RIESZ'S FUNCTIONS IN WEIGHTED HARDY AND BERGMAN SPACES

Dedicated to Professor Fumi-Yuki Maeda on his sixtieth birthday

TAKAHIKO NAKAZI AND MASAHIRO YAMADA

ABSTRACT. Let μ be a finite positive Borel measure on the closed unit disc \overline{D} . For each a in \overline{D} , put

$$S(a) = \inf \int_{\bar{D}} |f|^p \, d\mu$$

where f ranges over all analytic polynomials with f(a) = 1. This upper semicontinuous function S(a) is called a *Riesz's function* and studied in detail. Moreover several applications are given to weighted Bergman and Hardy spaces.

1. Introduction. Let D be the open unit disc in the complex plane C. P denotes a set of all analytic polynomials and H denotes a set of all analytic functions on D. Suppose $0 . When <math>\mu$ is a finite positive Borel measure on \overline{D} and $a \in \overline{D}$, put

$$S(\mu, a) = S(\mu, p, a) = \inf\left\{\int_{\bar{D}} |f|^p \, d\mu \, ; f \in P \text{ and } f(a) = 1\right\}$$

and

$$R(\mu,a) = R(\mu,p,a) = \sup\left\{|f(a)|^p ; f \in P \text{ and } \int_{\bar{D}} |f|^p d\mu \le 1\right\}.$$

When μ is a finite positive Borel measure on D and $a \in D$, put

$$s(\mu, a) = s(\mu, p, a) = \inf\left\{\int_D |f|^p \, d\mu \, ; f \in H \text{ and } f(a) = 1\right\}$$

and

$$r(\mu, a) = r(\mu, p, a) = \sup\{|f(a)|^p ; f \in H \text{ and } \int_D |f|^p d\mu \le 1\}$$

The four functions *S*, *R*, *s* and *r* are called *Riesz's functions*. In this paper we study these four Riesz's functions. M. Riesz used such functions to solve the moment problem on the real line (*cf.* [6, Chapter 5]). T. Kriete and T. Trent [7] also investigated the relationship between μ and $R(\mu, 2, a)$. In the investigations of Riesz's functions, the most fundamental and important result is the following theorem by G. Szegő (*cf.* [5, Chapter 3]). He proved it only when p = 2 but it can be proved for arbitrary *p*. In the statement of the theorem, we note that the integral kernel $(1 - |a|^2)/|1 - \bar{a}e^{i\theta}|^2$ is called the *Poisson kernel*.

The research of the first author was partially supported by grant-in-aid for Scientific Research, Ministry of Education.

Received by the editors March 2, 1995.

AMS subject classification: Primary: 46E15, 30A98; Secondary: 47B20.

Key words and phrases: Hardy space, Bergman space, weight, Riesz's function, Carleson inequality (c) Canadian Mathematical Society 1996.

SZEGŐ'S THEOREM. Suppose $0 , <math>\mu$ is a finite positive Borel measure on \overline{D} with supp $\mu \subseteq \partial D$ and $d\mu/(d\theta/2\pi) = w(e^{i\theta})$. Then,

$$S(\mu, p, a) = (1 - |a|^2) \exp(\log w)^{\wedge} a) \quad (a \in D)$$

where $(\log w)^{\wedge}(a) = \int_0^{2\pi} \log w(e^{i\theta}) \frac{1-|a|^2}{|1-\bar{a}e^{i\theta}|^2} d\theta/2\pi$.

It is most desirable to describe $S(\mu, p, a)$ using μ as in Szegő's Theorem, when μ is an arbitrary finite Borel measure on \overline{D} . However such a problem is very difficult except for some special measures μ . In Section 2, we study the behaviour of $S(\mu, p, a)$ as $|a| \rightarrow 1$ for an arbitrary measure on \overline{D} . Moreover we note that

$$S(\mu, p, a)R(\mu, p, a) = 1 \quad (a \in D).$$

Thus, we need to know only S or R. In this paper, the results and the proofs about s and r are very similar to those about S and R. Hence we concentrate on only S or R in Sections 2, 3 and 4. Let m be the normalized area measure on D, that is, $dm = r dr d\theta/\pi$. In Section 3, we give several lower estimates of S using $d\mu/dm$. It is more difficult to give the upper estimates of S. We do it only in very special cases. In Section 4, we show that $R(\mu, p, a)$ is not in $L^1(\mu)$ if supp μ is not a finite set.

Suppose $0 . <math>H^p(\mu)$ denotes the closure of P in $L^p(\mu)$ when μ is a finite positive Borel measure on \overline{D} . $H^p(\mu)$ is called a *weighted Hardy space*. If $d\mu = d\theta/2\pi$, $H^p(\mu) = H^p$ is the classical Hardy space. When μ is a finite positive Borel measure on D, then one defines $L^p_a(\mu) = H \cap L^p(\mu)$. $L^p_a(\mu)$ is called a *weighted Bergman space*. If $\mu = m$, $L^p_a(\mu) = L^p_a$ is the usual Bergman space. H^p can be embedded in H. $L^p_a = H^p(m)$, and hence L^p_a is closed. We are interested in the following questions:

- (1) When can $H^{p}(\mu)$ be embedded in *H*?
- (2) When is $L_a^p(\mu)$ closed?
- (3) When can $H^{p}(\mu)$ be embedded in $L^{p}_{a}(\mu)$?

Of course it is very interesting to know when $L_a^p(\mu) = H^p(\mu)$, where μ is a measure on D. This problem is classical and important (*cf.* [2]). However, in this paper we are not going to consider this problem. Question (2) was studied by M. Yamada [13]. If μ is a measure on D, question (1) is equivalent to (3). Note that the measure μ for (2) satisfies (3). In Section 5, we study the three questions given above. For example, for some compact set K in D, if $\int_{\bar{D}\setminus K} \log W \, dm > -\infty$ then $H^p(\mu)$ can be embedded in H where $W = d\mu/dm$. This result follows from the lower estimate of $S(\mu, p, a)$ in Section 3.

In this paper, we will use the following notation. For each $a \in D$, let ϕ_a be the Möbius function on D, that is,

$$\phi_a(z) = \frac{a-z}{1-\bar{a}z} \quad (z \in D),$$

and put

$$\beta(a,z) = \frac{1}{2} \log \frac{1 + |\phi_a(z)|}{1 - |\phi_a(z)|} \quad (a,z \in D).$$

For $0 < r \le \infty$ and $a \in D$, let

$$D_r(a) = \{z \in D; \beta(a, z) < r\}$$

be the Bergman disc with 'center' *a* and 'radius' *r*. For $u \in L^1(m)$,

$$\tilde{u}(a) = \int_D u \circ \phi_a(z) \, dm(z) \quad (a \in D).$$

Then \tilde{u} may be bounded on D even if u is not bounded on D.

2. **Riesz's function.** If $\mu = m$, then for $0 . Hence <math>\mu = m$ or supp $\mu \subseteq \partial D$, by Szegő's Theorem $\lim_{r \to 1^-} S(\mu, p, re^{i\theta}) = 0$ a. e. θ . In this section, we show that this is true in general. In particular, *R* is not bounded on *D*. In fact, for arbitrary μ , we show that $\lim_{r \to 1^-} S(\mu, p, re^{i\theta}) = 0$ except for a countable set of θ .

PROPOSITION 1. Suppose $0 and <math>\mu$ is a finite positive Borel measure. Then the following are valid for $R(a) = R(\mu, p, a)$ and $S(a) = S(\mu, p, a)$.

- (1) $R(\mu, p, a) S(\mu, p, a) = 1$ for $a \in \overline{D}$, assuming $\infty \times 0 = 1$.
- (2) $R(\mu)$ is lower semicontinuous on $(0, \infty) \times D$, and $S(\mu)$ is upper semicontinuous on the same set. Moreover $R(\mu, p, a) \ge 1/\mu(\overline{D})$ and $S(\mu, p, a) \le \mu(\overline{D})$.
- (3) If $\log R$ or R is in $L^1(m)$, then for $a \in D$

$$R(a) \leq \exp(\log R)^{\sim}(a) \leq \tilde{R}(a).$$

(4) If $r < \infty$, then for $a \in D$

$$\log R(a) \leq \left(\frac{1+s|a|}{1-s|a|}\right)^2 \frac{1}{m(D_r(a))} \int_{Dr(a)} \log R \, dm$$

where $s = \tanh r$. Hence for $a \in D$

$$\log R(a) \leq \left(\frac{1+|a|}{1-|a|}\right) \int_D \log R \, dm.$$

These inequalities are also valid for R instead of log *R*.

(5) *For* $a \in D$,

$$S(\mu, p, a) \ge S(S(\mu) dm, p, a).$$

(6) *R* is not bounded on *D* and \overline{D} .

PROOF. (1) It is easy to see that $1 \le R(a)S(a)$ for $1 \in \overline{D}$. If 1 < R(a)S(a), then there exists a positive constant γ such that $1 \le \gamma S(a)$ and $\gamma < R(a)$. Hence $1 \le \gamma \int |g|^p d\mu$ for any $g \in P$ with g(a) = 1 and so

$$|f(a)|^p \leq \gamma \int_{\bar{D}} |f|^p d\mu$$
 for any $f \in P$.

This implies $\gamma \ge R(a)$. This contradiction shows that 1 = R(a) S(a). (2) is clear by (1). (3) If $f \in P$, then $\log |f|$ is subharmonic on D and hence for any $a \in D$,

$$\log |f(a)|^p \leq \int_D \log |f(z)|^p \frac{(1-|a|^2)^2}{|1-\bar{a}z|^4} \, dm(z).$$

932

Assuming $\int |f|^p d\mu \leq 1$, by definition of *R*

$$\log R(a) \leq \int_D \log R(z) \frac{(1-|a|^2)^2}{|1-\bar{a}z|^4} \, dm(z).$$

This implies $R(a) \leq \exp(\log R)^{\sim}(a) \leq \tilde{R}(a)$. (4) If $0 < r < \infty$, for any $a \in D_r(0)$ and any $f \in P$,

$$\log |f(a)|^{p} \leq \frac{1}{m(D_{r}(0))} \int_{D_{r}(a)} \log |f(z)|^{p} \frac{(1-|a|^{2})^{2}}{|1-\bar{a}z|^{4}} dm(z)$$

and hence

$$\log |f(a)|^{p} \leq \frac{1}{m(D_{r}(a))} \left(\frac{1+s|a|}{1-s|a|}\right)^{2} \int_{D_{r}(a)} \log |f|^{p} \, dm$$

where $s = \tanh r$. This proof is the same as that of [14, Proposition 4.3.8.]. Assuming $\int |f|^p d\mu \le 1$, we get (4) as in (3). (5) By (1),

$$\int |f|^p \, d\mu \ge S(\mu, z) |f(z)|^p \quad (z \in D),$$

and hence $\int |f|^p d\mu \ge \int |f|^p S(\mu) dm$. Assuming f(a) = 1 and $a \in D$, we get $S(\mu, a) \ge S(S(\mu) dm, a)$. (6) If $R(\mu, p, a)$ is bounded on \overline{D} , then $H^p(\mu) \subset L^{\infty}(\mu)$. By [11, Theorem 5.2], $H^p(\mu)$ is finitely dimensional. It is easy to see that supp μ is a finite set. Then trivially $R(\mu, p, a) = \infty$ except for $a \in \text{supp } \mu$. The proof of the statement for D is same to that for \overline{D} , assuming $\mu = \mu | D$.

Even if v is not bounded, \tilde{v} may be bounded. However (3) and (6) of Proposition 1 show that \tilde{R} is also not bounded. The following theorem gives a stronger result.

THEOREM 2. Suppose $0 and <math>\mu$ is a finite positive Borel measure on \overline{D} . If $a \in \partial D$, then the following are valid.

- (1) $\mu(\{a\}) = 0$ if and only if $S(\mu, p, a) = 0$.
- (2) $\lim_{r\to 1^-} S(\mu, p, ra) = 0$ except for a countable set of a in ∂D .
- (3) If $\mu(\{a\}) = 0$ and $\{a_n\}$ is a sequence in D with $\lim a_n = a$, then $\lim_{n \to \infty} S(\mu, p, a_n) = 0$.
- (4) If $\mu(\{a\}) > 0$, then for each *n*, the set $\{z \in D; |z a| < 1/n\} \cap \{z \in D; S(\mu, p, z) < 1/n\}$ is a nonempty open set.
- (5) If b < c and $E = \{z \in D; z = re^{i\theta}, 0 \le r < 1 \text{ and } b \le \theta \le c\}$, then R is not bounded on E.

PROOF. We may assume a = 1. (1) If $\mu(\{1\}) > 0$, then $|f(1)|^p \le \int |f|^p d\mu/\mu(\{1\})$ and so $R(\mu, p, 1) \le 1/\mu(\{1\})$. (1) of Proposition 1 implies $S(\mu, p, 1) > 0$. Conversely suppose $\mu(\{1\}) = 0$. If $z \in \overline{D}$ and $z \ne 1$, then $\lim_{t \to 1^+} |(1 - t)/(z - t)| = 0$ and

$$\left|\frac{z-1}{z-t}-1\right| = \left|\frac{1-t}{z-t}\right| < 1 \quad (t > 1).$$

For any t > 1,

$$S(\mu, p, 1) \leq \int_{\bar{D}} \left| 1 - \frac{z-1}{z-t} \right|^p d\mu(z) = \int_{\bar{D}\setminus\{1\}} \left| \frac{1-t}{z-t} \right|^p d\mu(z).$$

As $t \to 1$, by the Lebesgue's dominated convergence theorem, $S(\mu, p, 1) = 0$. (2) Suppose $\mu(\{1\}) = 0$. If there exist a sequence $\{r_n\}$ and a positive constant ε such that $0 < r_n < 1$ with $r_n \to 1$ and $S(\mu, p, r_n) \ge \varepsilon > 0$, then

$$|f(r_n)|^p \leq \frac{1}{\varepsilon} \int_{\tilde{D}} |f|^p d\mu$$
 and so $|f(1)|^p \leq \frac{1}{\varepsilon} \int_{\tilde{D}} |f|^p d\mu$.

This implies $S(\mu, p, 1) > 0$ and contradicts (1). Hence if $\mu(\{1\}) = 0$, then $\lim_{r \to 1^-} S(\mu, p, r) = 0$. This implies (2) because $\{a \in \partial D; \mu(\{a\}) > 0\}$ is a countable set. (3) is clear by the proof of (2). (4) Suppose $\mu(\{1\}) > 0$ and for each *n*, put

$$G_n = \left\{ z \in \overline{D}; |z-1| < \frac{1}{n} \right\} \cap \left\{ z \in \overline{D}; S(\mu, p, z) < \frac{1}{n} \right\}.$$

Since $\{z \in \partial D; \mu(\{z\}) > 0\}$ is a countable set, for each *n* there exists $b_n \in \{z \in \partial D; |z - 1| < \frac{1}{n}\}$ with $\mu(\{b_n\}) = 0$. Then $S(\mu, p, b_n) = 0$ by (1) and hence G_n is not empty. G_n is a relatively open set in \overline{D} by (2) of Proposition 1 and so $G_n \cap D$ is a nonempty open set. (5) follows from (2).

If $R(\mu, 2, a) < \infty$, then the point $a \in D$ is a bounded point evaluation for $H^2(\mu)$. Therefore, there exists k_a in $H^2(\mu)$ such that $f(a) = \int f(z)\overline{k_a(z)} d\mu(z)$ for any f in $H^2(\mu)$ and hence $R(\mu, 2, a) = \int |k_a(z)|^2 d\mu(z)$. Thus the results in this section give some information about the reproducing kernel k_a .

3. Estimate of Riesz's function. In this section we give upper and lower estimates of S. The lower ones will be used later. The following proposition is a generalization of Szegő's theorem in the Introduction. In fact, if $\mu | D$ is a zero measure, then it gives Szegő's Theorem.

PROPOSITION 3. Suppose $0 and <math>\mu$ is a finite positive Borel measure such that $(d\mu|\partial D)/(d\theta/2\pi) = w(e^{i\theta})$, $\mu|D = \sum a_j\delta_{z_j}$ and $\sum(1-|z_j|) < \infty$. Let b be a Blaschke product of $\{z_\ell\}$ and b_j a Blaschke product of $\{z_\ell\}_{\ell \neq j}$. Then for all $a \in D$, $(1-|a|^2)\exp(\log w)^{\wedge}(a) \leq S(\mu, p, a)$. If $a \in D \setminus \{z_\ell\}$, then

$$S(\mu, p, a) \le |b(a)|^{-p} (1 - |a|^2) \exp(\log w)^{\wedge}(a).$$

If $a = z_j$, then

$$S(\mu, p, a) \le |b_j(a)|^{-p} (1 - |a|^2) \exp(\log w)^{\wedge}(a) + a_j.$$

In particular, $S(\mu, p, a) > 0$ if and only if $\log w \in L^1(d\theta)$.

PROOF. Since $S(\mu, p, a) \ge S(w d\theta/2\pi, p, a)$ for all $a \in D$, by Szegő's Theorem $(1 - |a|^2) \exp(\log w)^{\wedge}(a) \le S(\mu, p, a)$ for all $a \in D$. Let B_n be a finite Blaschke product of $\{z_1, z_2, \ldots, z_n\}$. If $a \in D \setminus \{z_\ell\}$, then

$$S(\mu, p, a) \leq \inf\left\{ \int \left| \frac{B_n}{B_n(a)} g \right|^p d\mu |\partial D + \sum_{j=1}^\infty a_j \left| \frac{B_n(z_j)}{B_n(a)} g(z_j) \right|^p; g \in P \text{ and } g(a) = 1 \right\}$$
$$= \frac{1}{|B_n(a)|^p} \inf\left\{ \int |B_n g|^p d\mu |\partial D + \sum_{j=n+1}^\infty a_j |B_n(z_j)|^p |g(z_j)|^p; g \in P \text{ and } g(a) = 1 \right\}.$$

As $n \to \infty$,

$$S(\mu, p, a) \leq \frac{1}{|b(a)|^p} \inf\left\{\int |g|^p d\mu |\partial D; g \in P \text{ and } g(a) = 1\right\}.$$

Now by Szegő's Theorem, for each $a \in D$, $S(\mu, p, a) \leq |b(a)|^{-p} (1-|a|^2) \exp(\log w)^{\wedge}(a)$. Let $B_{j,n}$ be a finite Blaschke product of $\{z_1, z_2, ..., z_n\} \setminus \{z_j\}$. If $a = z_j$ and n > j, then

$$S(\mu, p, a) \leq \inf \left\{ \int \left| \frac{B_{j,n}}{B_{j,n}(a)} g \right|^p d\mu \, ; g \in P \text{ and } g(a) = 1 \right\}$$

= $\frac{1}{|B_{j,n}(a)|^p} \inf \left\{ \int |B_{j,n}g|^p d\mu |\partial D + a_j|B_{j,n}(a)|^p + \sum_{\ell \geq n+1} a_\ell |B_{j,n}(z_\ell)|^p |g(z_\ell)|^p \, ; g \in P \text{ and } g(a) = 1 \right\}.$

As $n \to \infty$, by Szegő's Theorem, for $a = z_i$,

$$S(\mu, p, a) \leq |b_j(a)|^{-p}(1-|a|^2)\exp(\log w)^{\wedge}(a) + a_j.$$

The following proposition is related to Theorem 2 in this paper and the Theorem in [7]. In fact, if \tilde{W} is bounded on D, then $(1 - |a|^2)^{-2}S(W dm, p, a)$ is bounded on D. Moreover if W is continuous on D, then for all $e^{i\theta}$,

$$\lim_{a\to e^{i\theta}}(1-|a|^2)^2R(W\,dm,p,a)=1/W(e^{i\theta}),$$

since for a function u continuous on \overline{D} we have $\lim_{a\to e^{i\theta}} \widetilde{u}(a) = u(e^{i\theta})$.

PROPOSITION 4. Suppose $0 and <math>\mu$ is a finite positive Borel measure on \overline{D} . (1) $\tilde{\mu}(a) \ge (S(\mu))^{\sim}(a) \quad (a \in D)$. (2) If $d\mu = W dm$ and $a \in D$, then

$$(1-|a|^2)^2 \exp(\log W)^{\sim}(a) \le S(\mu, p, a) \le (1-|a|^2)^2 \tilde{W}(a).$$

(3) $S(W dm, a) = (1 - |a|^2)^2 S(W \circ \phi_a dm, 0)$ for $a \in D$.

PROOF. (1) For all $z \in D$

$$\int |f|^p d\mu \ge |f(z)|^p S(z) \text{ and so } \int |f|^p d\mu \ge \int |f|^p S dm.$$

Assuming $f(z) = \{(1-|a|^2)/(1-\bar{a}z)^2\}^{2/p}$ for $a \in D$, $\tilde{\mu}(a) \ge \tilde{S}(a)$. (2) If $\log W \in L^1(m)$, then

S(Wdm, p, a)

$$= \inf\left\{ \int |f|^{p} W \, dm \, ; f \in P \text{ and } f(a) = 1 \right\}$$

= $\inf\left\{ \int |g|^{p} W \circ \phi_{a} \frac{(1 - |a|^{2})^{2}}{|1 - \bar{a}z|^{4}} \, dm \, ; g \in H^{p}(W \circ \phi_{a} \, dm) \text{ and } g(0) = 1 \right\}$
= $(1 - |a|^{2})^{2} \inf\left\{ \int |k|^{p} W \circ \phi_{a} \, dm \, ; k \in H^{p}(W \circ \phi_{a} \, dm) \text{ and } k(0) = 1 \right\}$
 $\geq (1 - |a|^{2})^{2} \exp \int (\log W) \circ \phi_{a} \, dm = (1 - |a|^{2})^{2} \exp(\log W)^{\sim}(a).$

The inequality above is proved by the fact that $\log |k(0)| \leq \int_0^{2\pi} \log |k(re^{i\theta})| d\theta/2\pi$ for 0 < r < 1 if $k \in H$, and by two Jensen's inequalities. The other inequality in (2) follows by setting $k \equiv 1$ in the infimum above. (3) is clear by the proof of (2).

In (2) of Proposition 4, we can get estimates of $S(\mu, p, a)$ as in Proposition 3 when $d\mu = W dm + \sum_{j=1}^{\infty} a_j \delta_{z_j}, \{z_j\} \subset D$ and $\sum (1 - |z_j|) < \infty$. The following theorem is important in this paper and the following lemma is used to prove it.

LEMMA 1. Let $\Delta_s(a)$ be the set $\{z \in D; |(a-z)/(1-\bar{a}z)| < s\}$ where $a \in D$ and $s \in (0, 1)$. If $t \in (0, 1)$ and $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then $\overline{\Delta_t(0)} \subset \Delta_s(a)$.

PROOF. Without loss of generality $a \neq 0$. the Euclidean center and radius of $\Delta_s(a)$ are

$$C = \frac{1 - s^2}{1 - s^2 |a|^2} a, \quad R = \frac{1 - |a|^2}{1 - s^2 |a|^2} s$$

respectively. Hence to prove $\overline{\Delta_t(0)} \subset \Delta_s(a)$, it is sufficient to show that

$$t + \frac{1 - s^2}{1 - s^2 |a|^2} |a| < \frac{1 - |a|^2}{1 - s^2 |a|^2} s.$$

If $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then

$$1 - s^{2} \le \frac{(1 - |a|^{2})(1 - t^{2})}{5 - |a|^{2}}$$

and hence $s^2 \ge \{4 + (1 - |a|^2)t^2\}/(5 - |a|^2)$. The last inequality is equivalent to

$$1 - s^2 \le \frac{(1 - |a|^2)(s^2 - t^2)}{4}.$$

Then

$$1 - s^{2} \le \frac{(1 - |a|^{2})(s - t)}{2} \frac{s + t}{2} < \frac{(1 - |a|^{2})(s - t)}{|a|(t|a| + 1)}$$

because s + t < 2 and |a|(t|a| + 1) < 2. This is equivalent to the inequality

$$t + \frac{1 - s^2}{1 - s^2 |a|^2} |a| < \frac{1 - |a|^2}{1 - s^2 |a|^2} s.$$

THEOREM 5. Suppose $0 and <math>\mu$ is a finite positive Borel measure on \overline{D} . Set $d\mu/dm = W dm$, suppose K is an arbitrary compact set in D and let $t = \max\{|z|; z \in K\}$. Then, for $a \in D$

$$S(\mu, p, a) \geq \frac{(1-|a|^2)^3(1-t^2)}{5} \exp\left[\frac{2^4 \cdot 5}{(1-|a|^2)^3(1-t^2)} \int_{K^c} \log(W \wedge 1) \, dm\right].$$

If $1 \le p < \infty$ *and* $a \in D$ *, then*

$$S(\mu,p,a) \geq \frac{(1-|a|^2)^{3(2-\frac{1}{p})}(1-t^2)^{2-\frac{1}{p}}}{2^{4(1-\frac{1}{p})} \cdot 5^{2-\frac{1}{p}}} \left(\int_{K^c} W^{-\frac{1}{p-1}} dm\right)^{\frac{1}{p}-1}.$$

PROOF. By two Jensen's inequalities, for $a \in D$

$$\begin{split} S(\mu, p, a) &\geq S(W \, dm, p, a) \\ &= \inf \left\{ \int |g|^p W \circ \phi_a \frac{(1 - |a|^2)^2}{|1 - \bar{a}z|^4} \, dm \, ; g(0) = 1 \right\} \\ &= (1 - |a|^2)^2 \inf \left\{ \int |k|^p W \circ \phi_a \, dm \, ; k(0) = 1 \right\} \\ &\geq (1 - |a|^2)^2 \int_0^1 2r \, dr \exp \left[\int_0^{2\pi} \log W \circ \phi_a \, d\theta / 2\pi \right] \\ &\geq (1 - |a|^2)^2 (1 - s^2) \int_s^1 \frac{2r}{1 - s^2} \, dr \exp \left[\int_0^{2\pi} \log W \circ \phi_a \, d\theta / 2\pi \right] \\ &\geq (1 - |a|^2)^2 (1 - s^2) \exp \left[\frac{1}{1 - s^2} \int_s^1 2r \, dr \int_0^{2\pi} \log W \circ \phi_a \, d\theta / 2\pi \right] \\ &= (1 - |a|^2)^2 (1 - s^2) \exp \left[\frac{1}{1 - s^2} \int_{D \setminus \Delta_s(0)} \log W \circ \phi_a \, dm \right] \\ &= (1 - |a|^2)^2 (1 - s^2) \exp \left[\frac{1}{1 - s^2} \int_{D \setminus \Delta_s(a)} \log W \frac{(1 - |a|^2)^2}{|1 - \bar{a}z|^4} \, dm \right] \\ &\geq (1 - |a|^2)^2 (1 - s^2) \exp \left[\frac{(1 - |a|^2)^2}{(1 - |a|)^4} \frac{1}{1 - s^2} \int_{D \setminus \Delta_s(a)} \log (W \wedge 1) \, dm \right] \end{split}$$

where $s \in (0, 1)$ and $\Delta_s(a) = \{z \in D; |(a - z)/(1 - \overline{a}z)| < s\}$. For each compact set $K \subset D$, if $t = \max\{|z|; z \in K\}$ and $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then by Lemma $1 \overline{\Delta_t(0)} \subset \Delta_s(a)$. Hence $K \subset \Delta_s(a)$ and so $K^c \supset D \setminus \Delta_s(a)$. Thus, if $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then

$$\frac{(1-|a|^2)^2}{(1-|a|)^4}\frac{1}{1-s^2} = \frac{(1+|a|)^4}{(1-|a|^2)^2(1-s^2)} \le \frac{2^4 \cdot 5}{(1-|a|^2)^3(1-t^2)}$$

and hence for all $a \in D$

$$S(\mu, p, a) \geq \frac{(1 - |a|^2)^3 (1 - t^2)}{5} \exp\left[\frac{2^4 \cdot 5}{(1 - |a|^2)^3 (1 - t^2)} \int_{K^c} \log(W \wedge 1) \, dm\right].$$

Now we will prove the second inequality. Instead of Jensen's two inequalities, we will use the Kolmogoroff's inequality (*cf.* [12, Theorem 4.3.1]). For $a \in D$, if $1 \le p < \infty$ and 1/p + 1/q = 1,

$$\begin{split} S(\mu,p,a) &\geq (1-|a|^2)^2 \int_0^1 2r \, dr \left(\int_0^{2\pi} (W \circ \phi_a)^{-\frac{1}{p-1}} \, d\theta/2\pi \right)^{-\frac{1}{q}} \\ &\geq (1-|a|^2)^2 (1-s^2) \int_s^1 \frac{2r}{1-s^2} \, dr \left(\int_0^{2\pi} (W \circ \phi_a)^{-\frac{1}{p-1}} \, d\theta/2\pi \right)^{-\frac{1}{q}} \\ &\geq (1-|a|^2)^2 (1-s^2) \left(\frac{1}{1-s^2} \int_s^1 2r \, dr \int_0^{2\pi} (W \circ \phi_a)^{-\frac{1}{p-1}} \, d\theta/2\pi \right)^{-\frac{1}{q}} \\ &= (1-|a|^2)^2 (1-s^2)^{1+\frac{1}{q}} \left(\int_{D \setminus \Delta_s(0)} (W \circ \phi_a)^{-\frac{1}{p-1}} \, dm \right)^{-\frac{1}{q}} \\ &= (1-|a|^2)^2 (1-s^2)^{1+\frac{1}{q}} \left(\int_{D \setminus \Delta_s(a)} W^{-\frac{1}{p-1}} \frac{(1-|a|^2)^2}{|1-\bar{a}z|^4} \, dm \right)^{-\frac{1}{q}} \\ &\geq (1-|a|^2)^2 (1-s^2)^{1+\frac{1}{q}} \left\{ \frac{(1-|a|^2)^2}{(1-|a|)^4} \int_{D \setminus \Delta_s(a)} W^{-\frac{1}{p-1}} \, dm \right\}^{-\frac{1}{q}} \\ &\geq \frac{(1-|a|^2)^{2(1+\frac{1}{q})} (1-s^2)^{1+\frac{1}{q}}}{2^{\frac{4}{q}}} \left(\int_{D \setminus \Delta_s(a)} W^{-\frac{1}{p-1}} \, dm \right)^{-\frac{1}{q}} \end{split}$$

where $s \in (0, 1)$. As in the proof of the first inequality, for each compact set $K \subset D$, if $t = \max\{|z|; z \in K\}$ and $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then $K^c \supset D \setminus \Delta_s(a)$. Thus, if $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then for all $a \in D$

$$S(\mu, p, a) \geq \frac{(1 - |a|^2)^{3(1 + \frac{1}{q})}(1 - t^2)^{1 + \frac{1}{q}}}{2^{\frac{4}{q}} \cdot 5^{1 + \frac{1}{q}}} \left(\int_{K^c} W^{-\frac{1}{p-1}} dm\right)^{-\frac{1}{q}}.$$

The second inequality of Theorem 5 implies

 $S(\mu, 1, a) \ge (1 - |a|^2)^3 \times (1 - t^2)(1/5) \operatorname{ess\,inf} \{ W(x); x \in K^c \}.$

Let σ be a finite positive Borel measure on [0,1]. Then, $\mu(re^{i\theta}) = \sigma(r) \times W(re^{i\theta}) d\theta/2\pi$ is more general than $W dm = 2r dr \times W(re^{i\theta}) d\theta/2\pi$. If $\sigma(r)$ is singular to the Lebesgue measure on [0,1], then μ is singular to m. However we can give an interesting lower estimate. It is different from that of Theorem 5 in case of $\mu = W dm$.

THEOREM 6. Suppose $0 and <math>d\mu = \sigma(r) \times W(re^{i\theta}) d\theta/2\pi$ where $\sigma(r)$ is a finite positive Borel measure on [0, 1]. If $\mathbf{W}(e^{i\theta}) = \sup_r W(re^{i\theta})$ and $W_r(e^{i\theta}) = W(re^{i\theta})$, then for $a \in D$

$$(1 - |a|^2) \int_{|a|}^1 \exp(\log W_r)^{\wedge}(a) \, d\sigma(r)$$

$$\leq S(\mu, p, a)$$

$$\leq \sigma([0, 1]) \inf\left\{\sup_r \int_0^{2\pi} |f(re^{i\theta})|^p W(re^{i\theta}) \, d\theta/2\pi; f(a) = 1\right\}$$

$$\leq \sigma([0, 1]) \inf\left\{\sup_r \int_0^{2\pi} |f(re^{i\theta})|^p \mathbf{W}(e^{i\theta}) \, d\theta/2\pi; f(a) = 1\right\}$$

PROOF. For $a \in D$,

$$S(\mu, p, a) = \inf \left\{ \int_0^1 d\sigma(r) \int_0^{2\pi} |f(re^{i\theta})|^p W(re^{i\theta}) d\theta / 2\pi; f(a) = 1 \right\}$$

$$\geq \int_0^1 d\sigma(r) \inf \left\{ \int_0^{2\pi} |f(re^{i\theta})|^p W(re^{i\theta}) d\theta / 2\pi; f(a) = 1 \right\}$$

$$= \int_{|a|}^1 d\sigma(r) \inf \left\{ \int_0^{2\pi} |f(re^{i\theta})|^p W(re^{i\theta}) d\theta / 2\pi; f(a) = 1 \right\}$$

$$= \int_{|a|}^1 (1 - |a|^2) \exp(\log W_r)^{\wedge}(a) d\sigma(r).$$

We used Szegő's Theorem in the last equality. The upper estimates are trivial.

COROLLARY 1. Let $d\mu = \sigma(r) \times W(re^{i\theta}) d\theta / 2\pi$ as in Theorem 6 and 0 . $(1) If <math>W(re^{i\theta}) \equiv 1$, then for $a \in D$

$$(1-|a|^2)\sigma([|a|,1]) \le S(\mu,p,a) \le (1-|a|^2\sigma([0,1])).$$

In particular, $S(\mu, p, 0) = \sigma([0, 1])$.

(2) If $W(re^{i\theta}) = |h(re^{i\theta})|$ for some outer function h in $H^1(d\theta)$, then for $a \in D$

$$(1-|a|^2)\int_{|a|}^1 W(ra)\,d\sigma(r) \le S(\mu,p,a) \le (1-|a|^2)W(a)\sigma([0,1]).$$

(3) If $1 and <math>\mathbf{W}(e^{i\theta}) = \sup W(re^{i\theta})$ satisfies the A_p condition, then there exists a positive constant γ such that for $a \in D$

$$S(\mu, p, a) \leq \gamma(1 - |a|^2) \exp(\log \mathbf{W})^{\wedge}(a)\sigma([0, 1]).$$

PROOF. (1) is a special case of (2). (2) Since h is an outer function in H^1 , for $a \in D$

$$\exp(\log W_r)^{\wedge}(a) = \exp(\log |h_r|)^{\wedge}(a) = |h(ra)| = W(ra)$$

and

$$\inf_{f} \left\{ \sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta}) d\theta / 2\pi \right\}$$

=
$$\inf_{f} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} |h(e^{i\theta})| d\theta / 2\pi = (1 - |a|^{2})|h(a)| = (1 - |a|^{2})W(a).$$

Now Theorem 6 implies (2). (3) By a theorem of M. Rosenblum (*cf.*[10] and [9, Theorem 2.2]), there exists a positive constant γ such that for any $f \in P$

$$\sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi \leq \gamma \int_{0}^{2\pi} |f(e^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi$$

because $\mathbf{W} \in A_p$. By Theorem 6 and Szegő's Theorem, for $a \in D$

$$\inf_{f} \left\{ \sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi \right\} \leq \gamma \inf_{f} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi$$
$$= \gamma (1 - |a|^{2}) \exp(\log \mathbf{W})^{\wedge}(a)$$

This implies (3).

In (2) of Corollary 1, the referee pointed out that the identity $S(\mu, p, a) = W(a)S(\nu, p, a)$ is valid where $d\nu = \sigma(r) \times d\theta/2\pi$. Applying Theorem 6 for ν , we have the estimates $(1 - |a|^2)\sigma([|a|, 1])W(a) \le S(\mu, p, a) \le (1 - |a|^2)\sigma([0, 1])W(a)$.

4. The Carleson inequality and Riesz's function. Let ν and μ be finite positive Borel measures on \overline{D} and $1 \le p < \infty$. We say that ν and μ satisfy the (ν, μ, p) -Carleson inequality, if there exists a constant $\gamma > 0$ such that

$$\int_{\bar{D}} |f|^p \, d\nu \le \gamma \int_{\bar{D}} |f|^p \, d\mu$$

for all $f \in P$ (see [8]). ν and μ satisfy the (ν, μ, p) -Carleson inequality if and only if $H^p(\mu) \subset H^p(\nu)$ and the inclusion mapping $i_p: H^p(\mu) \to H^p(\nu)$ is bounded. We say that for $p > 1, \nu$ and μ satisfy the (ν, μ, p) -vanishing Carleson inequality if $H^p(\mu) \subset H^p(\nu)$ and $i_p: H^p(\mu) \to H^p(\nu)$ is compact. We say that for $p = 1, \nu$ and μ satisfy the (ν, μ, p) -vanishing Carleson inequality if i_p is star-compact. We could not prove Theorem 7 for p = 1 because we do not know anything about the predual of $H^1(\mu)$. Using Riesz's functions, we will show vanishing Carleson inequalities. As a result, we show that $R(\mu, p) \notin L^1(\mu)$ if supp μ is not a finite set. Moreover, from a given measure μ , we will show how to construct a measure ν such that the (ν, μ, p) -vanishing Carleson inequality is valid.

THEOREM 7. Suppose $1 , and <math>\nu$ and μ are finite positive Borel measures on \overline{D} .

(1) If $\int R(\mu,p) d\nu < \infty$, then ν and μ satisfy the (ν,μ,p) -vanishing Carleson inequality and

$$R(\mu, p, a) \leq \left(\int R(\mu, p) d\nu\right) R(\nu, p, a) \quad (a \in \overline{D}).$$

(2) If V is a Borel function such that $0 \le V \le S$ on \overline{D} , then $V|g|^p$ is bounded on \overline{D} for each g in $H^p(\mu)$, and V dm and μ satisfy the $(V dm, \mu, p)$ -vanishing Carleson inequality.

PROOF. (1) By definition of $R(\mu, p, a)$, for $a \in \overline{D}$,

$$|f(a)|^p \leq R(\mu, p, a) \int |f|^p d\mu \quad (f \in P).$$

Hence if $\gamma = \int R(\mu, p) d\nu < \infty$, then $\int |f|^p d\nu \le \gamma \int |f|^p d\mu$ ($f \in P$) and so $i_p: H^p(\mu) \to H^p(\nu)$ is bounded. We will show that i_p is compact. If $f_n \to f$ weakly in $H^p(\mu)$, then there exists a finite positive constant γ' such that

$$\int |f_n - f|^p \, d\mu \le \gamma' \text{ for all } n.$$

By the hypothesis, $R(\mu, p, a) < \infty \nu$ -a.e. on \overline{D} and so $f_n \to f \nu$ -a.e. on \overline{D} because $f_n \to f$ weakly. Moreover by definition of $R(\mu, p, a)$, $|f_n(a) - f(a)|^p \leq \gamma' R(\mu, p, a)$ and by the hypothesis, $R(\mu, p, a) \in L^1(\nu)$. Thus

$$\int |f_n - f|^p \, d\nu \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

by Lebesgue's dominated convergence theorem. This implies i_p is compact. Since $\int |f|^p d\nu \leq \gamma \int |f|^p d\mu$ and $\gamma = \int R(\mu, p) d\nu$, assuming f(a) = 1, we get $S(\nu, p, a) \leq \gamma S(\mu, p, a)$. Now by (1) of Proposition 1, we get the inequality of (1). (2) If $0 \leq V \leq S$, then $VR \leq 1$ and hence $V(a)|f(a)|^p$ is bounded on \overline{D} by $\int |f|^p d\mu$, for each $f \in H^p(\mu)$. Moreover if $\nu = V dm$ and $0 \leq V \leq S$, then $\int R(\mu, p) d\nu \leq \int dm = 1$ and hence by (1) ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality.

COROLLARY 2. If $0 and supp <math>\mu$ is not a finite set, then $R(\mu, p) \notin L^1(\mu)$.

PROOF. Suppose $1 . If <math>R(\mu, p) \in L^1(\mu)$, then the inclusion map $i_p: H^p(\mu) \to H^p(\mu)$ is compact. It is easy to see that i_p is an identity operator. Hence the unit ball of $H^p(\mu)$ is compact with respect to the norm. Therefore $H^p(\mu)$ is finitely dimensional. This contradicts that supp μ is not a finite set. This implies that $R(\mu, p) \notin L^1(\mu)$. For 0 , the proof is due to the referee. Choose*n*sufficiently large that <math>np > 1. If g(a) = 1 then $g^n(a) = 1$ as well, and g^n is a polynomial if *g* is a polynomial. Thus,

$$S(\mu, p, a) = \inf\left\{\int_{\tilde{D}} |f|^p \, d\mu \, ; f \in P, f(a) = 1\right\}$$
$$\leq \inf\left\{\int_{\tilde{D}} |g^n|^p \, d\mu \, ; g \in P, g(a) = 1\right\} = S(\mu, np, a).$$

This implies that $R(\mu, p) \notin L^1(\mu)$ for 0 .

By Proposition 4 and Theorem 5 we obtain the following result.

COROLLARY 3. Suppose $1 and <math>d\mu/dm = W$.

- (1) If $\log W \in L^1(m)$ and $d\nu = (1 |z|^2)^2 \exp(\log W)^{\sim} dm$, then ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality.
- (2) If $\chi_{K^c} \log(W \wedge 1) \in L^1(m)$ for some compact set K in D, then there exists a nonnegative constant b such that $d\nu = \exp\{-b(1-|z|^2)^{-3}\}$ dm and μ satisfy the (ν, μ, p) -vanishing Carleson inequality.
- (3) Suppose $\chi_{K^c} W^{-\frac{\Gamma}{p-1}} \in L^1(m)$ for some compact set K in D. If $d\nu = c(1-|z|^2)^{3(2-\frac{1}{p})}$ dm, then ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality.

Suppose $1 and <math>d\mu/dm = W$. If $\chi_{K^c} \log W \in L^1(m)$ for some compact set *K* in *D*, then there exists a positive constant *a* and a nonnegative constant *b* such that

$$a(1-|z|^2)^3 \exp\{-b(1-|z|^2)^{-3}\}|f(z)|^p$$

is bounded on D for each $f \in H^p(\mu)$. Here a and b do not depend on f, but only on W and the choice of K. This is a corollary of (2) in Theorem 7.

5. $H^p(\mu)$ and $L^p_a(\mu)$. The following is a result of Theorem 5. If $d\mu/dm = W$ and log W is integrable on the complement K^c of a compact set in D, then $H^p(\mu) \subseteq L^p_a(\mu)$. In this section, we show that if log W is locally integrable on K^c , then the same result is true. We give a necessary and sufficient condition for $H^p(\mu) \subset L^p_a(\mu)$ using Riesz's function, providing (supp μ) $\cap D$ is a uniqueness set for H. A subset E of D is a uniqueness set if E satisfies the following: If f in H is zero on E, then $f \equiv 0$ on D. Theorem 8 is a joint work with K. Takahashi.

LEMMA 2. Suppose $0 and <math>\mu$ is a finite positive Borel measure on D. Then the following (1)–(3) are equivalent.

- (1) $\sup_{a \in K} R(\mu, p, a) < \infty$ for all compact sets K in D.
- (2) $\int_K R(\mu, p) dm < \infty$ for all compact sets K in D.
- (3) $\int_K \log R(\mu, p) dm < \infty$ for all compact sets K in D.

PROOF. Both (1) \Rightarrow (2) and (2) \Rightarrow (3) are trivial. We will show (3) \Rightarrow (1). We may assume that $\mu(D) = 1$. For any $f \in P$,

$$\log |f(0)|^p \leq \frac{1}{m(D_r(0))} \int_{D_r(0)} \log |f|^p \, dm.$$

If $a \in D_r(0)$, then for all $f \in P$

$$\log |f(a)|^{p} \leq \frac{1}{m(D_{r}(0))} \int_{D_{r}(a)} \log |f|^{p} \frac{(1-|a|^{2})^{2}}{|1-\bar{a}z|^{4}} dm.$$

Assuming $\int |f|^p d\mu \leq 1$, we get

$$\log R(\mu, p, a) \leq \frac{1}{m(D_r(0))} \frac{(1+|a|)^2}{(1-|a|)^2} \int_{D_r(a)} \log R(\mu, p) \, dm.$$

Since $D_r(a) \subset D_{2r}(0)$ and $R(\mu, p, a) \ge 1$, there exists a finite positive constant γ_r such that for each $a \in D_r(0)$ we have

$$\log R(\mu, p, a) \le \gamma_r \int_{D_{2r}(0)} \log R(\mu, p) \, dm$$

This implies (1).

LEMMA 3. Let X be a Banach space which consists of analytic functions on D and contains 1. Suppose there exists a dense subspace Y of X such that if f in Y, then (f-f(a))/(z-a) belongs to Y for some $a \in D$. If (z-a)X is not dense in X, then the functional $f \mapsto f(a)$ is bounded on Y.

PROOF. By the hypothesis, if $f \in Y$, then f = f(a) + (z - a)g for some $g \in Y$. Since (z - a)X is not dense in X, there exists a nonzero $\phi \in X^*$ such that $\langle (z - a)h, \phi \rangle = 0$. Then, for $f \in Y$ we have $\langle f, \phi \rangle = f(a)\langle 1, \phi \rangle$. Since ϕ is not identically zero we have $\langle 1, \phi \rangle \neq 0$. Thus $|f(a)| \leq \gamma ||f||$ for all $f \in Y$ where $\gamma = |\langle 1, \phi \rangle|^{-1} ||\phi||_*$. THEOREM 8. Suppose $1 \le p < \infty$ and μ is a finite positive Borel measure on D such that $(\text{supp } \mu) \cap D$ is a uniqueness set for H.

(1) $L^p_a(\mu)$ is closed if and only if for all compact sets K in D

$$\int_{K} \log r(\mu, p) \, dm < \infty \text{ or } \int_{K} \log s(\mu, p) \, dm > -\infty.$$
(2) $H^{p}(\mu) \subset L^{p}_{a}(\mu)$ if and only if for all compact sets K in D
$$\int_{K} \log R(\mu, p) \, dm < \infty \text{ or } \int_{K} \log S(\mu, p) \, dm > -\infty.$$

PROOF. (1) First suppose that $L_a^p(\mu)$ is closed. If $f \in L_a^p(\mu)$, then (f-f(0))/z belongs to *H*. Since (f - f(0))/z is bounded on $|z| \leq t < 1$ and 1/z is bounded on $|z| \geq t$, (f - f(0))/z belongs to $L_a^p(\mu)$. This implies that $\{f \in L_a^p(\mu); f(0) = 0\} = zL_a^p(\mu)$ and hence $L_a^p(\mu) = \mathbb{C} \oplus zL_a^p(\mu)$. If Af = zf for $f \in L_a^p(\mu)$, then *A* is a bounded operator on $L_a^p(\mu)$ and the range of *A* is algebraically complemented in $L_a^p(\mu)$ by what was just proved. By [4, Part III, Corollary 2.3], the range of *A* is closed and hence $zL_a^p(\mu)$ is not dense in $L_a^p(\mu)$. Applying Lemma 3 with $X = Y = L_a^p(\mu)$, it follows that $r(\mu, p, a) < \infty$ for a = 0. The same argument is true for all $a \in D \setminus \{0\}$ and hence $r(\mu, p, a) < \infty$ for all $a \in D$. By the boundedness of holomorphic functions on compact sets and the uniform boundedness principle, $\sup_{a \in K} r(\mu, p, a) < \infty$ for all compact sets *K* in *D*. As Lemma 2 also holds for $r(\mu, p, a)$,

$$\int_{K} \log r(\mu, p) \, dm < \infty \text{ or } \int_{K} \log s(\mu, p) \, dm > -\infty.$$

Conversely, suppose $\int_K \log r(\mu, p) dm < \infty$ for every compact sets K. Then by the above lemma, $\sup_K r(\mu, p) < \infty$ for every compact sets K. If f is in the $L^p(\mu)$ -norm closure of $L^p_a(\mu)$, then there exists a sequence $\{f_n\}$ in $L^p_a(\mu)$ such that $\int |f - f_n|^p d\mu \rightarrow 0$. Then for any fixed $r < \infty$ if we let $k_r = \sup_{a \in D_r(0)} r(\mu, p, a)$, then we will have $\sup\{|g(z)|; z \in D_r(0)\} \le k_r ||g||_{L^p\mu}$. Applying this with $g = f_n - f_m$ we see that the f_n are uniformly Cauchy on $D_r(0)$ and hence converge uniformly to an analytic function on $D_r(0)$. Since r was arbitrary, the f_n converge uniformly on compacta to an analytic function g on D, and we must have $g = f, \mu$ -a.e. on D.

(2) The 'if' part is same as (1) and hence we will show the 'only if' part. If we put $M = \{f \in L^p(\mu); zf \in H^p(\mu)\}$, then M is a closed subspace of $L^p(\mu)$ such that

$$M \supseteq H^p(\mu) \supseteq zM \supseteq H^p(\mu)_0$$

where $H^p(\mu)_0 = \{f \in H^p(\mu); f(0) = 0\}$. $H^p(\mu)_0$ is well defined because $H^p(\mu) \subset L^p_a(\mu)$. Suppose $H^p(\mu) \neq zM$. Then $H^p(\mu) = \mathbb{C} + H^p(\mu)_0 = \mathbb{C} + zM$ and $\mathbb{C} \cap zM = \{0\}$. As in the proof of (1), by [4, Part III, Corollary 2.3], zM is closed in $H^p(\mu)$ and hence $zH^p(\mu)$ is not dense in $H^p(\mu)$. Applying Lemma 3 with $X = H^p(\mu)$ and Y = P, it follows that $R(\mu, p, a) < \infty$ for a = 0. Suppose $H^p(\mu) = zM$. Then $z^{-1} \in L^p(\mu)$ and hence $\mu(\{0\}) = 0$. If Af = zf for $f \in M$, then A is a one-one bounded operator from M onto $H^p(\mu)$. Therefore A is invertible and hence $A(zM) = zH^p(\mu)$ is closed. Since $H^p(\mu) \subset L^p_a(\mu), zH^p(\mu) \neq H^p(\mu)$ and hence by Lemma 3, $R(\mu, p, 0) < \infty$ follows. The same argument implies that $R(\mu, p, a) < \infty$ for all $a \in D$. Now, as in the proof of (1), Lemma 2 implies the 'only if' part of (2). COROLLARY 4. Suppose $1 \le p < \infty$ and $d\mu/dm = W$. If $\log W$ is locally integrable on K_0^c for some compact set K_0 in D, then $L_a^p(\mu)$ is closed and $H^p(\mu) \subseteq L_a^p(\mu)$.

PROOF. By (1) of Theorem 8, it is sufficient to prove that for any compact set K in D, $\inf_K \log s(\mu, p) > -\infty$. If $\log W$ is integrable on K_0^c , then by the proof of Theorem 5 $\inf_K \log s(\mu, p) > -\infty$. For a more general W in this corollary, we have to proceed as follows. Suppose $a \in D$ and $0 < \varepsilon < \delta < 1$. As in the proof of Theorem 5,

$$s(\mu, p, a) \\ \geq (1 - |a|^2)^2 \int_{\varepsilon}^{\delta} \exp\left(\int_{0}^{2\pi} \log W \circ \phi_a \, d\theta / 2\pi\right) 2r \, dr \\ \geq (1 - |a|^2)^2 (\delta^2 - \varepsilon^2) \exp\left(\frac{1}{\delta^2 - \varepsilon^2} \int_{\Delta_{\delta}(0) \setminus \Delta_{\varepsilon}(0)} \log W \circ \phi_a \, dm\right) \\ \geq (1 - |a|^2)^2 (\delta^2 - \varepsilon^2) \exp\left(\frac{2^4}{(1 - |a|^2)^2 (\delta^2 - \varepsilon^2)} \int_{\Delta_{\delta}(a) \setminus \Delta_{\varepsilon}(a)} \log(W \wedge 1) \, dm\right).$$

Suppose K is an arbitrary compact set in D. Put $t = \max\{|z|; z \in K_0\}$ and $k = \max\{|z|; z \in K\}$. The Euclidean center and radius of $\Delta_{\gamma}(k)$ ($0 < \gamma < 1$) are

$$C(\gamma) = \frac{1 - \gamma^2}{1 - \gamma^2 k^2} k, R(\gamma) = \frac{1 - k^2}{1 - \gamma^2 k^2} \gamma$$

respectively. Put $\ell = R(\delta) + C(\delta)$ and $s = R(\varepsilon) - C(\varepsilon)$. There exist δ and ε such that $0 < \varepsilon < \delta < 1$ and

$$\overline{\Delta_{\ell}(0)\setminus\Delta_s(0)}\subset D\setminus\Delta_t(0).$$

Then for all $a \in K$

$$\Delta_{\delta}(a) \setminus \Delta_{\varepsilon}(a) \subset \Delta_{\ell}(0) \setminus \Delta_{s}(0).$$

Hence for all $a \in K$

$$\Delta_{\delta}(a) \setminus \Delta_{\varepsilon}(a) \subset K_0^c$$

and so for all $a \in K$

$$s(\mu, p, a) \geq (1 - |a|^2)^2 (\delta^2 - \varepsilon^2) \exp\left(\frac{2^4}{(1 - |a|^2)^2 (\delta^2 - \varepsilon^2)} \int_{\Delta_{\delta}(a) \setminus \Delta_{\varepsilon}(a)} \log(W \wedge 1) dm\right),$$

since $\Delta_{\delta}(a) \setminus \Delta_{\varepsilon}(a)$ is a compact subset of $D \setminus K_0$ and log W is locally integrable on $D \setminus K_0$. This shows the corollary.

We are very grateful to the referee who improved the exposition and pointed out the errors in the first draft of this paper. In particular, Corollary 2 for 0 is due to the referee.

RIESZ'S FUNCTIONS

REFERENCES

- 1. P. S. Bourdon and J. H. Shapiro, *Spectral synthesis and common cyclic vectors*, Michigan Math. J. **37**(1990), 71–90.
- J. E. Brennan, Weighted polynomial approximation, quasianalyticity and analytic continuation, J. f
 ür Mathematik. 357(1984), 23–50.
- 3. J. B. Conway, *Subnormal operators*, Research Notes in Mathematics 51, Pitman Advanced Publishing Program, 1981.
- 4. I. Gohberg, S. Goldberg and M. A. Kasshoek, *Classes of linear operators I*, Operator Theory: Advances and Applications, 49, Birkhauser Verlag, Basel, 1990.
- 5. U. Grenander and G. Szegő, Toeplitz forms and their applications, Chelsea Publishing Company, 1984.
- 6. P. Koosis, *The logarithmic integral I*, Cambridge Studies in Advanced Mathematics 12, Cambridge University Press, Cambridge-New York, 1988.
- 7. T. Kriete and T. Trent, Growth near the boundary in $H^2(\mu)$ spaces, Proc. Amer. Math. Soc. 62(1977), 83–88.
- 8. T. Nakazi and M. Yamada, (A₂)-conditions and Carleson inequalities in Bergman spaces, Pacific J. Math. 173(1996), 151-171.
- 9. R. Rochberg, Toeplitz operators on weighted H^p spaces, Indiana Univ. Math. J. 26(1977), 291–298.
- 10. M. Rosenblum, Summability of Fourier series in $L^p(d\mu)$, Trans. Amer. Math. Soc. 105(1962), 32–42.
- 11. W. Rudin, Functional analysis, McGraw-Hill Book Company, 1973.
- 12. T. P. Srinivasan and J. K. Wang, Weak*-Dirichlet algebras. In: Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, 216–249.
- 13. M. Yamada, Weighted Bergman space and Szegő's infimum, preprint.
- 14. K. Zhu, *Operator theory in function spaces*, Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, 1990.

Department of Mathematics Hokkaido University Sapporo 060, Japan Department of Mathematics Hiroshima University Higashi-Hiroshima 724, Japan