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Abstract

Since Euclid defined a point as “that which has no part” it has been widely assumed that
points are necessarily unextended. It has also been assumed that this is equivalent to saying
that points or, more properly speaking, degenerate segments, have length zero. We challenge
these assumptions by providing models of Euclidean geometry where the points are
extended despite the fact that the degenerate segments have null lengths, and observe that
whereas the extended natures of the points are not recognizable in the given models, they
can be recognized and characterized by structures that are suitable expansions of the models.

1. Introduction
Ever since Euclid defined a point as “that which has no part” it has been widely
assumed that points are necessarily unextended (e.g., Hellman and Shapiro 2018,
189–90). It has also been assumed that, analytically speaking, this is equivalent to say-
ing that points or, more properly speaking, degenerate segments—segments contain-
ing a single point—have length zero (e.g., Hellman and Shapiro 2018, 189–90).1

In this paper we challenge these assumptions. We argue that neither degenerate seg-
ments having null lengths nor points satisfying the axioms of Euclidean geometry
implies that Euclidean points lack extension. To make our case, we provide models
of ordinary three-dimensional Euclidean geometry where the points are extended
despite the fact that the corresponding degenerate segments have null lengths, as
is required by the geometric axioms. The first model is used to illustrate the
seemingly remarkable fact that extended points can model all of ordinary three-
dimensional Euclidean space, and the other two models are employed to draw atten-
tion to the fact that the internal structure of extended points may assume a variety of
distinct forms. Following this, we underscore the fact that whereas the extended
natures of the points are indiscernible in the just noted models and are not reflected
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1 Hellman and Shapiro appear to take the just noted views about points to be consequences of Euclid’s
characterization (2018, 189), rather than logical or mathematical consequences of some general concept
of point.
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by theorems of Euclidean geometry, they can be recognized as well as characterized
using suitable many-sorted expansions of the given models, expansions that supple-
ment the models with additional universes and relations defined thereon that char-
acterize the internal structure of the points. Thus, one must draw a sharp distinction
between what is true in the model of geometry, on the one hand, and what is true in
the expansion (or outside) of the model, on the other. After providing illustrations of
such expansions we address a pair of philosophical queries that have been raised
about our models, in one case leading us to a discussion of the relative finitude
and infinitude of geometrical magnitude. Finally, in an Appendix we will draw atten-
tion to a little known anticipatory model of E. V. Huntington (1913) that we learned of
long after the ideas in this paper were fully developed. To establish the consistency of
his postulates for ordinary three-dimensional Euclidean geometry, Huntington intro-
duces a “geometry of points of finite size,” where, for example, “inch-spheres” serve as
points (1913, 524, 530). Like the points in our models, the extended points in
Huntington’s models are nondegenerate convex regions of models of paradigmatic
extended geometrical spaces and are, as such, natural models of extended spatial
regions, which in principle might be nondegenerate regions of physical space.
Unlike the envisioned hypothesized physical counterparts of the abstract geometrical
models that are our primary focus, however, Huntington’s just noted models are
incompatible with certain scalar aspects of Newtonian (physical) space, where the
points are assumed to be infinitesimal relative to the standard inch.

2. Euclidean geometry
By three-dimensional elementary Euclidean geometry we mean a system of axioms that is
collectively equivalent to the three-dimensional analog of Hilbert’s ([1902] 1971) axi-
oms for standard Euclidean plane geometry save his continuity axioms, the latter
being the axioms that limit the models to isomorphic copies of two-dimensional
Cartesian geometry over the ordered field R of real numbers. For our purpose, it
is especially convenient to employ Tarski’s system P3 (Tarski 1959, axioms
A1 � A12 and note 5; Schwabhäuser, Szmielew, and Tarski 1983, 10–24), which is for-
mulated as a first-order theory (with the equality symbol “=” treated as logical iden-
tity), in which points are the sole primitive individuals and the only nonlogical
predicates employed in the axioms are a ternary primitive predicate B (where
“Bxyz” is read y lies between x and z, the case when y coincides with x or z not being
excluded) and a quarternary primitive predicate ≡ (where “xy ≡ zu” is read x is as
distant from y as z is from u). The line through distinct points a and c in P3 is the set of
all points b such that Babc _ Bbca _ Bcab, and a segment ac is the set of all points b
such that Babc, the segment being degenerate if a � c.

The conception that bridges the gap between the domains of number and of
Euclidean magnitude is the classical notion of a Cartesian space over an ordered
field. In the latest version of Tarski’s framework (Schwabhäuser, Szmielew, and
Tarski 1983, 16), the three-dimensional version of this familiar concept assumes
the following form.

A three-dimensional Cartesian space over an ordered field F;�; �; < ; 0; 1h i is a
structure C3 F� � �: AF ; BF;≡ Fh i, where the betweenness relation BF and the equidis-
tance relation≡ F are defined on AF � x1; x2; x3� � : x1; x2; x3 2 Ff g by the stipulations:
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BFxyz if and only if there is a λ 2 F for which 0 ≤ λ ≤ 1 and

yα � xα � λ zα � xα� � for α � 1; 2; 3;

xy ≡ Fuv if and only if
P3
α�1

xα � yα
� �

2 � P3
α�1

uα � vα� �2:

The relation between Cartesian spaces and models of P3 is given by the following
well-known result that has its roots in the work of Hilbert (1899; [1902] 1971).

Representation Theorem for P3. M is a model of P3 if and only if M is isomorphic to
C3 F� �, where F is a Pythagorean ordered field—an ordered field F, in which

���������������
a2 � b2

p 2 F
whenever a; b 2 F.

The central ingredient in the proof of the only if portion of the above theorem is
the result: if l is the line in a model M of P3 containing the distinct points o and e, then
by letting the segments oo and oe serve as the zero (segment) and unit (segment),
respectively, and by appealing to familiar geometric constructions, one can define
operations�l and �l on, and a relation < l between, the directed segments of l (having
o as an end point) so that the resulting structure

Floe � l;�l; �l; < l; oo; oeh i;
is a Pythagorean ordered field that is within isomorphism independent of the choices
of l, o, and e≠ o. Employing Floe together with the triple of mutually perpendicular lines
l, l0, and l00 of M having the point o in common, one then introduces a system of
Cartesian coordinates and shows that M is isomorphic to C3�Floe�: Henceforth, we will
refer to Floe (or an isomorphic copy thereof) as the characteristic ordered field of M:2

To obtain a categorical axiomatization of ordinary three-dimensional Euclidean
geometry one need only supplement P3 with the Dedekind Continuity Axiom (Tarski
1959, 18). Henceforth we will refer to the axiomatization thus obtained as E3.
Since the characteristic ordered field of a model of E3 is isomorphic to R, we now
have the familiar

Representation Theorem for E3. M is a model of E3 if and only if M is isomorphic
to C3 R� �.

The constructions of our models of E3 make use of a familiar model-theoretic tech-
nique that constructs models vis-à -vis isomorphisms. Since the Dedekind Continuity
Axiom is a second-ordered assertion, the discussion of these models takes place in
classical second-order logic.

3. First model of E3 with extended points
For each point x � x1; x2; x3� � 2 AR � R3, let x be a copy of AR; BR;≡Rh i � C3 R� �
indexed by x; that is, let

2 In place of Floe, Tarski (1959, 21–22) employs the isomorphic copy thereof that results from replacing
each of the directed segments ox and yo of Floe with their corresponding endpoints x and y, and other
authors (e.g., Hartshorne 2000, ch. 4) employ an isomorphic copy of Floe based on equivalence classes
of congruent directed segments of the space. For the construction of Floe itself, see, for example,
Lingenberg and Bauer (1974, 90–91).
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x :� C3 R� �x;
which, on occasion, we will also write as R3

x; Bx;≡ xh i. To ensure that x \ y � ; when-
ever x≠ y, we may suppose, for example, that R3

x :� fax :� �a; x� : a 2 R3g. Further,
let Π � x : x 2 R3f g and define betweenness and equidistance relations B and ≡ on
Π by stipulating: for all a; b; c; d 2 Π,

Babc if and only if BRabc;

ab ≡ cd if and only if ab ≡ Rcd:

Since the mapping f : R3 ! Π defined by the condition f x� � � x � C3 R� �x for all
x 2 R3 is an isomorphism from C3 R� � onto Π; B;≡h i, it follows from the above con-
struction and the Representation Theorem for E3 that:

Theorem 1. Π; B;≡h i is a model of E3, each of whose points is itself a model of E3.

Moreover, since the characteristic ordered field of Π; B;≡h i is isomorphic to R,
each segment of Π; B;≡h i is assigned a nonnegative real-valued length that is zero if
and only if the segment is degenerate. Accordingly, we have

Corollary 1. Despite the fact that each point in the model Π; B;≡h i of E3 is itself a model of
E3, each degenerate segment of Π; B;≡h i has length zero in the model.

The reader will notice that if in the above construction and the arguments for
Theorem 1 and Corollary 1, we replace x :� C3 R� �x with x :� R3

x , the resulting argu-
ments continue to hold, and we obtain the following results:

Theorem 1†. Π; B;≡h i is a model of E3, each of whose points (together with the between-
ness and equidistance relations defined on it) is itself a model of E3.

Corollary 1†. Despite the fact that each point in the model Π; B;≡h i of E3 (together with
the betweenness and equidistance relations defined on it) models E3, each degenerate segment
of Π; B;≡h i has length zero in the model.

The only difference between the two approaches is that in the first the points are
models of E3, and in the second they are the universes of the models. In our treat-
ments of the subsequent two models of E3, we will limit the discussion to the first
approach, with the understanding that the second approach is available in those cases
as well. In section 9, we will draw attention to a consequence that results from the
difference in the two approaches.

4. Archimedean and non-Archimedean ordered fields and models of E3

Unlike the above construction, the next construction of a model of E3 containing
extended points makes use of a non-Archimedean ordered field. To prepare the
way for the latter construction as well as for some material in subsequent sections
we will recall some of the basics of Archimedean and non-Archimedean ordered fields
and their underlying ordered additive groups.
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An ordered field F;�; �; < ; 0; 1h i is said to be Archimedean if its ordered additive
group F;�; < ; 0h i satisfies the Archimedean condition: whenever a and b are non-
zero members of Fwhere aj j < bj j, there is a positive integer n such that n aj j > bj j. If F
is not Archimedean, it is said to be non-Archimedean. Since every ordered field contains
a unit element, written “1,” an element a of F may be said to be infinitesimal if
aj j < 1=n for every positive integer n, and it may be said to be infinite if
aj j > n � 1 for every positive integer n. An ordered field is Archimedean if and only
if it contains neither infinite nor nonzero infinitesimal elements. Non-
Archimedean ordered fields, by contrast, contain infinite as well as nonzero infinites-
imal elements. Zero is the sole infinitesimal element of an Archimedean ordered field.

If a and b are nonzero members of the ordered additive group of F;�; �; < ; 0; 1h i,
then a is said to be Archimedean equivalent to b (or finite relative to b) if there are positive
integers m and n such that m bj j > aj j and n aj j > bj j. Archimedean equivalence par-
titions the elements of F � f0g into disjoint classes called Archimedean classes. The
term “Archimedean class” is intended to indicate that within a given class the
Archimedean condition holds. If a; b 2 F are not Archimedean equivalent, then a is
said to be infinitesimal (in absolute value) relative to b and b is said to be infinite (in absolute
value) relative to a, if aj j < bj j. In accordance with these conventions, 0 is infinitesimal
(in absolute value) relative to every member of F � f0g. Given the absence of a unit
element, the notions of infinite and nonzero infinitesimal members of F;�; < ; 0h i
are not well-defined. On the other hand, the infinite and infinitesimal members of
F;�; �; < ; 0; 1h i are the members of the field that are (in absolute value) infinite
and infinitesimal, respectively, relative to the unit element.

A model of P3 may be said to be Archimedean if and only if its characteristic
ordered field is Archimedean (see section 2). Therefore, since an ordered field is
Archimedean if and only if it is isomorphic to a subfield of R, every model of E3

is Archimedean. As such, the nondegenerate segments of a model of E3 are all finite
relative to one another and infinite relative to the degenerate segments of the model.

5. The non-Archimedean ordered field L

The construction that underlies our second model can be carried out using any non-
Archimedean Pythagorean ordered field that contains an isomorphic copy of the
ordered field of real numbers. The following familiar example of such a field was
introduced by Tullio Levi-Civita in the first of his groundbreaking works (1892–93;
1898) that placed Giuseppe Veronese’s pioneering investigation of non-
Archimedean geometry (1891) on an algebraic foundation.

Let L be the collection of all power series
P
α < β

rαtγα

where γα : α < β ≤ ωf g is a (possibly empty) strictly decreasing sequence of mem-
bers of R that is coinitial with R if β � ω, and rα : α < βf g is a sequence of members
of R � 0f g. L is a non-Archimedean ordered field (with the empty series serving as
the zero of the field) when the order is defined lexicographically and the sums and
products are defined à la polynomials, with tγ � tγ0 � tγ�γ0 for all γ; γ0 2 R. If we
insert “dummy” terms with zeros for coefficients to permit a uniform representation
of members of L, then these conditions (written�L; �L, and < L) may be stated more
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formally as follows, where �, �, and < designate the standard addition, multiplica-
tion, and order in R.

P
γ2R

aγ tγ�L
P
γ2R

bγ tγ � P
γ2R

aγ � bγ
� �

tγ ;

P
γ2R

aytγ �L
P
γ2R

bytγ � P
γ2R

P
�µ;ν�2R × R

µ�ν�γ

aµbν

2
64

3
75tγ ;

P
γ2R

aγ tγ < L
P
γ2R

bγ tγ ; if aγ � bγ for all γ > some τ 2 R and aτ < bτ:

In virtue of the lexicographical ordering, the infinitesimals of L are the members of L
whose greatest exponent γ0 is negative. Since 0 corresponds to the empty series, this
vacuously holds for 0.

6. Second model of E3 with extended points
Let L be defined as above, and, henceforth, by R̂ we mean the isomorphic copy ofR in
L consisting of 0f g [ x 2 L : x � rt0 forsomer 2 R � 0f gf g with the addition, multi-
plication, and order inherited from L. First note that, since L is a Pythagorean
ordered field (e.g., Robinson 1973, 92), C3 L� � is a model of P3. Moreover, since
R̂ � L and R̂ is isomorphic to R, C3�R̂� � C3 L�� and C3�R̂� is isomorphic to C3 R� �:

Let LI be the set of infinitesimals of L, and for each point x � x1; x2; x3� � 2 R̂
3, let

x :� x1 � δ1; x2 � δ2; x3 � δ3� � 2 L3 : δ1; δ2; δ3 2 LIf g;
together with the restrictions thereto of the betweenness and equidistance relations
BL and≡ L from C3 L� �. Thus, for each point x 2 R̂

3, the universe of x is the infinite set
of all points in C3 L� � that are an infinitesimal distance from x, including x itself. Using
this, one may readily show: x \ y � ; for distinct x; y 2 R̂

3; and for each x 2 R̂
3, x is a

convex region of C3 L� � in the sense that for all a; b; c 2 C3 L� �, b 2 x whenever a; c 2 x
and BLabc. Moreover, x is three-dimensional, as is evident from its containment of the
three mutually orthogonal (nondegenerate) segments of C3 L� � having endpoints

�x1; x2; x3�; �x1 � δ; x2; x3�
�x1; x2; x3�; �x1; x2 � δ; x3�
�x1; x2; x3�; �x1; x2; x3 � δ�;

where δ is a nonzero member of LI .
Now let

Π̂ :� x : x 2 R̂
3

n o

and define betweenness and equidistance relations B̂ and ≡̂ on Π̂ by the conditions:
for all a; b; c; d 2 Π̂,

B̂abc if and only if BLabc;
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ab ≡̂ cd if and only if ab ≡ Lcd:

Also let f : R̂3 ! Π̂ be the mapping defined by the condition: f x� � � x for all x 2 R̂
3.

Plainly, f is an isomorphism from C3 R̂
� �

onto Π̂; B̂;≡̂� �
; and so, since C3 R̂

� �
is iso-

morphic to C3 R� �, it follows that Π̂; B̂; ≡̂� �
is isomorphic to C3 R� �. But then, in virtue

of the Representation Theorem for E3 and the just described construction, we have

Theorem 2. Π̂; B̂;≡̂� �
is a model of E3, each of whose points is a convex three-dimensional

region of C3 L� �.

Moreover, by invoking the argument employed in section 3 to establish
Corollary 1, we have

Corollary 2. Despite the fact that each point in the model Π̂; B̂; ≡̂� �
of E3 is a convex three-

dimensional region of C3 L� �, each degenerate segment of Π̂; B̂; ≡̂� �
has length zero in

the model.

7. Hjelmslev’s nilpotent infinitesimalist continuum
As in the second construction of a model of E3 with extended points, in our third
construction the points are convex three-dimensional regions of an overarching geo-
metric space. Here the overarching space is an affine Hjelmslev space over the lexico-
graphically (totally) ordered ring R	ε
 of dual numbers, the three-dimensional
counterpart of the nilpotent infinitesimalist geometric continuum introduced by
Johannes Hjelmslev (1923). To prepare the way for the construction, we begin with
a brief overview of the system of dual numbers and the three-dimensonal affine
Hjelmslev space defined on it.3

The system R	ε
 of dual numbers, which was introduced by William Clifford (1873),
is a commutative ring with identity consisting of

fr0 � r1ε : r0; r1 2 Rg
with sums and products defined in the manner of polynomials, with ε≠ 0 and ε2 � 0.
Thus, for any two dual numbers a0 � a1ε and b0 � b1ε

�a0 � a1ε� � �b0 � b1ε� � �a0 � b0� � �a1 � b1�ε

�a0 � a1ε��b0 � b1ε� � a0b0 � �a0b1 � a1b0�ε:
The element ε in R	ε
 is a nilpotent, an element x such that xn � 0 for some positive

integer n. The least n for which xn � 0 is the index of nilpotency of x. The index of nil-
potency of ε in R	ε
 is 2. Nonzero nilpotent elements of index n have many applica-
tions in algebra, one of them being a convenient way of representing quantities up to
infinitesimal order n. When nilpotents are thus interpreted, they are referred to as

3 Like Hjelmslev geometries, Synthetic Differential Geometry (e.g., Kock 1981) makes use of nilpotent
infinitesimals. However, unlike the latter theory, whose underlying logic is intuitionistc to avoid outright
inconsistency with classical logic, the underlying logic of Hjelmslev geometries is classical. For further
discussion of these matters, see Ehrlich (2021).
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nilpotent infinitesimals. The number systems we have hitherto considered have no
nonzero nilpotent elements.

Inspired by the view of the pre-Socratic philosopher Protagoras, as recounted in
Aristotle’s Metaphysics (III: 2, 998a), Hjelmslev held that the axiom that two straight
lines always share at most one point is incompatible with perceptual experience, as is
the assertion that a circle and a line tangent to it meet at a single point (Hjelmslev
1923, 1–2). This led him to devise a “geometry of reality” (Hjelmslev 1916) or a “nat-
ural geometry” (Hjelmslev 1923), as he later called it, whose subject is the lines and
circles of perception constructed with real rulers and compasses. He further devised
(Hjelmslev 1923, 12–13) the above-mentioned abstraction of the latter, coordinated by
R	ε
, that is a prototype of what are today called affine Hjelmslev geometries. In these
geometries, which are coordinated by affine Hjelmslev rings, while each pair of distinct
points has a line joining them, it need not be unique. Indeed, a pair of distinct points
may lie on a pair of distinct lines; when this happens the points are said to be neigh-
boring points, and the lines are said to be neighboring lines, the two notions of neighbor
being equivalence relations. Remote (or nonneighboring) points, by contrast, are joined
by a unique line, and remote (or nonneighboring) lines that intersect, intersect in a
unique point. In these geometries a circle and a line tangent to it intersect in a non-
degenerate “infinitesimal segment” of neighboring points.

Formally speaking, in their standard formulations, affine Hjelmslev planes are
structures P;L; k; Ih i (satisfying a set of axioms—see references below) where P is
a set of points, L is a set of subsets of P called lines, k is a parallel relation defined
on L, and I is an incidence relation defined on pairs �a; b� 2 P × L. Moreover, and of
central importance, the axioms ensure that the geometrical relational structure
P�;L�; k�; I�h i, with the induced relations k� and I�, obtained from P;L; k; Ih i by
replacing each p 2 P and each l 2 L with the equivalence classes consisting of all
neighboring points of p and all neighboring lines of l, respectively, is isomorphic
to an ordinary affine geometric counterpart, in which two points determine a line
and lines that intersect do so in a unique point. In the case of Hjelmslev’s aforemen-
tioned prototype, which is coordinated byR	ε
, the affine counterpart is (as Hjelmslev
observed) isomorphic to the standard affine Euclidean plane overR. It is the existence
of this isomorphism that motivates our third construction.

Hjelmslev’s plane over R	ε
, henceforth H2 R	ε
� �, consists of all ordered pairs
�A; B� 2 R	ε
 × R	ε
. As usual, a straight line of H2 R	ε
� � is defined by a first-degree
equation

Ax� By� C � 0;

where now, however, A; B; C 2 R	ε
, it being understood that at least one of A; B is not
in the ideal R	ε
I � f0� rε : r 2 Rg of nilpotent infinitesimal elements of R	ε
. In
H2 R	ε
� �, a pair of points �a1; a2� and �b1; b2� are neighbors if and only if b1 � a1
and b2 � a2 are elements of R	ε
I .

R	ε
 admits a relational expansion to a non-Archimedean totally ordered
ring, where the order < is defined lexicographically by the condition:
a0 � a1ε < b0 � b1ε if a0 < Rb0 or a0 � b0 and a1 < Rb1. In virtue of the just noted
ordering, the points on a line of H2 R	ε
� � are themselves totally ordered and admit
a natural betweenness relation BR	ε
 defined by the condition: for all points x; y; z
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on a line l of H2 R	ε
� � totally ordered by < l, y lies between x and z if either
x < ly < lz or z < ly < lx.4

Examples of neighboring lines in H2 R	ε
� � are
y � 0 and y � εx;

which intersect at all neighboring points �rε; 0� where r 2 R. And similarly, the circle
defined by the equation

Ax2 � By2 � 1

intersects the line defined by the equation

y � 1

at all neighboring points �rε; 1� where r 2 R. In each of these cases, the set of neigh-
boring points constituting the segment of intersection is isomorphic to R considered
as an ordered set (Hjelmslev 1923, 13).

Inspired by these and related ideas of Hjelmslev (1923, 1929), the axiomatic theory
of Hjelmslev planes (and corresponding theory of Hjelmslev rings) was developed by
Klingenberg (1954, 1954a, 1955) and was extended to higher dimensional spaces by
Kreuzer (1987, 1988). Our third construction, to which we now turn, makes use of
the three-dimensional analog of H2 R	ε
� �, henceforth denoted H3 R	ε
� �, where the
basic ideas and concepts of H2 R	ε
� � readily extend to the three-dimensional case.
In particular, in H3 R	ε
� �, a pair of points �a1; a2; a3� and �b1; b2; b3� are neighbors
if and only if b1 � a1, b2 � a2, and b3 � a3 are elements of R	ε
I , and given a point
and a line in a plane of H3 R	ε
� � there is one line perpendicular to the line through
the point (Kreuzer 1987, 1988).

8. Third model of E3 with extended points
Let R̃ be the isomorphic copy of R in R	ε
 consisting of fr � 0ε : r 2 Rg with the addi-
tion, multiplication, and order inherited from R	ε
, and for each x � x1; x2; x3� � 2 R̃3,
let

x :� x1 � δ1; x2 � δ2; x3 � δ3� � 2 R	ε
3 : δ1; δ2; δ3 2 R	ε
If g
together with the restriction thereto of the aforementioned betweennesss relation
BR	ε
 defined on H3 R	ε
� �. Finally, let

Π̃ :� x : x 2 R̃3	 

:

For each x 2 R̃3, x is the (infinite) set of all points in H3 R	ε
� � that are neighbors of x,
including x itself. Since the neighbor relation on points is an equivalence relation that
partitions R	ε
3 into disjoint classes, it follows that for distinct x; y 2 R̃3, x \ y � ;
and

4 For details, see Baker, Lane, Lorimer, and Laxton (1984, 25). Without loss of generality, a nonstrict
betweenness relation (à la Tarski) may also be defined on R	ε
 by replacing < l with ≤ l in the above
definition. However, since we will later appeal to a result from the literature on affine Hjelmslev geom-
etries that is formulated in terms of the strict betweenness relation, we have adopted the latter relation.
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S
x2Π̃

x � R	ε
3:

Moreover, by a result of Baker, Lane, Lorimer and Laxton (1984, 20–22)5, for each
x 2 R̃3, x is a convex subclass of H3 R	ε
� � in the sense defined in section 6.
Furthermore, x is three-dimensional, in virtue of its containment of triples of mutu-
ally orthogonal nondegenerate segments of H3 R	ε
� �, such as:

x1 � δ; x2; x3� � 2 R	ε
3 : 0 ≤ δ ≤ εf g
x1; x2 � δ; x3� � 2 R	ε
3 : 0 ≤ δ ≤ εf g
x1; x2; x3 � δ� � 2 R	ε
3 : 0 ≤ δ ≤ εf g:

By now mimicking the constructions employed in sections 3 and 6, we define
betweenness and equidistance relations B̃ and ≡̃ on Π̃ by the conditions: for all
a; b; c; d 2 Π̃,

B̃abc if and only if BRabc;

ab ≡̃ cd if and only if ab ≡ Rcd;

and by essentially repeating the arguments employed in the just noted sections we
obtain the following analogs for Π̃; B̃; ≡̃� �

of the results for Π; B;≡h i and Π̂; B̂; ≡̂� �
.

Theorem 3. Π̃; B̃; ≡̃� �
is a model of E3, each of whose points is a convex three-dimensional

region of H3 R	ε
� �.

Corollary 3. Despite the fact that each point in the model Π̃; B̃; ≡̃� �
of E3 is a convex three-

dimensional region of H3 R	ε
� �, each degenerate segment of Π̃; B̃; ≡̃� �
has length zero in

the model.

9. Mathematico-philosophical reflections
Whereas the notions of length, area, and volume measure were introduced to quantify
our preanalytic notions of one-dimensional, two-dimensional, and three-dimensional
spatial extension, the relation between the standard geometrical notions and the pre-
analytic, metageometric/metaphysical notions are not quite what is often assumed.
Indeed, what our models illustrate is that it is merely the infinitesimality of degen-
erate segments relative to their nondegenerate counterparts (see section 4), rather
than the absence of extension of points, that is implied both by the axioms of ordinary
Euclidean geometry and these segments’ null lengths.6 Thus, from a contemporary

5 H2 R	ε
� � together with the betweenness relation BR	ε
 defined thereon is an example of a preordered affine
Hjelmslev plane, and Baker, Lane, Lorimer and Laxton (1984) have shown that every neighbor class of such a
structure is convex in the sense defined in section 6. Their proof readily extends to the three-dimensional case.

6 Beginning with Paul du Bois-Reymond (1882, 66), there has been a string of authors who have argued
that the now standard conception of a continuum as a point-set is incoherent because it is impossible for
an extended segment to be composed of unextended points. Ehrlich (2014), without appealing to the
possibility of extended points, draws attention to the misguided nature of such arguments. Still, it is
interesting to note that the very assumption these authors take to lead to the incoherence of the stan-
dard view is not necessitated by the standard view at all.
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standpoint, contrary to Euclid’s intuition, a point of Euclidean geometry may very
well have parts, indeed even proper parts. Moreover, as the above remarks suggest,
the number zero functions quite differently as a cardinal number than as a measure
number in the system of reals. So, for example, whereas a set containing zero mem-
bers has no member at all, an event having probability zero—such as a randomly
thrown point-tipped dart landing on a specified point of the unit interval of R—
may very well transpire, and perhaps more surprisingly still, a degenerate segment
having length zero may contain a point having an internal structure that models all of
Euclidean space.7

On the other hand, as we mentioned above, whereas the axioms of E3 make asser-
tions about points, they are entirely reticent about what internal structure, if any, the
points themselves have. Indeed, this is simply not the province of Euclidean geome-
try, at least not in its contemporary guise. Any additional assumptions about the
nature of the points other than those derivable from the axioms for E3 are by their
very nature extra-Euclidean. However, as we also previously mentioned, this is not to
suggest that it would be impossible to suitably expand models of E3 that would have
provable consequences about any internal structure the points might have. In the
case of the models of E3 discussed above this can be carried out in a variety of fash-
ions, including the following two in which the models are expanded to suitable many-
sorted structures with supplemental universes and relations defined thereon. Since
the constructions are similar in all three cases, we will simply illustrate them
with Π; B;≡h i.

In the first approach, which is also the approach that more literally captures the
ideas expressed in Theorem 1 and Theorem 1y, one expands the Euclidean structure
Π; B;≡h i to the extra-Euclidean structure

Π; B;≡ ; � R3
x; Bx;≡ xh i�x2R3h i;

and in the second approach, one expands Π; B;≡h i to the extra-Euclidean structure

Π; B;≡ ;Π�; B�; ≡ �h i;
where

Π� � S
x2R3

R3
x; B� � S

x2R3
Bx ; and ≡ � � S

x2R3
≡ x:

Thus, whereas in the first approach one adds for each point x 2 Π a distinct universe
R3

x and distinct betweenness and equidistance relations Bx and ≡ x defined thereon, in
the second approach one adds a single composite universe together with the corre-
sponding composite betweenness and equidistance relations defined on it. While the
structures emerging from the two approaches are formally distinct, the difference is

7 Already by 1911, Federigo Enriques (1911, 101–3) pointed out the possibility of assigning nonzero
infinitesimal probabilities to a randomly thrown point-tipped dart landing on a specified point of the
unit interval R and thereby distinguishing measure theoretically between impossible events having
probability zero, on the one hand, and certain possible though infinitely unlikely events, on the other.
This idea was later taken up (without reference to Enriques) by Bernstein and Wattenberg (1969) in the
context of nonstandard analysis and again by Benci, Horsten, and Wenmackers (2013, 2018) using their non-
Archimedean probability theory. However, since the null lengths of degenerate segments are a consequence
of E3, an analogous treatment of assigning nonzero measures to degenerate segments containing
extended points is not available unless one ignores the Euclidean nature of the model.

794 Philip Ehrlich

https://doi.org/10.1017/psa.2021.47 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.47


largely a difference in methods of bookkeeping, since each individually adjoined
structure in the first approach constitutes a recognizable convex substructure of
Π�; B�;≡ �h i in the second. Moreover, whether one interprets Π as a set of models
of E3, as in Theorem 1, or as the set of the universes of the just noted models, as in
Theorem 1y, the above two expansions of Π; B;≡h i are alternative ways of formaliz-
ing the extra-Euclidean structures implicit in each of those theorems.

If we adopt the first and more literal approach, then Theorem 1 and Theorem 1y

assume the following explicit forms:

Theorem 1. The structure Π; B;≡ ; � R3
x; Bx;≡ xh i�x2R3h i is an expansion of the model

Π; B;≡h i of E3, each of whose points R3
x; Bx;≡ xh i is itself a model of E3.

Theorem 1†. The structure Π; B;≡ ; � R3
x; Bx;≡ xh i�x2R3h i is an expansion of the model

Π; B;≡h i of E3, each of whose points R3
x together with the betweenness and equidistance

relations Bx and ≡ x defined on it is itself a model of E3.

The above-described many-sorted expansions of Π; B;≡h i shed light on the inter-
nal structure of the points in Π while leaving the model and, in particular, its points
in place. Loosely speaking, whereas Π; B;≡h i provides the macroperspective of the
geometric framework, Π; B;≡ ; � R3

x; Bx;≡ xh i�x2R3h i and Π; B;≡ ;Π�; B�;≡ �h i pro-
vide macro/microperspectives. There is also a complementary one-sorted structure
that sheds further light on the microperspective without expanding the model itself.
Since the basic construction is applicable to all three of our examples, again we will
only illustrate it for the case of Π; B;≡h i.

Instead of expanding the structure Π; B;≡h i with the universe Π� and the rela-
tions B� and ≡ � defined thereon, one begins with the structure Π�; B�;≡ �h i and
expands it to the structure Π�; B0; ≡ 0; B�;≡ �h i, where B0 and ≡ 0 are defined by
the stipulations:

B0axbycz if and only if BRxyz;

awbx ≡ 0cydz if and only if wx≡ Ryz;

where w; x; y; z range over R3 and aw; bx; cy, and dz range over R3
w;R

3
x;R

3
y, and R3

z ,
respectively. Unlike the tuples that comprise B� and ≡ �, those that comprise B0

and ≡ 0 do not solely relate members of individual R3
x ’s. Moreover, as is evident from

the construction, there is an epimorphism (i.e., a surjective homomorphism) f from
Π�; B0; ≡ 0h i onto Π; B;≡h i, and, hence, Π; B;≡h i is isomorphic to the quotient
structure Π�=R; B0R;≡ 0

R

� �
defined by the congruence relation R generated by f; that

is, the structure Π�=R; B0R;≡ 0
R

� �
where Π�=R is the set of all equivalence classes

	x
 � fy 2 Π� : f �y� � f �x�g, B0R is the set of all triples �	x
; 	y
; 	z
� for which
�x; y; z� 2 B0, and ≡ 0

R is the set of all quadruples �	w
; 	x
; 	y
; 	z
� for which
�w; x; y; z� 2 ≡ 0 (e.g., Monk 1976, 385–86). Since f is not 1–1, unlike Π; B;≡h i,
Π�; B0; ≡ 0h i is not a model of E3. On the other hand, Π�; B0; ≡ 0h i may be regarded
as a pre-Euclidean geometry in the sense that the quotient structure Π�=R; B0R;≡ 0

R

� �
is a

model of E3. Analogously, the members ofΠ� may be regarded as micropoints, though
they are not points in Π; B;≡h i. Moreover, the members ofΠ�=R are the universes of
the models of E3 contained inΠ, ifΠ is understood as in Theorem 1, and they coincide
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with the members ofΠ, ifΠ is understood as in Theorem 1y. Accordingly, if Π; B;≡h i
is understood as in Theorem 1y, then Π�=R; B0R;≡ 0

R

� �
is not merely isomorphic to

Π; B;≡h i, it is identical to Π; B;≡h i.
In his mathematico-philosophical correspondence with Frege on the nature of the

Euclidean axioms, Hilbert argued that the axioms constitute “only a scaffolding or
schema of concepts together with their necessary relations to one another, and that
the basic elements [such as points] can be thought of in any way one likes : : : provided
only that the requisite axioms are satisfied” (December 12, [1899] 1980, 40–41). To
illustrate this he notes: “If in speaking of my points I think of some system of things,
e.g. the system: love, law, chimney-sweep : : : and then assume all my axioms as rela-
tions between these things, then my propositions, e.g. Pythagoras’ theorem, are also
valid for these things” (December 29, 1899, 40). This view, which was championed by
Hilbert and a number of other late 19th- and early 20th-century geometers, has
emerged as the standard construal of these matters of our day. Be that as it may,
following longstanding tradition, points are still typically envisioned as unextended
locations, or as locations having “no length, breadth or thickness” as Veblen ([1911]
1955, 4) expressed it. The purpose of this paper has been to demonstrate that, long-
standing tradition aside, the purported unextended nature of points is not implied by
the axioms of E3. Models of E3 whose universes consist of extended points do indeed
exist, though one has to go outside the Euclidean model to recognize and characterize
their extended nature.

On occasion it has been suggested to the author that the constructions of models of
E3 with extended points presented above are simply the workings out of the details of
instances of Hilbert’s quip about love, law, and chimney-sweeps8 or his less well
developed quip of 1882 where he maintains: “one must be able to say ‘tables, chairs,
beer-mugs’ each time in place of ‘points, lines, planes’ ”(Blumenthal 1935, 402–3).
While this was certainly not our intention, there is an inkling of truth in this conten-
tion, but only an inkling. As we noted in the Introduction, and as our models make
clear, the extended points in our models are nondegenerate convex regions of models
of paradigmatic extended geometrical spaces and are, as such, natural models of
extended spatial regions—spatial regions which in principle might be nondegenerate
regions of physical space. The same cannot be said of tables, love, or the like. As such,
unlike the hypothesized playful models in Hilbert’s quips, our models go well beyond
simply pointing out that points in a model of E3 may have unintended interpretations;
they challenge the deep-seated and longstanding geometric shibboleth that points are
necessarily unextended and as such are necessarily devoid of internal structure.

Nevertheless, could it be that our models of E3 with extended points, particularly
the first where the extended points are themselves models of E3, may exist only in a
formally stipulated sense; that, for example, we lack any geometric or spatial concep-
tion of what constitutes the “betweenness” and “equidistance” between such
extended points?9 We believe the answer is no, though for the sake of space we will
only touch on the matter here, leaving a more detailed historical and mathematico-
philosophical response for another occasion.

8 This observation was first made by Patricia Blanchette.
9 This query was posed by Geoffrey Hellman.
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To help motivate our negative response it will be useful to first consider a non-
Archimedean model M of P3 having characteristic ordered field Floe containing an iso-
morphic copyRoe ofR, oo and oe being the zero and unit segments of Floe and henceRoe

(see sections 2, 3, and 5). ThenM is isomorphic to C3�Floe�, the latter of which contains a
subspace C3�Roe� that is isomorphic to C3�R�. Moreover, since M is non-Archimedean,
there are nondegenerate segments oe0 and oe00 of l such that oe0 is infinitesimal relative
to oe and oe00 is infinite relative to oe. Furthermore, insofar as the characteristic
ordered field of a model of P3 is (to within isomorphism) independent of the choice
of unit segment, for each such pair oe0 and oe00 there are isomorphic copies C3�Floe0 � and
C3�Floe00 � of M, whose characteristic ordered fields Floe0 and Floe00 , respectively, contain
isomorphic copies Roe0 and Roe00 of R. Analogously, C3�Floe0 � and C3�Floe00 �, respectively,
contain subspaces C3�Roe0 � and C3�Roe00 �, which are isomorphic to C3�R�. Thus, despite
the fact that the nondegenerate segments in Roe0 are infinitesimal relative to the non-
degenerate segments in Roe, which in turn are infinitesimal relative to the nondegen-
erate segments in Roe00 ,10 the ordered fields Roe, Roe0 , and Roe00 are all isomorphic to R,
and likewise for their corresponding Cartesian spaces C3�Roe�, C3�Roe0 �, and C3�Roe00 �
with respect to C3�R�.

While the above excursion is directed to non-Archimedean structures, it brings
into focus the underappreciated fact that if M and M0 are models of E3, it is logically
possible for the nondegenerate segments of M to be infinitesimal relative to the non-
degenerate segments of M0. Accordingly, there is no logical difficulty in envisioning
that the expansion Π; B;≡ ; � R3

x; Bx;≡ xh i�x2R3h i of our first model of E3 models a
hypothesized enriched Newtonian space in which the nondegenerate macroseg-
ments—the nondegenerate segments modeled by the nondegenerate segments of
Π; B;≡h i—are finite relative to the standard meter, and the nondegererate micro-
segments—the nondegenerate segments modeled by the nondegenerate segments of
the R3

x; Bx;≡ xh i’s—are infinitesimal relative to the standard meter. Indeed, whereas
Hamlet figuratively proclaimed “I could be bounded in a nutshell and count myself a
king of infinite space,” a denizen of the hypothesized microspace modeled by
R3

x; Bx;≡ xh i could literally make the same claim with “nutshell” replaced by “point
of (enriched) Newtonian space”! Of course, in this scenario the denizen of the micro-
space would be infinitesimal relative to the standard meter, despite the fact that the
points of the microspace, together with the betweenness and equidistance relations
defined thereon, model all of E3. In this setting there is plainly no reason to believe
the spatial betweenness and equidistance relations defined on the macropoints—the
points of the enriched Newtonian space—would be other than the familiar ones. Indeed,
it is difficult to see why this would not be the case whether the nondegenerate segments
of the R3

x; Bx;≡ xh i’s model segments that are finite, infinite, or infinitesimal relative to
the standard meter; after all, in each such case the segments whose sole members are the
R3

x; Bx;≡ xh i’s would be the degenerate segments of Π; B;≡h i.11

10 Note that the distinct though isomorphic ordered fields Floe, Floe0 , and F
l
oe00 have a common underlying

ordered additive group Glo � l;�l; < l; ooh i, and as such the ordered additive groups ofRoe,Roe0 , andRoe00

are all subgroups of Glo, whose nonnull elements are comparable with respect to relative finitude and
relative infinitude.

11 In his aforementioned pioneering work on non-Archimedean geometry, Veronese (1891, 56, x9)
introduced the notion of a nondegenerate segment that is indivisible relative to a system S of nondegenerate
segments. In essence, a nondegenerate segment ab is indivisible relative to S if ab cannot be decomposed
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Besides the models of E3 with extended points constructed above, there is a wealth
of other types of such models, including the aforementioned ones due to Huntington
(see the Appendix). We will bring the main body of the paper to a close by drawing
attention to a rather distinctive one, motivated by its inherent historical and
mathematico-philosophical interest.

Since the time of Euclid it has been widely held that atomistic space and continu-
ous space are incompatible (e.g., Hellman and Shapiro 2018, 190). After all, lines of
atomistic space have been assumed to be discretely ordered—one space atom imme-
diately following another—rather than densely ordered. However, if in our first con-
struction of a model of E3 one replaces the copies of models of E3 indexed over R3

with copies of extended indivisible spatial atoms indexed over R3, one obtains a model of
E3 whose points are extended indivisible spatial atoms. That is, one obtains a three-
dimensional Euclidean continuum of extended indivisible spatial atoms!
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Appendix: Huntington’s anticipation

As was noted in the Introduction, to establish the consistency of his postulates for ordinary three-
dimensional Euclidean geometry, Huntington introduces a “geometry of points of finite size” (1913,
524). Huntington’s formulation is based on two primitives: the notion of a sphere—spheres being the
members of a class K—and a (transitive, irreflexive) binary relation R of inclusion (1913, 537). Points
are defined as spheres which do not include any other sphere (1913, 529).

Following his definition of point, Huntington goes on to add: “It may be noticed that there is nothing
in this definition, or in any of our work, which requires our ‘points’ to be small; for example, a perfectly
good geometry is presented by the class of all ordinary spheres whose diameters are not less than one
inch; the ‘points’ of this system are simply the inch-spheres” (1913, 529–530).

After developing the remainder of his theory, Huntington constructs a class of models for his postu-
lates making use of the just noted idea as follows:
[L]et S�a; b; c; r� denote the class of all triads of real numbers x; y; z; which satisfy the equation

�x � a�2 � �y � b�2 � �z � c�2 ≤ r2;

where a; b; c; r are real numbers, and r is not less than a certain fixed number g (positive or zero).
We take as our class K the totality of all such S’s, and we define the relation R between any two of

these S’s by agreeing that

S�a0; b0; c0; r0� R S�a00; b00; c00; r00�
when and only when r0≠ r00 and every triad x; y; z which satisfies the relation

�x � a0�2 � �y � b0�2 � �z � c0�2 ≤ r02

satisfies also the relation

�x � a00�2 � �y � b00�2 � �z � c00�2 ≤ r002:

In this system �K; R�, the ‘points’ are the elements of the form S�a; b; c; g�; and it is not hard to show that
all the postulates are satisfied.

Moreover, as he goes on to add: “In the language of analytic geometry, this system is simply the
system of spheres whose radii are not less than g, where, in the most familiar case, g � 0. It is interesting
to observe that any other value of g is equally legitimate, so that we may speak of a perfectly rigorous
geometry in which the ‘points’, like the school-master’s chalk-marks on the blackboard, are of definite, finite size,
and the ‘lines’ and ‘planes’ of definite finite thickness” (1913, 540).

Huntington’s system is the first in a long line of axiomatizations of ordinary three-dimensional
Euclidean geometry in which the concept of a point is treated as a defined term, as opposed to a primitive
(e.g., Hellman and Shapiro 2018; Gerla 2021); and with the sole exception of Torretti (1984, 243–46), from
which we recently learned of Huntington’s extended points, all of the references to it we had been aware
of, including Tarski ([1929] 1983, 26), Menger (1940, 84) Gerla and Gruszczyński (2017), and Varzi (2021,
348), refer to it primarily for this reason. Unfortunately, as Torretti (1984, 244) aptly notes, Huntington’s
system, especially his half page (!) definition of congruence, is “unpleasantly complicated,” and we sus-
pect it is for this reason that the details of Huntington’s system, including his “points of finite size,” have
been largely forgotten.

Readers seeking an overview of Huntington’s system may consult Torretti (1984, 243–46). Given the
limitation of space we will merely introduce Huntington’s notions of line segment and line, show how a
betweenness relation may be defined thereon, and specify the relations that exist between the between-
ness and congruence relations in Huntington’s system and those in C3 R� � � R3; BR;≡ Rh i.
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For any two points a and b as defined above, Huntington defines the line segment 	ab
 (or 	ba
) as the set
of all points x such that every sphere that contains points a and b also contains x, and he further defines
the corresponding line ab as the union of 	ab
 and its two prolongations: fx : x is a point and a 2 	xb
g and
fx : x is a point and b 2 	ax
g (1913, 530–531). In the Cartesian space C3 R� �, a line so defined having points
with fixed radius r > 0 consists of the set of all spheres of radius r whose centers lie on a standard line in
C3 R� �, and, for the case where r � 0, it coincides with a standard line itself.12 Accordingly, if we let≡ �

denote Huntington’s congruence relation on segments and define a nonstrict betweeness relation B� (à la
Tarski) on triples of points a; b; c by the condition: B�abc if and only if b 2 	ac
, then the relation between
these constructs and their Cartesian counterparts is given by the following conditions for all points
a; b; c; d:

B�abc if and only if BRa0b0c0;

ab ≡ �cd if and only if a0b0≡ Rc0d0;

where a0; b0; c0; d0 are the centers of the points (i.e., spheres) a; b; c; d when r > 0 and coincide with
a; b; c; d when r � 0.

As our earlier remarks would suggest, and as Huntington makes clear, all of the points in his models
of three-dimensional Euclidean geometry, even those with extended points, are assigned null lengths,
and all nondegenerate segments are assigned positive real lengths (Huntington 1913, 535, 546–47).
The standard points inside Huntington’s extended spherical points and the betweenness and congruence
relations defined thereon are, of course, not part of Huntington’s models. However, using many-sorted
expansions of his models (analogous to those employed in section 9), they can be brought to light.

12 If we assume a standard point is a sphere that coincides with its center, then for r ≥ 0 this follows
from the simple fact that a point X is not on the segment joining the centers of spheres S0 and S00 of radius
r if and only if there is a sphere S of radius r with center X and a sphere S� containing S0 and S00 but not S
(Huntington 1913, 530, Fig. 1).
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