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FINITE HILBERT TRANSFORMS AND COMPACTNESS

SUSUMU OKADA

It is shown that for the finite Hilbert transform Tp on the Banach space £p(]—1, 1[),
1 < p < oo, the linear operator T£ + I is not strictly singular whenever n is a
positive integer.

1. INTRODUCTION

Let 1 < p < oo. The Hilbert transform Hp on the space £P(W.) is defined by the
Cauchy principal value

for every / £ CP(K). Then Hp is a continuous linear operator satisfying the M. Riesz
identity: H^+I = 0 on £P(R), [6, p.239].

Let 0 denote the open interval ] - l , 1[. It is clear that the identity T* + / = 0
does not hold for the finite Hilbert transform Tp on £p(f2) (for the definition of TT,
see Section 2). For example,

(Tp
2 +1) ((1 - x2)1 / 2) = -7T-1 (2 + xln (1 - x)(l + x)"1) + (1 - x2)1 / 2 ? 0,

x denoting the identity function on H. If one believes that the finite Hilbert transform
behaves like the Hilbert transform, then T* + / ought to be a "small" operator. There-
fore it would be natural to see whether or not Tp +1 is compact. This question has
been raised by M. Cowling.

The aim of this note is to show that, given a positive integer n, the operator T™ +1
on £p(n) is not strictly singular, and hence it is not compact; see Theorem 3.
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2. THE MAIN RESULT

Let X be a Banach space. A continuous linear operator 5: X —* X with closed
range is called a Noether or Fredholm operator if the dimension of its null space M(S)
and the codimension of its range TZ(S) are both finite. The index K(S) of a Noether
operator S is defined as

K(S) = dimM(S) - codimft(S).

A continuous linear operator A: X —» X is called strictly singular if the restriction
of A to any infinite-dimensional subspace of X is not an isomorphism onto its range.
In particular, compact operators are strictly singular.

The following result can be found in [3, Propositions 2.C.7 and 2.C.10], for example.

LEMMA 1. Let S be a Noether operator from a Banach space X into X. Then
the following statements hold.

(i) For every positive integer n, the n-th power Sn of S is also a Noether
operator such that n(Sn) = nit(S).

(ii) For every strictly singular operator A: X —* X, the operator S + A is a
Noether operator such that K(S + A) = K(S) .

Let 1 < p < oo. Let A denote Lebesgue measure in the open interval Q =
]—1, 1[. By £p(f2) we denote the usual Banach space of functions / on f2 (strictly
speaking, equivalence classes of functions modulo A-null functions) such that / |/|p~
is A-integrable. The finite Hilbert transform Tp: Cp{n) -» £p(fi) is defined by the
Cauchy principal value

for every / £ £p(f2). Then Tp is a continuous linear operator by the M. Riesz theorem;
the details can be found in [2, Section 13], for example.

LEMMA 2 .

(i) If 1 < p < 2, then Tp is a Noether operator such that K(TP) = 1.
(ii) Tie operator T2 is not a Noether operator; its range TZ(T2) is a proper

dense subspace of £2(f2).
(iii) If 2 < p < 00, then Tp is a. Noether operator such that K(TP) = —1.

PROOF: Statements (i) and (iii) are due to Sohngen [7]. See also [2, Section 13]
aDd [5, Propositions 2.4 and 2.6] for alternative proofs.

The fact that T2 is not a Noether operator has been proved in the general setting;
see, for example, [1, Theorem IX.5.3] or [4, Theorem IV.5.1]. Alternatively that fact
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can easily be derived from the observation that HiTi) does not contain the constant

function 1. For a characterisation of TZ.{Ti), see [5, Theorem 3.2]. U

For every p S ]1, oo[, the identity operator Ip: Cp(ft) -> £p(fi) is clearly a Noether

operator such that

(1) «(/„) = 0.

We now present the main result.

THEOREM 3 . Let 1 < p < oo. Then the Hnear operator T£ + Ip: CP(Q) -> £p(fi)

is not strictly singular, especially it is not compact, tor any positive integer n.

PROOF: Fix a positive integer n and let Ap — Tp + Ip.

Firstly assume that 1 < p < 2. Then, by Lemmas 1 and 2, the operator T™ is a

Noether operator such that

(2) «(r;)=n.

If Ap were strictly singular, then by Lemma l(ii), the Noether operator T™ = (— Ip)+Ap

would have index 0 because of (1). This contradicts (2), so that Ap is not strictly

singular.

Secondly, if At, were strictly singular, then T£ — (—I-i) + Ai would be a Noether

operator. However, this is not the case because the range of T™ is a proper dense

subspace of £2(fl) by Lemma 2(ii).

In the case when 2 < p < oo, the operator Tp is a Noether operator whose index

is —n by Lemmas 1 and 2. So Ap is not strictly singular because of (1) as in the first

case. u
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