left(\beta_{k}, \varepsilon\right)$ such that they are mutually disjoint. Denote

$$
R_{1, \alpha,\left\{\alpha_{j}\right\},\left\{\beta_{k}\right\}}=R_{1, \alpha} \backslash\left\{U(\alpha, \varepsilon) \bigcup \cup_{j=1}^{m} U\left(\alpha_{j}, \varepsilon\right) \bigcup \cup_{k=1}^{n} B\left(\beta_{k}, \varepsilon\right)\right\}
$$

Green's formula yields

$$
\begin{align*}
& \int_{R_{1, \alpha,\left\{\alpha_{j}\right\},\left\{\beta_{k}\right\}}}\left(g_{R}^{p_{2}}(z, \alpha) \triangle|F(z)-F(\alpha)|^{q}-|F(z)-F(\alpha)|^{q} \triangle g_{R}^{p_{2}}(z, \alpha)\right) d A(z)= \tag{3.2}\\
& \int_{\partial R_{1, \alpha,\left\{\alpha_{j}\right\},\left\{\beta_{k}\right\}}}\left(|F(z)-F(\alpha)|^{q} \frac{\partial g_{R}^{p_{2}}(z, \alpha)}{\partial n}-g_{R}^{p_{2}}(z, \alpha) \frac{\partial|F(z)-F(\alpha)|^{q}}{\partial n}\right) d s
\end{align*}
$$

where \triangle denotes the Laplacian, $\frac{\partial}{\partial n}$ denotes the differentiation in the inward normal direction, and $d s$ is the arc length element on $\partial R_{1, \alpha,\left\{\alpha_{j}\right\},\left\{\beta_{k}\right\}}$. Lengthy but routine calculations show that

$$
\triangle|F(z)-F(\alpha)|^{q}=q^{2}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2}
$$

and

$$
\triangle g_{R}^{p_{2}}(z, \alpha)=p_{2}\left(p_{2}-1\right) g_{R}^{p_{2}-2}(z, \alpha)\left|P_{\alpha}^{\prime}(z)\right|^{2}
$$

where

$$
P_{\alpha}(z)=g_{R}(z, \alpha)+i g_{R}^{*}(z, \alpha)
$$

and $g_{R}^{*}(z, \alpha)$ is a harmonic conjugate of $g_{R}(z, \alpha)$. It is known that $g_{R}^{*}(z, \alpha)$ is locally defined up to an additive constant, and

$$
\frac{\partial g_{R}^{p_{2}}(z, \alpha)}{\partial n}=p_{2} \frac{\partial g_{R}(z, \alpha)}{\partial n}
$$

for $z \in \partial R_{1, \alpha}$.
Let $H_{|F-F(\alpha)|}^{1}$ denote the least harmonic majorant of $|F(z)-F(\alpha)|^{q}$ on $R_{1, \alpha}$. It turns out that the function

$$
\Phi_{1, \alpha}(z):=\left|(F(z)-F(\alpha)) e^{P_{\alpha}(z)}\right|^{q}=|F(z)-F(\alpha)|^{q} e^{q g_{R}(z, \alpha)}
$$

is subharmonic on $R_{1, \alpha}$ and

$$
\Phi_{1, \alpha}(z)=e^{q}|F(z)-F(\alpha)|^{q}
$$

for all $z \in \partial R_{1, \alpha}$. The maximum principle yields

$$
\begin{equation*}
|F(z)-F(\alpha)|^{q} \leq e^{q} H_{|F-F(\alpha)|^{q}}^{1}(z) e^{-q g_{R}(z, \alpha)} \tag{3.3}
\end{equation*}
$$

for all $z \in R_{1, \alpha}$.
Let $g_{R_{1, \alpha}}(z, \alpha)$ be the Green function of $R_{1, \alpha}$ with logarithmic singularity at α. Then $\triangle g_{R_{1, \alpha}}(z, \alpha)=0$ in $R_{1, \alpha,\left\{\alpha_{j}\right\},\left\{\beta_{k}\right\}}$ and $g_{R_{1, \alpha}}(z, \alpha)=0$ for $z \in \partial R_{1, \alpha}$. By [12,13], we have

$$
\begin{align*}
H_{|F-F(\alpha)|^{q}}^{1}(\alpha) & =\frac{1}{2 \pi} \int_{\partial R_{1, \alpha}}|F(z)-F(\alpha)|^{q} \frac{\partial g_{R_{1, \alpha}}(z, \alpha)}{\partial n} d s \tag{3.4}\\
& =\frac{q^{2}}{2 \pi} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R_{1, \alpha}}(z, \alpha) d A(z)
\end{align*}
$$

To deal with the area integral in (3.4), denote $S_{t, \alpha}=\left\{z \in R: g_{R}(z, \alpha)=t\right\}$ for $t>0$. If $z \in S_{t, \alpha}$, then $d t=\frac{\partial g_{R}(z, \alpha)}{\partial n} d n$. Letting $\varepsilon \rightarrow 0$ in (3.2) we see that all the integrals

$$
\begin{array}{ll}
\int_{\partial U(\alpha, \varepsilon)}|F(z)-F(\alpha)|^{q} \frac{\partial g_{R}^{p_{2}}(z, \alpha)}{\partial n} d s, & \int_{\partial U\left(\alpha_{j}, \varepsilon\right)}|F(z)-F(\alpha)|^{q} \frac{\partial g_{R}^{p_{2}}(z, \alpha)}{\partial n} d s \\
\int_{\partial B\left(\beta_{k}, \varepsilon\right)}|F(z)-F(\alpha)|^{q} \frac{\partial g_{R}^{p_{2}}(z, \alpha)}{\partial n} d s, & \int_{\partial U(\alpha, \varepsilon)} g_{R}^{p_{2}}(z, \alpha) \frac{\partial|F(z)-F(\alpha)|^{q}}{\partial n} d s \\
\int_{\partial U\left(\alpha_{j}, \varepsilon\right)} g_{R}^{p_{2}}(z, \alpha) \frac{\partial|F(z)-F(\alpha)|^{q}}{\partial n} d s, & \int_{\partial B\left(\beta_{k}, \varepsilon\right)} g_{R}^{p_{2}}(z, \alpha) \frac{\partial|F(z)-F(\alpha)|^{q}}{\partial n} d s
\end{array}
$$

tend to zero for all $j=1, \ldots, m$ and $k=1, \ldots, n$. Therefore the equality (3.2)
becomes

$$
\begin{align*}
I_{1, p_{2}, q}(\alpha)= & q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{2}}(z, \alpha) d A(z) \tag{3.5}\\
= & p_{2}\left(p_{2}-1\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q} g_{R}^{p_{2}-2}(z, \alpha)\left|P_{\alpha}^{\prime}(z)\right|^{2} d A(z) \\
& +p_{2} \int_{\partial R_{1, \alpha}}|F(z)-F(\alpha)|^{q} \frac{\partial g_{R}(z, \alpha)}{\partial n} d s-\int_{\partial R_{1, \alpha}} \frac{\partial|F(z)-F(\alpha)|^{q}}{\partial n} d s \\
= & p_{2}\left(p_{2}-1\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q} g_{R}^{p_{2}-2}(z, \alpha)\left|P_{\alpha}^{\prime}(z)\right|^{2} d A(z) \\
& +p_{2} \int_{\partial R_{1, \alpha}}|F(z)-F(\alpha)|^{q} \frac{\partial g_{R}(z, \alpha)}{\partial n} d s \\
& +q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z)
\end{align*}
$$

where, by Green's formula,

$$
q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z)=-\int_{\partial R_{1, \alpha}} \frac{\partial|F(z)-F(\alpha)|^{q}}{\partial n} d s
$$

We first concentrate on the case $1 \leq p_{1}<p_{2}<\infty$. By the formulae (3.3), (3.5), and (2.1), and by using the inequality $g_{R_{1, \alpha}}(z, \alpha) \leq g_{R}(z, \alpha), z \in R_{1, \alpha}$, we obtain

$$
\begin{align*}
I_{1, p_{2}, q}(\alpha) \leq & p_{2}\left(p_{2}-1\right) e^{q} \int_{R_{1, \alpha}} H_{|F-F(\alpha)|^{q}}^{1}(z) g_{R}^{p_{2}-2}(z, \alpha)\left|P_{\alpha}^{\prime}(z)\right|^{2} e^{-q g_{R}(z, \alpha)} d A(z) \tag{3.6}\\
& +2 \pi p_{2} H_{|F-F(\alpha)|^{q}}^{1}(\alpha)+q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \\
\leq & p_{2}\left(p_{2}-1\right) e^{q} \int_{1}^{\infty}\left(\int_{S_{t, \alpha}} H_{|F-F(\alpha)|^{q}}^{1}(z) \frac{\partial g_{R}(z, \alpha)}{\partial n} d s\right) g_{R}^{p_{2}-2}(z, \alpha) e^{-q g_{R}(z, \alpha)} d t \\
& +p_{2} q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R_{1, \alpha}}(z, \alpha) d A(z) \\
& +q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z) \\
\leq & 2 \pi p_{2}\left(p_{2}-1\right) e^{q} H_{|F-F(\alpha)|^{q}}^{1}(\alpha) \int_{1}^{\infty} t^{p_{2}-2} e^{-q t} d t \\
& +p_{2} q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z)
\end{align*}
$$

$$
\begin{aligned}
& +q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z) \\
\leq & p_{2}\left(p_{2}-1\right) q^{2} e^{q} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R_{1, \alpha}}(z, \alpha) d A(z) \\
& \cdot \frac{1}{q^{p_{2}-1}} \int_{q}^{\infty} u^{p_{2}-2} e^{-u} d u \\
& +q^{2}\left(p_{2}+1\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{1}}(z, \alpha) d A(z) \\
\leq & q^{2}\left(p_{2}\left(p_{2}-1\right) e^{q} q^{1-p_{2}} \Gamma\left(p_{2}-1\right)+p_{2}+1\right) \\
& \cdot \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{1}}(z, \alpha) d A(z)
\end{aligned}
$$

where $\Gamma\left(p_{2}-1\right)=\int_{0}^{\infty} u^{p_{2}-2} e^{-u} d u$ is the gamma function. By combining (3.1) and (3.6) we obtain the desired inequality for $1 \leq p_{1}<p_{2}<\infty$.

Let now $0<p_{1}<p_{2} \leq 1$. Then the estimate (3.3) gives

$$
\begin{align*}
I_{1, p_{1}, q}(\alpha) \geq & p_{1}\left(p_{1}-1\right) e^{q} \int_{R_{1, \alpha}} H_{|F-F(\alpha)|^{q}}^{1}(z) e^{-q g_{R}(z, \alpha)} g_{R}^{p_{1}-2}(z, \alpha)\left|P_{\alpha}^{\prime}(z)\right|^{2} d A(z) \tag{3.7}\\
& +2 \pi p_{1} H_{|F-F(\alpha)|^{q}}^{1}(\alpha)+q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \\
= & 2 \pi p_{1}\left(p_{1}-1\right) e^{q} H_{|F-F(\alpha)|^{q}}^{1}(\alpha) \int_{1}^{\infty} t^{p_{1}-2} e^{-q t} d t \\
& +2 \pi p_{1} H_{|F-F(\alpha)|^{q}}^{1}(\alpha)+q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \\
= & 2 \pi p_{1} H_{|F-F(\alpha)|^{q}}^{1}(\alpha)\left(\left(p_{1}-1\right) e^{q} q^{1-p_{1}} \Gamma\left(p_{1}-1, q\right)+1\right) \\
& +q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z)
\end{align*}
$$

where $\Gamma\left(p_{1}-1, q\right)=\int_{q}^{\infty} u^{p_{1}-2} e^{-u} d u$ is the incomplete gamma function. We note that

$$
A\left(p_{1}, q\right)=\left(p_{1}-1\right) e^{q} q^{1-p_{1}} \Gamma\left(p_{1}-1, q\right)+1>0
$$

and hence by dividing by q^{2} in (3.7) we obtain

$$
\begin{align*}
& \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{1}}(z, \alpha) d A(z) \tag{3.8}\\
& \quad \geq p_{1} A\left(p_{1}, q\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R_{1, \alpha}}(z, \alpha) d A(z) \\
& \quad+\int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z)
\end{align*}
$$

Since $g_{R_{1, \alpha}}(z, \alpha)=g_{R}(z, \alpha)-1$ for $z \in R_{1, \alpha}$, (3.8) yields

$$
\begin{align*}
& \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{1}}(z, \alpha) d A(z) \tag{3.9}\\
& \quad \geq p_{1} A\left(p_{1}, q\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}(z, \alpha) d A(z) \\
& \quad+\left(1-p_{1} A\left(p_{1}, q\right)\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \\
& \quad \geq p_{1} A\left(p_{1}, q\right) \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p_{2}}(z, \alpha) d A(z)
\end{align*}
$$

The last inequality follows from the fact that $1-p_{1} A\left(p_{1}, q\right)>0$. The desired inequality for $0<p_{1}<p_{2} \leq 1$ follows by combining (3.1) and (3.9).

Theorem 3.2 Let R be a Riemann surface such that $R \notin Q_{G}$, and let $0<p_{1}<p_{2}<$ ∞ and $0<q<\infty$. Then the following inclusion holds:

$$
H_{Q_{p_{1}}}^{q}(R) \subset H_{Q_{p_{2}}}^{q}(R)
$$

Proof If either $0<p_{1}<p_{2} \leq 1$ or $1 \leq p_{1}<p_{2}<\infty$, then the assertion follows directly from Lemma 3.1. If $0<p_{1} \leq 1<p_{2}<\infty$, then Lemma 3.1 gives

$$
H_{Q_{p_{1}}}^{q}(R) \subset H_{\mathrm{BMOA}}^{q}(R) \subset H_{Q_{p_{2}}}^{q}(R)
$$

for all $0<q<\infty$.
$4 A D^{q}(R) \subset H_{Q_{p}}^{q}(R)$ for all $0<p, q<\infty$
In Section 2, we noted that the inclusion $A D^{q}(R) \subset H_{\mathrm{BMOA}}^{q}(R)=\mathrm{BMOA}(R)$ holds for all $0<q<\infty$. This fact is sharpened in this section by showing the following result.
Theorem 4.1 $A D^{q}(R) \subset H_{Q_{p}}^{q}(R)$ for all $0<p, q<\infty$.
Proof Theorem 3.2 implies that $\operatorname{BMOA}(R) \subset H_{Q_{p}}^{q}(R)$ for all $1 \leq p<\infty$ and $0<q<\infty$. Combining this with the inclusion $A D^{q}(R) \subset \operatorname{BMOA}(R), 0<q<\infty$, we deduce

$$
\begin{equation*}
A D^{q}(R) \subset H_{Q_{p}}^{q}(R) \tag{4.1}
\end{equation*}
$$

for all $1 \leq p<\infty$ and $0<q<\infty$.
Now let $0<p<1$. Recall that $R_{1, \alpha}=\left\{z \in R: g_{R}(z, \alpha)>1\right\}$. By (3.5),

$$
\begin{align*}
q^{2} \int_{R_{1, \alpha}} \mid F(z)- & \left.F(\alpha)\right|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p}(z, \alpha) d A(z) \leq \tag{4.2}\\
& 2 \pi p H_{|F-F(\alpha)|^{q}}^{1}(\alpha)+q^{2} \int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z)
\end{align*}
$$

because $p-1<0$. Suppose now that $F \in A D^{q}(R)$. Then there exists $M_{1}>0$ such that
$\int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \leq \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \leq M_{1}<\infty$
for all $\alpha \in R$. By Section 2 we know that $F \in \operatorname{BMOA}(R)$. Hence, by Lemma A, there exists $M_{2}>0$ such that

$$
\begin{equation*}
H_{|F-F(\alpha)|^{q}}^{1}(\alpha) \leq H_{|F-F(\alpha)|^{q}}(\alpha) \leq M_{2}<\infty \tag{4.3}
\end{equation*}
$$

for all $\alpha \in R$. By (4.2) and (4.3), we deduce

$$
\begin{align*}
\int_{R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p}(z, \alpha) d A(z) & \leq \frac{1}{q^{2}}\left(2 \pi p M_{2}+q^{2} M_{1}\right) \tag{4.4}\\
& =M_{1}+\frac{2 \pi p}{q^{2}} M_{2}
\end{align*}
$$

for all $\alpha \in R$. On the other hand, we immediately see that

$$
\begin{align*}
& \int_{R \backslash R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p}(z, \alpha) d A(z) \tag{4.5}\\
& \quad \leq \int_{R \backslash R_{1, \alpha}}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \\
& \quad \leq \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} d A(z) \\
& \leq M_{1}
\end{align*}
$$

for all $\alpha \in R$. Combining (4.4) and (4.5) we obtain

$$
\sup _{\alpha \in R} \int_{R}|F(z)-F(\alpha)|^{q-2}\left|F^{\prime}(z)\right|^{2} g_{R}^{p}(z, \alpha) d A(z) \leq 2 M_{1}+\frac{2 \pi p}{q^{2}} M_{2}
$$

for all $0<p<1$ and $0<q<\infty$. Thus $F \in H_{Q_{p}}^{q}(R)$ for all $0<p<1$ and $0<q<\infty$. This together with (4.1) completes the proof.
$5 \quad H_{Q_{p}}^{q}(R) \subset \mathcal{B}(R)$ for all $0<p, q<\infty$
Let $\lambda_{R}(\alpha)$ be the density of the hyperbolic distance (Poincaré metric) on a hyperbolic Riemann surface R. The Bloch space is defined as

$$
\mathcal{B}(R):=\left\{F \in A(R): \sup _{\alpha \in R} \frac{\left|F^{\prime}(\alpha)\right|}{\lambda_{R}(\alpha)}<\infty\right\} .
$$

The purpose of this section is to show the maximal property of $\mathcal{B}(R)$ with respect to
the spaces $H_{Q_{p}}^{q}(R)$. In the case of the unit disc, an analogous result follows by a work of Rubel and Timoney [9].

Theorem 5.1 $H_{Q_{p}}^{q}(R) \subset \mathcal{B}(R)$ for all $0<p, q<\infty$.
Proof Let $\pi: \mathbb{D}) \rightarrow R$ be a universal covering map of the unit disc $\mathbb{D})$ to the Riemann surface R. Let Ω denote the fundamental polygon of the Fuchsian group Γ. If $\alpha \in R$ and $a \in \Omega$ satisfy $\pi(a)=\alpha$, then we may take the Green function of the Riemann surface $\mathbb{D}) / \Gamma$ by setting $g_{\Gamma}(z, a)=g_{R}(\pi(z), \alpha)$. By a result of Myrberg [11, p. 522], we know that

$$
g_{\Gamma}(z, a)=\sum_{\gamma \in \Gamma} g_{\mathrm{D}}(z, \gamma(a)),
$$

where $g_{\mathbb{D}}(z, a)$ is the Green function of $\left.\mathbb{D}\right)$ with logarithmic singularity at a. Therefore we may define the space $\left.H_{Q_{p}}^{q}(\mathbb{D}) / \Gamma\right)=H_{Q_{p}}^{q}(R)$ in the sense that $\left.f \in H_{Q_{p}}^{q}(\mathbb{D}) / \Gamma\right)$ if f is analytic in $\mathbb{D})$ and $f=F \circ \pi$, where $F \in H_{Q_{p}}^{q}(R)$. With a similar understanding, $\mathcal{B}(\mathbb{D}) / \Gamma)=\mathcal{B}(R)$.

First let $1 \leq p<\infty$. Suppose now that $\left.f \in H_{Q_{p}}^{q}(\mathbb{D}) / \Gamma\right)$, but $\left.f \notin \mathcal{B}(\mathbb{D}) / \Gamma\right)$. Then [3, Lemma] or [8] implies that there exist a sequence of points $\left\{a_{n}\right\}$ in \mathbb{D}) and a sequence of positive numbers $\left\{\rho_{n}\right\}$ such that $\rho_{n} /\left(1-\left|a_{n}\right|\right) \rightarrow 0$, as $n \rightarrow \infty$, and $\left\{f\left(a_{n}+\rho_{n} \xi\right)-f\left(a_{n}\right)\right\}$ converges uniformly on compact subsets of $(\mathbb{C}$ to a non-constant analytic function $f_{0}(\xi)$. Here, without loss of generality, we may assume that $a_{n} \in \Omega$ for each $n \in \mathbb{N}$. Note that in general this is not possible, but the reasoning in (5.1) below shows that we may do so. Now, for $\delta>0$, set $K=K(\delta)=\{\xi \in \mathbb{C}:|\xi| \leq \delta\}$. Denote $\varphi_{n}(\xi)=a_{n}+\rho_{n} \xi$ and $g_{n}(\xi)=f\left(\varphi_{n}(\xi)\right)-f\left(\varphi_{n}(0)\right)=f\left(a_{n}+\rho_{n} \xi\right)-f\left(a_{n}\right)$. Then

$$
\left|g_{n}(\xi)\right|^{q-2} \rightarrow\left|f_{0}(\xi)\right|^{q-2} \geq \delta_{1}>0 \quad \text { and } \quad\left|g_{n}^{\prime}(\xi)\right|^{2} \rightarrow\left|f_{0}^{\prime}(\xi)\right|^{2} \geq \delta_{2}>0
$$

uniformly in

$$
K_{1}=K \backslash\left(\cup_{j=1}^{n} D\left(\xi_{j}, \varepsilon\right) \cup \cup_{i=1}^{m} D\left(\eta_{i}, \varepsilon\right)\right)
$$

where $D\left(\xi_{j}, \varepsilon\right)=\left\{\xi:\left|\xi-\xi_{j}\right|<\varepsilon\right\} \subset K$ and $D\left(\eta_{i}, \varepsilon\right)=\left\{\xi:\left|\xi-\eta_{i}\right|<\varepsilon\right\}$, $\eta_{i} \in \partial K$, for all $j=1, \ldots, n$ and $i=1, \ldots, m$. Here, for $0<q<\infty$, the points ξ_{j}, $j=1, \ldots, n$, are the zeros and poles of f_{0} in $K=\{\zeta \in \mathbb{C}:|\zeta|<\delta\}$, and the points $\eta_{i}, i=1, \ldots, m$, are the zeros and poles of f_{0} in ∂K. We take $\varepsilon>0$ so small that all the discs $D\left(\xi_{j}, \varepsilon\right)$ and $D\left(\eta_{i}, \varepsilon\right)$ are pairwise disjoint. Now

$$
\begin{aligned}
\log \left|\frac{1-\overline{\varphi_{n}(0)} \varphi_{n}(\xi)}{\varphi_{n}(\xi)-\varphi_{n}(0)}\right| & =\log \left|\frac{1-\overline{a_{n}}\left(a_{n}+\rho_{n} \xi\right)}{a_{n}+\rho_{n} \xi-a_{n}}\right| \\
& =\log \left|\frac{1-\left|a_{n}\right|}{\rho_{n}} \frac{1+\left|a_{n}\right|}{\xi}-\overline{a_{n}}\right| \rightarrow \infty
\end{aligned}
$$

as $n \rightarrow \infty$, for all $\xi \in K_{1}$. On the other hand, by the assumption,

$$
\begin{align*}
& \int_{K_{1}}\left|g_{n}(\xi)\right|^{q-2}\left|g_{n}^{\prime}(\xi)\right|^{2} g_{\mathbb{D}}^{p}\left(\varphi_{n}(\xi), \varphi_{n}(0)\right) d A(\xi) \tag{5.1}\\
& \quad=\int_{\varphi_{n}\left(K_{1}\right)}\left|f(z)-f\left(a_{n}\right)\right|^{q-2}\left|f^{\prime}(z)\right|^{2} g_{\mathbb{D}}^{p}\left(z, a_{n}\right) d A(z) \\
& \quad \leq \int_{\mathbb{D}}\left|f(z)-f\left(a_{n}\right)\right|^{q-2}\left|f^{\prime}(z)\right|^{2} g_{\mathbb{D}}^{p}\left(z, a_{n}\right) d A(z) \\
& \quad=\sum_{\gamma \in \Gamma} \int_{\Omega}\left|f(z)-f\left(a_{n}\right)\right|^{q-2}\left|f^{\prime}(z)\right|^{2} g_{\mathbb{D}}^{p}\left(\gamma(z), a_{n}\right) d A(z) \\
& \quad=\int_{\Omega}\left|f(z)-f\left(a_{n}\right)\right|^{q-2}\left|f^{\prime}(z)\right|^{2}\left(\sum_{\gamma \in \Gamma} g_{\mathbb{D}}^{p}\left(\gamma(z), a_{n}\right)\right) d A(z) \\
& \quad \leq \int_{\Omega}\left|f(z)-f\left(a_{n}\right)\right|^{q-2}\left|f^{\prime}(z)\right|^{2}\left(\sum_{\gamma \in \Gamma} g_{\mathbb{D}}\left(\gamma(z), a_{n}\right)\right)^{p} d A(z) \\
& \quad=\int_{\Omega}\left|f(z)-f\left(a_{n}\right)\right|^{q-2}\left|f^{\prime}(z)\right|^{2} g_{\Gamma}^{p}\left(z, a_{n}\right) d A(z) \leq C<\infty
\end{align*}
$$

for all $n \in \mathbb{N}$. But this is a contradiction, since the left-hand side of (5.1) tends to infinity as $n \rightarrow \infty$. Thus $\left.\left.H_{Q_{p}}^{q}(\mathbb{D}) / \Gamma\right) \subset \mathcal{B}(\mathbb{D}) / \Gamma\right)$ for all $1 \leq p<\infty$ and $0<q<\infty$. The assertion follows from the nesting property in Theorem 3.2.
$6 \quad H_{Q_{p}}^{q}(R) \neq \mathcal{B}(R)$
Using the same idea as in the proof of [4, Theorem 4.2] we can prove that there exists a Riemann surface R such that $H_{Q_{p}}^{q}(R) \neq \mathcal{B}(R)$. Since the proof is almost identical to the original one, we omit the details.

Theorem 6.1 For every $0<p, q<\infty$ there exists a Riemann surface R such that $H_{Q_{p}}^{q}(R) \neq \mathcal{B}(R)$.

Acknowledgments The authors wish to thank the referee for a careful reading of the manuscript and for pointing out a mistake in an earlier version of this paper.

References

[1] R. Aulaskari and H. Chen, Area inequality and Q_{p} norm. J. Funct. Anal. 221(2005), no. 1, 1-24. http://dx.doi.org/10.1016/j.jfa.2004.12.007
[2] R. Aulaskari, Y. He, J. Ristioja, and R. Zhao, Q_{p} spaces on Riemann surfaces. Canad. J. Math. 50(1998), no. 3, 449-464. http://dx.doi.org/10.4153/CJM-1998-024-4
[3] R. Aulaskari and P. Lappan, A criterion for a rotation automorphic function to be normal. Bull. Inst. Math. Acad. Sinica 15(1987), no. 1, 73-79.
[4] R. Aulaskari, P. Lappan, J. Xiao, and R. Zhao, $\operatorname{BMOA}(R, m)$ and capacity density Bloch spaces on hyperbolic Riemann surfaces. Results Math. 29(1996), no. 3-4, 203-226.
[5] S. Kobayashi, Range sets and BMO norms of analytic functions. Canad. J. Math. 36(1984), no. 4, 747-755. http://dx.doi.org/10.4153/CJM-1984-042-6
[6] S. Kobayashi and N. Suita, Area integrals and H^{p} norms of analytic functions. Complex Variables Theory Appl. 5(1986), no. 2-4, 181-188. http://dx.doi.org/10.1080/17476938608814138
[7] T. A. Metzger, On BMOA for Riemann surfaces. Canad. J. Math. 33(1981), no. 5, 1255-1260. http://dx.doi.org/10.4153/CJM-1981-094-6
[8] D. Minda, Bloch and normal functions on general planar regions. In: Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988, pp. 101-110.
[9] L. Rubel and R. Timoney, An extremal property of the Bloch space. Proc. Amer. Math. Soc. 75(1979), no. 1, 45-49. http://dx.doi.org/10.1090/S0002-9939-1979-0529210-9
[10] M. Stoll, A characterization of Hardy-Orlicz spaces on planar domains. Proc. Amer. Math. Soc. 117(1993), no. 4, 1031-1038. http://dx.doi.org/10.1090/S0002-9939-1993-1124151-8
[11] M. Tsuji, Potential theory in modern function theory. Maruzen Co., Ltd., Tokyo, 1959.
[12] R. Zhao, An exponential decay characterization of BMOA on Riemann surfaces. Arch. Math. (Basel) 79(2002), no. 1, 61-66. http://dx.doi.org/10.1007/s00013-002-8285-2
[13] \longrightarrow, The characteristics of BMOA on Riemann surfaces. Kodai Math. J. 15(1992), no. 2, 221-229. http://dx.doi.org/10.2996/kmj/1138039598

University of Eastern Finland, Department of Physics and Mathematics, 80101 Joensuu, Finland e-mail: rauno.aulaskari@uef.fi jouni.rattya@uef.fi

[^0]: Received by the editors April 15, 2011; revised October 19, 2011.
 Published electronically March 25, 2012.
 This research was supported in part by the Academy of Finland 121281, MTM2008-05891 (MICINN, Spain), MTM2008-02829-E (MICINN, Spain), FQM-210 (Junta de Andalucía, Spain) and the European Science Foundation (RNP HCAA).

 AMS subject classification: 30F35, 30H25, 30H30.
 Keywords: Bloch space, BMOA, Q_{p}, Green's function, hyperbolic Riemann surface.

