RIESZ'S FUNCTIONS IN WEIGHTED HARDY AND BERGMAN SPACES

Dedicated to Professor Fumi-Yuki Maeda on his sixtieth birthday
TAKAHIKO NAKAZI AND MASAHIRO YAMADA

$$
\begin{aligned}
& \text { ABSTRACT. Let } \mu \text { be a finite positive Borel measure on the closed unit disc } \bar{D} \text {. For } \\
& \text { each } a \text { in } \bar{D} \text {, put } \\
& \qquad S(a)=\inf \int_{\bar{D}} \mid f^{p} d \mu \\
& \text { where } f \text { ranges over all analytic polynomials with } f(a)=1 \text {. This upper semicontin- } \\
& \text { uous function } S(a) \text { is called a Riesz } y \text { function and studied in detail. Moreover several } \\
& \text { applications are given to weighted Bergman and Hardy spaces. }
\end{aligned}
$$

1. Introduction. Let D be the open unit disc in the complex plane C. P denotes a set of all analytic polynomials and H denotes a set of all analytic functions on D. Suppose $0<p<\infty$. When μ is a finite positive Borel measure on \bar{D} and $a \in \bar{D}$, put

$$
S(\mu, a)=S(\mu, p, a)=\inf \left\{\int_{\tilde{D}}|f|^{p} d \mu ; f \in P \text { and } f(a)=1\right\}
$$

and

$$
R(\mu, a)=R(\mu, p, a)=\sup \left\{|f(a)|^{p} ; f \in P \text { and } \int_{\bar{D}}|f|^{p} d \mu \leq 1\right\}
$$

When μ is a finite positive Borel measure on D and $a \in D$, put

$$
s(\mu, a)=s(\mu, p, a)=\inf \left\{\int_{D}|f|^{p} d \mu ; f \in H \text { and } f(a)=1\right\}
$$

and

$$
r(\mu, a)=r(\mu, p, a)=\sup \left\{|f(a)|^{p} ; f \in H \text { and } \int_{D}|f|^{p} d \mu \leq 1\right\}
$$

The four functions S, R, s and r are called Riesz's functions. In this paper we study these four Riesz's functions. M. Riesz used such functions to solve the moment problem on the real line (cf. [6, Chapter 5]). T. Kriete and T. Trent [7] also investigated the relationship between μ and $R(\mu, 2, a)$. In the investigations of Riesz's functions, the most fundamental and important result is the following theorem by G. Szegö (cf. [5, Chapter 3]). He proved it only when $p=2$ but it can be proved for arbitrary p. In the statement of the theorem, we note that the integral kernel $\left(1-|a|^{2}\right) /\left|1-\bar{a} e^{i \theta}\right|^{2}$ is called the Poisson kernel.

[^0]Szegö's Theorem. Suppose $0<p<\infty, \mu$ is a finite positive Borel measure on \bar{D} with $\operatorname{supp} \mu \subseteq \partial D$ and $d \mu /(d \theta / 2 \pi)=w\left(e^{i \theta}\right)$. Then,

$$
\left.S(\mu, p, a)=\left(1-|a|^{2}\right) \exp (\log w)^{\wedge} a\right) \quad(a \in D)
$$

where $(\log w)^{\wedge}(a)=\int_{0}^{2 \pi} \log w\left(e^{i \theta}\right) \frac{1-|a|^{2}}{\left|1-\bar{a} e^{\theta}\right|^{2}} d \theta / 2 \pi$.
It is most desirable to describe $S(\mu, p, a)$ using μ as in Szegö's Theorem, when μ is an arbitrary finite Borel measure on \bar{D}. However such a problem is very difficult except for some special measures μ. In Section 2, we study the behaviour of $S(\mu, p, a)$ as $|a| \rightarrow 1$ for an arbitrary measure on \bar{D}. Moreover we note that

$$
S(\mu, p, a) R(\mu, p, a)=1 \quad(a \in \bar{D})
$$

Thus, we need to know only S or R. In this paper, the results and the proofs about s and r are very similar to those about S and R. Hence we concentrate on only S or R in Sections 2, 3 and 4. Let m be the normalized area measure on D, that is, $d m=r d r d \theta / \pi$. In Section 3, we give several lower estimates of S using $d \mu / d m$. It is more difficult to give the upper estimates of S. We do it only in very special cases. In Section 4, we show that $R(\mu, p, a)$ is not in $L^{1}(\mu)$ if $\operatorname{supp} \mu$ is not a finite set.

Suppose $0<p<\infty$. $H^{p}(\mu)$ denotes the closure of P in $L^{p}(\mu)$ when μ is a finite positive Borel measure on \bar{D}. $H^{p}(\mu)$ is called a weighted Hardy space. If $d \mu=$ $d \theta / 2 \pi, H^{p}(\mu)=H^{p}$ is the classical Hardy space. When μ is a finite positive Borel measure on D, then one defines $L_{a}^{p}(\mu)=H \cap L^{p}(\mu) . L_{a}^{p}(\mu)$ is called a weighted Bergman space. If $\mu=m, L_{a}^{p}(\mu)=L_{a}^{p}$ is the usual Bergman space. H^{p} can be embedded in H. $L_{a}^{p}=H^{p}(m)$, and hence L_{a}^{p} is closed. We are interested in the following questions:
(1) When can $H^{p}(\mu)$ be embedded in H ?
(2) When is $L_{a}^{p}(\mu)$ closed?
(3) When can $H^{p}(\mu)$ be embedded in $L_{a}^{p}(\mu)$?

Of course it is very interesting to know when $L_{a}^{p}(\mu)=H^{p}(\mu)$, where μ is a measure on D. This problem is classical and important (cf. [2]). However, in this paper we are not going to consider this problem. Question (2) was studied by M. Yamada [13]. If μ is a measure on D, question (1) is equivalent to (3). Note that the measure μ for (2) satisfies (3). In Section 5 , we study the three questions given above. For example, for some compact set K in D, if $\int_{\tilde{D} \backslash K} \log W d m>-\infty$ then $H^{p}(\mu)$ can be embedded in H where $W=d \mu / d m$. This result follows from the lower estimate of $S(\mu, p, a)$ in Section 3.

In this paper, we will use the following notation. For each $a \in D$, let ϕ_{a} be the Möbius function on D, that is,

$$
\phi_{a}(z)=\frac{a-z}{1-\bar{a} z} \quad(z \in D),
$$

and put

$$
\beta(a, z)=\frac{1}{2} \log \frac{1+\left|\phi_{a}(z)\right|}{1-\left|\phi_{a}(z)\right|} \quad(a, z \in D) .
$$

For $0<r \leq \infty$ and $a \in D$, let

$$
D_{r}(a)=\{z \in D ; \beta(a, z)<r\}
$$

be the Bergman disc with 'center' a and 'radius' r. For $u \in L^{1}(m)$,

$$
\tilde{u}(a)=\int_{D} u \circ \phi_{a}(z) d m(z) \quad(a \in D) .
$$

Then \tilde{u} may be bounded on D even if u is not bounded on D.
2. Riesz's function. If $\mu=m$, then for $0<p<\infty S(m, p, a)=\left(1-|a|^{2}\right)^{2}$. Hence $\mu=m$ or $\operatorname{supp} \mu \subseteq \partial D$, by Szegö's Theorem $\lim _{r \rightarrow 1-} S\left(\mu, p, r e^{i \theta}\right)=0$ a. e. θ. In this section, we show that this is true in general. In particular, R is not bounded on D. In fact, for arbitrary μ, we show that $\lim _{r \rightarrow 1-} S\left(\mu, p, r e^{i \theta}\right)=0$ except for a countable set of θ.

Proposition 1. Suppose $0<p<\infty$ and μ is a finite positive Borel measure. Then the following are valid for $R(a)=R(\mu, p, a)$ and $S(a)=S(\mu, p, a)$.
(1) $R(\mu, p, a) S(\mu, p, a)=1$ for $a \in \bar{D}$, assuming $\infty \times 0=1$.
(2) $R(\mu)$ is lower semicontinuous on $(0, \infty) \times D$, and $S(\mu)$ is upper semicontinuous on the same set. Moreover $R(\mu, p, a) \geq 1 / \mu(\bar{D})$ and $S(\mu, p, a) \leq \mu(\bar{D})$.
(3) If $\log R$ or R is in $L^{1}(m)$, then for $a \in D$

$$
R(a) \leq \exp (\log R)^{\sim}(a) \leq \tilde{R}(a) .
$$

(4) If $r<\infty$, then for $a \in D$

$$
\log R(a) \leq\left(\frac{1+s|a|}{1-s|a|}\right)^{2} \frac{1}{m\left(D_{r}(a)\right)} \int_{D r(a)} \log R d m
$$

where $s=\tanh r$. Hence for $a \in D$

$$
\log R(a) \leq\left(\frac{1+|a|}{1-|a|}\right) \int_{D} \log R d m
$$

These inequalities are also valid for R instead of $\log R$.
(5) For $a \in D$,

$$
S(\mu, p, a) \geq S(S(\mu) d m, p, a)
$$

(6) R is not bounded on D and \bar{D}.

Proof. (1) It is easy to see that $1 \leq R(a) S(a)$ for $1 \in \bar{D}$. If $1<R(a) S(a)$, then there exists a positive constant γ such that $1 \leq \gamma S(a)$ and $\gamma<R(a)$. Hence $1 \leq \gamma \int|g|^{p} d \mu$ for any $g \in P$ with $g(a)=1$ and so

$$
|f(a)|^{p} \leq \gamma \int_{\tilde{D}}|f|^{p} d \mu \text { for any } f \in P
$$

This implies $\gamma \geq R(a)$. This contradiction shows that $1=R(a) S(a)$. (2) is clear by (1).
(3) If $f \in P$, then $\log |f|$ is subharmonic on D and hence for any $a \in D$,

$$
\log |f(a)|^{p} \leq \int_{D} \log |f(z)|^{p} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m(z) .
$$

Assuming $\int|f|^{p} d \mu \leq 1$, by definition of R

$$
\log R(a) \leq \int_{D} \log R(z) \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m(z)
$$

This implies $R(a) \leq \exp (\log R)^{\sim}(a) \leq \tilde{R}(a)$. (4) If $0<r<\infty$, for any $a \in D_{r}(0)$ and any $f \in P$,

$$
\log |f(a)|^{p} \leq \frac{1}{m\left(D_{r}(0)\right)} \int_{D_{r}(a)} \log |f(z)|^{p} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m(z)
$$

and hence

$$
\log |f(a)|^{p} \leq \frac{1}{m\left(D_{r}(a)\right)}\left(\frac{1+s|a|}{1-s|a|}\right)^{2} \int_{D_{r}(a)} \log |f|^{p} d m
$$

where $s=\tanh r$. This proof is the same as that of [14, Proposition 4.3.8.]. Assuming $\int|f|^{p} d \mu \leq 1$, we get (4) as in (3). (5) By (1),

$$
\int|f|^{p} d \mu \geq S(\mu, z)|f(z)|^{p} \quad(z \in D)
$$

and hence $\int|f|^{p} d \mu \geq \int|f|^{p} S(\mu) d m$. Assuming $f(a)=1$ and $a \in D$, we get $S(\mu, a) \geq$ $S(S(\mu) d m, a)$. (6) If $R(\mu, p, a)$ is bounded on \bar{D}, then $H^{p}(\mu) \subset L^{\infty}(\mu)$. By [11, Theorem 5.2], $H^{p}(\mu)$ is finitely dimensional. It is easy to see that $\operatorname{supp} \mu$ is a finite set. Then trivially $R(\mu, p, a)=\infty$ except for $a \in \operatorname{supp} \mu$. The proof of the statement for D is same to that for \bar{D}, assuming $\mu=\mu \mid D$.

Even if v is not bounded, \tilde{v} may be bounded. However (3) and (6) of Proposition 1 show that \tilde{R} is also not bounded. The following theorem gives a stronger result.

Theorem 2. Suppose $0<p<\infty$ and μ is a finite positive Borel measure on \bar{D}. If $a \in \partial D$, then the following are valid.
(1) $\mu(\{a\})=0$ if and only if $S(\mu, p, a)=0$.
(2) $\lim _{r \rightarrow 1-} S(\mu, p, r a)=0$ except for a countable set of a in ∂D.
(3) If $\mu(\{a\})=0$ and $\left\{a_{n}\right\}$ is a sequence in D with $\lim a_{n}=a$, then $\lim _{n \rightarrow \infty} S\left(\mu, p, a_{n}\right)=0$.
(4) If $\mu(\{a\})>0$, then for each n, the set $\{z \in D ;|z-a|<1 / n\} \cap\{z \in$ $D ; S(\mu, p, z)<1 / n\}$ is a nonempty open set.
(5) If $b<c$ and $E=\left\{z \in D ; z=r e^{i \theta}, 0 \leq r<1\right.$ and $\left.b \leq \theta \leq c\right\}$, then R is not bounded on E.

Proof. We may assume $a=1$. (1) If $\mu(\{1\})>0$, then $|f(1)|^{p} \leq \int|f|^{p} d \mu / \mu(\{1\})$ and so $R(\mu, p, 1) \leq 1 / \mu(\{1\})$. (1) of Proposition 1 implies $S(\mu, p, 1)>0$. Conversely suppose $\mu(\{1\})=0$. If $z \in \bar{D}$ and $z \neq 1$, then $\lim _{t \rightarrow 1+}|(1-t) /(z-t)|=0$ and

$$
\left|\frac{z-1}{z-t}-1\right|=\left|\frac{1-t}{z-t}\right|<1 \quad(t>1)
$$

For any $t>1$,

$$
S(\mu, p, 1) \leq \int_{\tilde{D}}\left|1-\frac{z-1}{z-t}\right|^{p} d \mu(z)=\int_{\tilde{D} \backslash\{1\}}\left|\frac{1-t}{z-t}\right|^{p} d \mu(z) .
$$

As $t \rightarrow 1$, by the Lebesgue's dominated convergence theorem, $S(\mu, p, 1)=0$. (2) Suppose $\mu(\{1\})=0$. If there exist a sequence $\left\{r_{n}\right\}$ and a positive constant ε such that $0<r_{n}<1$ with $r_{n} \rightarrow 1$ and $S\left(\mu, p, r_{n}\right) \geq \varepsilon>0$, then

$$
\left|f\left(r_{n}\right)\right|^{p} \leq \frac{1}{\varepsilon} \int_{\tilde{D}}|f|^{p} d \mu \text { and so }|f(1)|^{p} \leq \frac{1}{\varepsilon} \int_{\tilde{D}}|f|^{p} d \mu
$$

This implies $S(\mu, p, 1)>0$ and contradicts (1). Hence if $\mu(\{1\})=0$, then $\lim _{r \rightarrow 1-} S(\mu, p, r)=0$. This implies (2) because $\{a \in \partial D ; \mu(\{a\})>0\}$ is a countable set. (3) is clear by the proof of (2). (4) Suppose $\mu(\{1\})>0$ and for each n, put

$$
G_{n}=\left\{z \in \bar{D} ;|z-1|<\frac{1}{n}\right\} \cap\left\{z \in \bar{D} ; S(\mu, p, z)<\frac{1}{n}\right\} .
$$

Since $\{z \in \partial D ; \mu(\{z\})>0\}$ is a countable set, for each n there exists $b_{n} \in\{z \in$ $\left.\partial D ;|z-1|<\frac{1}{n}\right\}$ with $\mu\left(\left\{b_{n}\right\}\right)=0$. Then $S\left(\mu, p, b_{n}\right)=0$ by (1) and hence G_{n} is not empty. G_{n} is a relatively open set in \bar{D} by (2) of Proposition 1 and so $G_{n} \cap D$ is a nonempty open set. (5) follows from (2).

If $R(\mu, 2, a)<\infty$, then the point $a \in D$ is a bounded point evaluation for $H^{2}(\mu)$. Therefore, there exists k_{a} in $H^{2}(\mu)$ such that $f(a)=\int f(z) \overline{k_{a}(z)} d \mu(z)$ for any f in $H^{2}(\mu)$ and hence $R(\mu, 2, a)=\int\left|k_{a}(z)\right|^{2} d \mu(z)$. Thus the results in this section give some information about the reproducing kernel k_{a}.
3. Estimate of Riesz's function. In this section we give upper and lower estimates of S. The lower ones will be used later. The following proposition is a generalization of Szegő's theorem in the Introduction. In fact, if $\mu \mid D$ is a zero measure, then it gives Szegö's Theorem.

Proposition 3. Suppose $0<p<\infty$ and μ is a finite positive Borel measure such that $(d \mu \mid \partial D) /(d \theta / 2 \pi)=w\left(e^{i \theta}\right), \mu \mid D=\sum a_{j} \delta_{z_{j}}$ and $\sum\left(1-\left|z_{j}\right|\right)<\infty$. Let b be a Blaschke product of $\left\{z_{\ell}\right\}$ and b_{j} a Blaschke product of $\left\{z_{\ell}\right\}_{\ell \neq j}$. Then for all $a \in D$. $\left(1-|a|^{2}\right) \exp (\log w)^{\wedge}(a) \leq S(\mu, p, a)$. If $a \in D \backslash\left\{z_{\ell}\right\}$, then

$$
S(\mu, p, a) \leq|b(a)|^{-p}\left(1-|a|^{2}\right) \exp (\log w)^{\wedge}(a)
$$

If $a=z_{j}$, then

$$
S(\mu, p, a) \leq\left|b_{j}(a)\right|^{-p}\left(1-|a|^{2}\right) \exp (\log w)^{\wedge}(a)+a_{j}
$$

In particular, $S(\mu, p, a)>0$ if and only if $\log w \in L^{1}(d \theta)$.
Proof. Since $S(\mu, p, a) \geq S(w d \theta / 2 \pi, p, a)$ for all $a \in D$, by Szegö's Theorem $\left(1-|a|^{2}\right) \exp (\log w)^{\wedge}(a) \leq S(\mu, p, a)$ for all $a \in D$. Let B_{n} be a finite Blaschke product of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$. If $a \in D \backslash\left\{z_{\ell}\right\}$, then

$$
\begin{aligned}
S(\mu, p, a) \leq & \inf \left\{\left.\int\left|\frac{B_{n}}{B_{n}(a)} g\right|^{p} d \mu\left|\partial D+\sum_{j=1}^{\infty} a_{j}\right| \frac{B_{n}\left(z_{j}\right)}{B_{n}(a)} g\left(z_{j}\right)\right|^{p} ; g \in P \text { and } g(a)=1\right\} \\
= & \frac{1}{\left|B_{n}(a)\right|^{p}} \inf \left\{\int | B _ { n } g | ^ { p } d \mu | \partial D + \sum _ { j = n + 1 } ^ { \infty } a _ { j } | B _ { n } \left(\left.z_{j}\right|^{p}\left|g\left(z_{j}\right)\right|^{p} ;\right.\right. \\
& \quad g \in P \text { and } g(a)=1\} .
\end{aligned}
$$

As $n \rightarrow \infty$,

$$
S(\mu, p, a) \leq \frac{1}{|b(a)|^{p}} \inf \left\{\int|g|^{p} d \mu \mid \partial D ; g \in P \text { and } g(a)=1\right\}
$$

Now by Szegö's Theorem, for each $a \in D, S(\mu, p, a) \leq|b(a)|^{-p}\left(1-|a|^{2}\right) \exp (\log w)^{\wedge}(a)$. Let $B_{j, n}$ be a finite Blaschke product of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \backslash\left\{z_{j}\right\}$. If $a=z_{j}$ and $n>j$, then

$$
\begin{aligned}
S(\mu, p, a) \leq & \inf \left\{\int\left|\frac{B_{j, n}}{B_{j, n}(a)} g\right|^{p} d \mu ; g \in P \text { and } g(a)=1\right\} \\
= & \frac{1}{\left|B_{j, n}(a)\right|^{p}} \inf \left\{\left.\int\left|B_{j, n} g\right|^{p} d \mu\left|\partial D+a_{j}\right| B_{j, n}(a)\right|^{p}\right. \\
& \left.\quad+\sum_{\ell \geq n+1} a_{\ell}\left|B_{j, n}\left(z_{\ell}\right)\right|^{p}\left|g\left(z_{\ell}\right)\right|^{p} ; g \in P \text { and } g(a)=1\right\}
\end{aligned}
$$

As $n \rightarrow \infty$, by Szegö's Theorem, for $a=z_{j}$,

$$
S(\mu, p, a) \leq\left|b_{j}(a)\right|^{-p}\left(1-|a|^{2}\right) \exp (\log w)^{\wedge}(a)+a_{j}
$$

The following proposition is related to Theorem 2 in this paper and the Theorem in [7]. In fact, if \tilde{W} is bounded on D, then $\left(1-|a|^{2}\right)^{-2} S(W d m, p, a)$ is bounded on D. Moreover if W is continuous on \bar{D}, then for all $e^{i \theta}$,

$$
\lim _{a \rightarrow e^{i \theta}}\left(1-|a|^{2}\right)^{2} R(W d m, p, a)=1 / W\left(e^{i \theta}\right)
$$

since for a function u continuous on \bar{D} we have $\lim _{a \rightarrow e^{i \theta}} \tilde{u}(a)=u\left(e^{i \theta}\right)$.
Proposition 4. Suppose $0<p<\infty$ and μ is a finite positive Borel measure on \bar{D}.
(1) $\tilde{\mu}(a) \geq(S(\mu))^{\sim}(a) \quad(a \in D)$.
(2) If $d \mu=W d m$ and $a \in D$, then

$$
\left(1-|a|^{2}\right)^{2} \exp (\log W)^{\sim}(a) \leq S(\mu, p, a) \leq\left(1-|a|^{2}\right)^{2} \tilde{W}(a) .
$$

(3) $S(W d m, a)=\left(1-|a|^{2}\right)^{2} S\left(W \circ \phi_{a} d m, 0\right)$ for $a \in D$.

Proof. (1) For all $z \in D$

$$
\int|f|^{p} d \mu \geq|f(z)|^{p} S(z) \text { and so } \int|f|^{p} d \mu \geq \int|f|^{p} S d m
$$

Assuming $f(z)=\left\{\left(1-|a|^{2}\right) /(1-\bar{a} z)^{2}\right\}^{2 / p}$ for $a \in D, \tilde{\mu}(a) \geq \tilde{S}(a)$. (2) If $\log W \in L^{1}(m)$, then

$$
\begin{aligned}
& S(W d m, p, a) \\
& \quad=\inf \left\{\int|f|^{p} W d m ; f \in P \text { and } f(a)=1\right\} \\
& \quad=\inf \left\{\int|g|^{p} W \circ \phi_{a} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m ; g \in H^{p}\left(W \circ \phi_{a} d m\right) \text { and } g(0)=1\right\} \\
& \quad=\left(1-|a|^{2}\right)^{2} \inf \left\{\int|k|^{p} W \circ \phi_{a} d m ; k \in H^{p}\left(W \circ \phi_{a} d m\right) \text { and } k(0)=1\right\} \\
& \quad \geq\left(1-|a|^{2}\right)^{2} \exp \int(\log W) \circ \phi_{a} d m=\left(1-|a|^{2}\right)^{2} \exp (\log W)^{\sim}(a)
\end{aligned}
$$

The inequality above is proved by the fact that $\log |k(0)| \leq \int_{0}^{2 \pi} \log \left|k\left(r e^{i \theta}\right)\right| d \theta / 2 \pi$ for $0<r<1$ if $k \in H$, and by two Jensen's inequalities. The other inequality in (2) follows by setting $k \equiv 1$ in the infimum above. (3) is clear by the proof of (2).

In (2) of Proposition 4, we can get estimates of $S(\mu, p, a)$ as in Proposition 3 when $d \mu=W d m+\sum_{j=1}^{\infty} a_{j} \delta_{z_{j}},\left\{z_{j}\right\} \subset D$ and $\Sigma\left(1-\left|z_{j}\right|\right)<\infty$. The following theorem is important in this paper and the following lemma is used to prove it.

Lemma 1. Let $\Delta_{s}(a)$ be the set $\{z \in D ;|(a-z) /(1-\bar{a} z)|<s\}$ where $a \in D$ and $s \in(0,1)$. If $t \in(0,1)$ and $1-s^{2}=\left(1-|a|^{2}\right)\left(1-t^{2}\right) / 5$, then $\overline{\Delta_{t}(0)} \subset \Delta_{s}(a)$.

Proof. Without loss of generality $a \neq 0$. the Euclidean center and radius of $\Delta_{s}(a)$ are

$$
C=\frac{1-s^{2}}{1-s^{2}|a|^{2}} a, \quad R=\frac{1-|a|^{2}}{1-s^{2}|a|^{2}} s
$$

respectively. Hence to prove $\overline{\Delta_{t}(0)} \subset \Delta_{s}(a)$, it is sufficient to show that

$$
t+\frac{1-s^{2}}{1-s^{2}|a|^{2}}|a|<\frac{1-|a|^{2}}{1-s^{2}|a|^{2}} s .
$$

If $1-s^{2}=\left(1-|a|^{2}\right)\left(1-t^{2}\right) / 5$, then

$$
1-s^{2} \leq \frac{\left(1-|a|^{2}\right)\left(1-t^{2}\right)}{5-|a|^{2}}
$$

and hence $s^{2} \geq\left\{4+\left(1-|a|^{2}\right) t^{2}\right\} /\left(5-|a|^{2}\right)$. The last inequality is equivalent to

$$
1-s^{2} \leq \frac{\left(1-|a|^{2}\right)\left(s^{2}-t^{2}\right)}{4}
$$

Then

$$
1-s^{2} \leq \frac{\left(1-|a|^{2}\right)(s-t)}{2} \frac{s+t}{2}<\frac{\left(1-|a|^{2}\right)(s-t)}{|a|(t|a|+1)}
$$

because $s+t<2$ and $|a|(t|a|+1)<2$. This is equivalent to the inequality

$$
t+\frac{1-s^{2}}{1-s^{2}|a|^{2}}|a|<\frac{1-|a|^{2}}{1-s^{2}|a|^{2}} s .
$$

Theorem 5. Suppose $0<p<\infty$ and μ is a finite positive Borel measure on \bar{D}. Set $d \mu / d m=W d m$, suppose K is an arbitrary compact set in D and let $t=\max \{|z| ; z \in$ $K\}$. Then, for $a \in D$

$$
S(\mu, p, a) \geq \frac{\left(1-|a|^{2}\right)^{3}\left(1-t^{2}\right)}{5} \exp \left[\frac{2^{4} \cdot 5}{\left(1-|a|^{2}\right)^{3}\left(1-t^{2}\right)} \int_{K^{c}} \log (W \wedge 1) d m\right] .
$$

If $1 \leq p<\infty$ and $a \in D$, then

$$
S(\mu, p, a) \geq \frac{\left(1-|a|^{2}\right)^{3\left(2-\frac{1}{p}\right)}\left(1-t^{2}\right)^{2-\frac{1}{p}}}{2^{4\left(1-\frac{1}{p}\right)} \cdot 5^{2-\frac{1}{p}}}\left(\int_{K^{c}} W^{-\frac{1}{p-1}} d m\right)^{\frac{1}{p}-1}
$$

Proof. By two Jensen's inequalities, for $a \in D$

$$
\begin{aligned}
S(\mu, p, a) & \geq S(W d m, p, a) \\
& =\inf \left\{\int|g|^{p} W \circ \phi_{a} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m ; g(0)=1\right\} \\
& =\left(1-|a|^{2}\right)^{2} \inf \left\{\int|k|^{p} W \circ \phi_{a} d m ; k(0)=1\right\} \\
& \geq\left(1-|a|^{2}\right)^{2} \int_{0}^{1} 2 r d r \exp \left[\int_{0}^{2 \pi} \log W \circ \phi_{a} d \theta / 2 \pi\right] \\
& \geq\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right) \int_{s}^{1} \frac{2 r}{1-s^{2}} d r \exp \left[\int_{0}^{2 \pi} \log W \circ \phi_{a} d \theta / 2 \pi\right] \\
& \geq\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right) \exp \left[\frac{1}{1-s^{2}} \int_{s}^{1} 2 r d r \int_{0}^{2 \pi} \log W \circ \phi_{a} d \theta / 2 \pi\right] \\
& =\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right) \exp \left[\frac{1}{1-s^{2}} \int_{D \backslash \Delta_{s}(0)} \log W \circ \phi_{a} d m\right] \\
& =\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right) \exp \left[\frac{1}{1-s^{2}} \int_{D \backslash \Delta_{s}(a)} \log W \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m\right] \\
& \geq\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right) \exp \left[\frac{\left(1-|a|^{2}\right)^{2}}{(1-|a|)^{4}} \frac{1}{1-s^{2}} \int_{D \backslash \Delta_{s}(a)} \log (W \wedge 1) d m\right]
\end{aligned}
$$

where $s \in(0,1)$ and $\Delta_{s}(a)=\{z \in D ;|(a-z) /(1-\bar{a} z)|<s\}$. For each compact set $K \subset D$, if $t=\max \{|z| ; z \in K\}$ and $1-s^{2}=\left(1-|a|^{2}\right)\left(1-t^{2}\right) / 5$, then by Lemma $1 \overline{\Delta_{t}(0)} \subset$ $\Delta_{s}(a)$. Hence $K \subset \Delta_{s}(a)$ and so $K^{c} \supset D \backslash \Delta_{s}(a)$. Thus, if $1-s^{2}=\left(1-|a|^{2}\right)\left(1-t^{2}\right) / 5$, then

$$
\frac{\left(1-|a|^{2}\right)^{2}}{(1-|a|)^{4}} \frac{1}{1-s^{2}}=\frac{(1+|a|)^{4}}{\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right)} \leq \frac{2^{4} \cdot 5}{\left(1-|a|^{2}\right)^{3}\left(1-t^{2}\right)}
$$

and hence for all $a \in D$

$$
S(\mu, p, a) \geq \frac{\left(1-|a|^{2}\right)^{3}\left(1-t^{2}\right)}{5} \exp \left[\frac{2^{4} \cdot 5}{\left(1-|a|^{2}\right)^{3}\left(1-t^{2}\right)} \int_{K^{c}} \log (W \wedge 1) d m\right] .
$$

Now we will prove the second inequality. Instead of Jensen's two inequalities, we will use the Kolmogoroff's inequality (cf. [12, Theorem 4.3.1]). For $a \in D$, if $1 \leq p<\infty$ and $1 / p+1 / q=1$,

$$
\begin{aligned}
S(\mu, p, a) & \geq\left(1-|a|^{2}\right)^{2} \int_{0}^{1} 2 r d r\left(\int_{0}^{2 \pi}\left(W \circ \phi_{a}\right)^{-\frac{1}{p-1}} d \theta / 2 \pi\right)^{-\frac{1}{q}} \\
& \geq\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right) \int_{s}^{1} \frac{2 r}{1-s^{2}} d r\left(\int_{0}^{2 \pi}\left(W \circ \phi_{a}\right)^{-\frac{1}{p-1}} d \theta / 2 \pi\right)^{-\frac{1}{q}} \\
& \geq\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right)\left(\frac{1}{1-s^{2}} \int_{s}^{1} 2 r d r \int_{0}^{2 \pi}\left(W \circ \phi_{a}\right)^{-\frac{1}{p-1}} d \theta / 2 \pi\right)^{-\frac{1}{4}} \\
& =\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right)^{1+\frac{1}{q}}\left(\int_{D \backslash \Delta_{s}(0)}\left(W \circ \phi_{a}\right)^{-\frac{1}{p-1}} d m\right)^{-\frac{1}{q}} \\
& =\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right)^{1+\frac{1}{q}}\left(\int_{D \backslash \Delta_{s}(a)} W^{-\frac{1}{p-1}} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m\right)^{-\frac{1}{q}} \\
& \geq\left(1-|a|^{2}\right)^{2}\left(1-s^{2}\right)^{1+\frac{1}{q}}\left\{\frac{\left(1-|a|^{2}\right)^{2}}{(1-|a|)^{4}} \int_{D \backslash \Delta_{s}(a)} W^{-\frac{1}{p-1}} d m\right\}^{-\frac{1}{q}} \\
& \geq \frac{\left(1-|a|^{2}\right)^{2\left(1+\frac{1}{q}\right)}\left(1-s^{2}\right)^{1+\frac{1}{q}}}{2^{\frac{4}{q}}}\left(\int_{D \backslash \Delta_{s}(a)} W^{-\frac{1}{p-1}} d m\right)^{-\frac{1}{q}}
\end{aligned}
$$

where $s \in(0,1)$. As in the proof of the first inequality, for each compact set $K \subset D$, if $t=\max \{|z| ; z \in K\}$ and $1-s^{2}=\left(1-|a|^{2}\right)\left(1-t^{2}\right) / 5$, then $K^{c} \supset D \backslash \Delta_{s}(a)$. Thus, if $1-s^{2}=\left(1-|a|^{2}\right)\left(1-t^{2}\right) / 5$, then for all $a \in D$

$$
S(\mu, p, a) \geq \frac{\left(1-|a|^{2}\right)^{3\left(1+\frac{1}{q}\right)}\left(1-t^{2}\right)^{1+\frac{1}{\varphi}}}{2^{\frac{4}{q}} \cdot 5^{1+\frac{1}{q}}}\left(\int_{K^{c}} W^{-\frac{1}{p-1}} d m\right)^{-\frac{1}{\varphi}}
$$

The second inequality of Theorem 5 implies

$$
S(\mu, 1, a) \geq\left(1-|a|^{2}\right)^{3} \times\left(1-t^{2}\right)(1 / 5) \operatorname{ess} \inf \left\{W(x) ; x \in K^{c}\right\} .
$$

Let σ be a finite positive Borel measure on [0,1]. Then, $\mu\left(r e^{i \theta}\right)=\sigma(r) \times W\left(r e^{i \theta}\right) d \theta / 2 \pi$ is more general than $W d m=2 r d r \times W\left(r e^{i \theta}\right) d \theta / 2 \pi$. If $\sigma(r)$ is singular to the Lebesgue measure on $[0,1]$, then μ is singular to m. However we can give an interesting lower estimate. It is different from that of Theorem 5 in case of $\mu=W d m$.

THEOREM 6. Suppose $0<p<\infty$ and $d \mu=\sigma(r) \times W\left(r e^{i \theta}\right) d \theta / 2 \pi$ where $\sigma(r)$ is a finite positive Borel measure on $[0,1]$. If $\mathbf{W}\left(e^{i \theta}\right)=\sup _{r} W\left(r e^{i \theta}\right)$ and $W_{r}\left(e^{i \theta}\right)=W\left(r e^{i \theta}\right)$, then for $a \in D$

$$
\begin{aligned}
&\left(1-|a|^{2}\right) \int_{|a|}^{1} \exp \left(\log W_{r}\right)^{\wedge}(a) d \sigma(r) \\
& \leq S(\mu, p, a) \\
& \leq \sigma([0,1]) \inf \left\{\sup _{r} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} W\left(r e^{i \theta}\right) d \theta / 2 \pi ; f(a)=1\right\} \\
& \leq \sigma([0,1]) \inf \left\{\sup _{r} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \mathbf{W}\left(e^{i \theta}\right) d \theta / 2 \pi ; f(a)=1\right\} .
\end{aligned}
$$

Proof. For $a \in D$,

$$
\begin{aligned}
S(\mu, p, a) & =\inf \left\{\int_{0}^{1} d \sigma(r) \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} W\left(r e^{i \theta}\right) d \theta / 2 \pi ; f(a)=1\right\} \\
& \geq \int_{0}^{1} d \sigma(r) \inf \left\{\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} W\left(r e^{i \theta}\right) d \theta / 2 \pi ; f(a)=1\right\} \\
& =\int_{|a|}^{1} d \sigma(r) \inf \left\{\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} W\left(r e^{i \theta}\right) d \theta / 2 \pi ; f(a)=1\right\} \\
& =\int_{|a|}^{1}\left(1-|a|^{2}\right) \exp \left(\log W_{r}\right)^{\wedge}(a) d \sigma(r) .
\end{aligned}
$$

We used Szegö's Theorem in the last equality. The upper estimates are trivial.
Corollary 1. Let $d \mu=\sigma(r) \times W\left(r e^{i \theta}\right) d \theta / 2 \pi$ as in Theorem 6 and $0<p<\infty$.
(1) If $W\left(r e^{i \theta}\right) \equiv 1$, then for $a \in D$

$$
\left(1-|a|^{2}\right) \sigma([|a|, 1]) \leq S(\mu, p, a) \leq\left(1-|a|^{2} \sigma([0,1]) .\right.
$$

In particular, $S(\mu, p, 0)=\sigma([0,1])$.
(2) If $W\left(r e^{i \theta}\right)=\left|h\left(r e^{i \theta}\right)\right|$ for some outer function h in $H^{1}(d \theta)$, then for $a \in D$

$$
\left(1-|a|^{2}\right) \int_{|a|}^{1} W(r a) d \sigma(r) \leq S(\mu, p, a) \leq\left(1-|a|^{2}\right) W(a) \sigma([0,1])
$$

(3) If $1<p<\infty$ and $\mathbf{W}\left(e^{i \theta}\right)=\sup W\left(r e^{i \theta}\right)$ satisfies the A_{p} condition, then there exists a positive constant γ such that for $a \in D$

$$
S(\mu, p, a) \leq \gamma\left(1-|a|^{2}\right) \exp (\log \mathbf{W})^{\wedge}(a) \sigma([0,1])
$$

Proof. (1) is a special case of (2). (2) Since h is an outer function in H^{1}, for $a \in D$

$$
\exp \left(\log W_{r}\right)^{\wedge}(a)=\exp \left(\log \left|h_{r}\right|\right)^{\wedge}(a)=|h(r a)|=W(r a)
$$

and

$$
\begin{aligned}
& \inf _{f}\left\{\sup _{r} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} W\left(r e^{i \theta}\right) d \theta / 2 \pi\right\} \\
& \quad=\inf _{f} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p}\left|h\left(e^{i \theta}\right)\right| d \theta / 2 \pi=\left(1-|a|^{2}\right)|h(a)|=\left(1-|a|^{2}\right) W(a) .
\end{aligned}
$$

Now Theorem 6 implies (2). (3) By a theorem of M. Rosenblum (cf.[10] and [9, Theorem 2.2]), there exists a positive constant γ such that for any $f \in P$

$$
\sup _{r} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \mathbf{W}\left(e^{i \theta}\right) d \theta / 2 \pi \leq \gamma \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} \mathbf{W}\left(e^{i \theta}\right) d \theta / 2 \pi
$$

because $\mathbf{W} \in A_{p}$. By Theorem 6 and Szegö's Theorem, for $a \in D$

$$
\begin{aligned}
\inf _{f}\left\{\sup _{r} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \mathbf{W}\left(e^{i \theta}\right) d \theta / 2 \pi\right\} & \leq \gamma \inf _{f} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} \mathbf{W}\left(e^{i \theta}\right) d \theta / 2 \pi \\
& =\gamma\left(1-|a|^{2}\right) \exp (\log \mathbf{W})^{\wedge}(a)
\end{aligned}
$$

This implies (3).
In (2) of Corollary 1, the referee pointed out that the identity $S(\mu, p, a)=W(a) S(\nu, p, a)$ is valid where $d \nu=\sigma(r) \times d \theta / 2 \pi$. Applying Theorem 6 for ν, we have the estimates $\left(1-|a|^{2}\right) \sigma([|a|, 1]) W(a) \leq S(\mu, p, a) \leq\left(1-|a|^{2}\right) \sigma([0,1]) W(a)$.
4. The Carleson inequality and Riesz's function. Let ν and μ be finite positive Borel measures on \bar{D} and $1 \leq p<\infty$. We say that ν and μ satisfy the (ν, μ, p)-Carleson inequality, if there exists a constant $\gamma>0$ such that

$$
\int_{\tilde{D}}|f|^{p} d \nu \leq \gamma \int_{\tilde{D}}|f|^{p} d \mu
$$

for all $f \in P$ (see [8]). ν and μ satisfy the (ν, μ, p)-Carleson inequality if and only if $H^{p}(\mu) \subset H^{p}(\nu)$ and the inclusion mapping $i_{p}: H^{p}(\mu) \rightarrow H^{p}(\nu)$ is bounded. We say that for $p>1, \nu$ and μ satisfy the (ν, μ, p)-vanishing Carleson inequality if $H^{p}(\mu) \subset H^{p}(\nu)$ and $i_{p}: H^{p}(\mu) \rightarrow H^{p}(\nu)$ is compact. We say that for $p=1, \nu$ and μ satisfy the (ν, μ, p) vanishing Carleson inequality if i_{p} is star-compact. We could not prove Theorem 7 for $p=1$ because we do not know anything about the predual of $H^{1}(\mu)$. Using Riesz's functions, we will show vanishing Carleson inequalities. As a result, we show that $R(\mu, p) \notin$ $L^{1}(\mu)$ if $\operatorname{supp} \mu$ is not a finite set. Moreover, from a given measure μ, we will show how to construct a measure ν such that the (ν, μ, p)-vanishing Carleson inequality is valid.

Theorem 7. Suppose $1<p<\infty$, and ν and μ are finite positive Borel measures on \bar{D}.
(1) If $\int R(\mu, p) d \nu<\infty$, then ν and μ satisfy the ($\left.\nu, \mu, p\right)$-vanishing Carleson inequality and

$$
R(\mu, p, a) \leq\left(\int R(\mu, p) d \nu\right) R(\nu, p, a) \quad(a \in \bar{D}) .
$$

(2) If V is a Borel function such that $0 \leq V \leq S$ on \bar{D}, then $V|g|^{p}$ is bounded on \bar{D} for each g in $H^{p}(\mu)$, and $V d m$ and μ satisfy the ($V d m, \mu, p$)-vanishing Carleson inequality.
Proof. (1) By definition of $R(\mu, p, a)$, for $a \in \bar{D}$,

$$
|f(a)|^{p} \leq R(\mu, p, a) \int|f|^{p} d \mu \quad(f \in P)
$$

Hence if $\gamma=\int R(\mu, p) d \nu<\infty$, then $\int|f|^{p} d \nu \leq \gamma \int|f|^{p} d \mu(f \in P)$ and so $i_{p}: H^{p}(\mu) \rightarrow$ $H^{p}(\nu)$ is bounded. We will show that i_{p} is compact. If $f_{n} \rightarrow f$ weakly in $H^{p}(\mu)$, then there exists a finite positive constant γ^{\prime} such that

$$
\int\left|f_{n}-f\right|^{p} d \mu \leq \gamma^{\prime} \text { for all } n
$$

By the hypothesis, $R(\mu, p, a)<\infty \nu$-a.e. on \bar{D} and so $f_{n} \rightarrow f \nu$-a.e. on \bar{D} because $f_{n} \rightarrow f$ weakly. Moreover by definition of $R(\mu, p, a),\left|f_{n}(a)-f(a)\right|^{p} \leq \gamma^{\prime} R(\mu, p, a)$ and by the hypothesis, $R(\mu, p, a) \in L^{1}(\nu)$. Thus

$$
\int\left|f_{n}-f\right|^{p} d \nu \rightarrow 0 \text { as } n \rightarrow \infty
$$

by Lebesgue's dominated convergence theorem. This implies i_{p} is compact. Since $\int|f|^{p} d \nu \leq \gamma \int|f|^{p} d \mu$ and $\gamma=\int R(\mu, p) d \nu$, assuming $f(a)=1$, we get $S(\nu, p, a) \leq$ $\gamma S(\mu, p, a)$. Now by (1) of Proposition 1, we get the inequality of (1). (2) If $0 \leq V \leq S$, then $V R \leq 1$ and hence $V(a)|f(a)|^{p}$ is bounded on \bar{D} by $\int|f|^{p} d \mu$, for each $f \in H^{p}(\mu)$. Moreover if $\nu=V d m$ and $0 \leq V \leq S$, then $\int R(\mu, p) d \nu \leq \int d m=1$ and hence by (1) ν and μ satisfy the (ν, μ, p)-vanishing Carleson inequality.

Corollary 2. If $0<p<\infty$ and $\operatorname{supp} \mu$ is not a finite set, then $R(\mu, p) \notin L^{1}(\mu)$.
Proof. Suppose $1<p<\infty$. If $R(\mu, p) \in L^{1}(\mu)$, then the inclusion map $i_{p}: H^{p}(\mu) \rightarrow$ $H^{p}(\mu)$ is compact. It is easy to see that i_{p} is an identity operator. Hence the unit ball of $H^{p}(\mu)$ is compact with respect to the norm. Therefore $H^{p}(\mu)$ is finitely dimensional. This contradicts that $\operatorname{supp} \mu$ is not a finite set. This implies that $R(\mu, p) \notin L^{1}(\mu)$. For $0<p \leq 1$, the proof is due to the referee. Choose n sufficiently large that $n p>1$. If $g(a)=1$ then $g^{n}(a)=1$ as well, and g^{n} is a polynomial if g is a polynomial. Thus,

$$
\begin{aligned}
S(\mu, p, a) & =\inf \left\{\int_{\tilde{D}}|f|^{p} d \mu ; f \in P, f(a)=1\right\} \\
& \leq \inf \left\{\int_{\tilde{D}}\left|g^{n}\right|^{p} d \mu ; g \in P, g(a)=1\right\}=S(\mu, n p, a)
\end{aligned}
$$

This implies that $R(\mu, p) \notin L^{1}(\mu)$ for $0<p \leq 1$.
By Proposition 4 and Theorem 5 we obtain the following result.
Corollary 3. Suppose $1<p<\infty$ and $d \mu / d m=W$.
(1) If $\log W \in L^{1}(m)$ and $d \nu=\left(1-|z|^{2}\right)^{2} \exp (\log W)^{\sim} d m$, then ν and μ satisfy the (ν, μ, p)-vanishing Carleson inequality.
(2) If $\chi_{K^{c}} \log (W \wedge 1) \in L^{1}(m)$ for some compact set K in D, then there exists a nonnegative constant b such that $d \nu=\exp \left\{-b\left(1-|z|^{2}\right)^{-3}\right\} d m$ and μ satisfy the (ν, μ, p)-vanishing Carleson inequality.
(3) Suppose $\chi_{K^{c}} W^{-\frac{P}{p-1}} \in L^{1}(m)$ for some compactset K in D. If $d \nu=c\left(1-|z|^{2}\right)^{3\left(2-\frac{1}{p}\right)}$ $d m$, then ν and μ satisfy the (ν, μ, p)-vanishing Carleson inequality.
Suppose $1<p<\infty$ and $d \mu / d m=W$. If $\chi_{K^{c}} \log W \in L^{1}(m)$ for some compact set K in D, then there exists a positive constant a and a nonnegative constant b such that

$$
a\left(1-|z|^{2}\right)^{3} \exp \left\{-b\left(1-|z|^{2}\right)^{-3}\right\}|f(z)|^{p}
$$

is bounded on D for each $f \in H^{p}(\mu)$. Here a and b do not depend on f, but only on W and the choice of K. This is a corollary of (2) in Theorem 7.
5. $H^{p}(\mu)$ and $L_{a}^{p}(\mu)$. The following is a result of Theorem 5. If $d \mu / d m=W$ and $\log W$ is integrable on the complement K^{c} of a compact set in D, then $H^{p}(\mu) \subseteq L_{a}^{p}(\mu)$. In this section, we show that if $\log W$ is locally integrable on K^{c}, then the same result is true. We give a necessary and sufficient condition for $H^{p}(\mu) \subset L_{a}^{p}(\mu)$ using Riesz's function, providing $(\operatorname{supp} \mu) \cap D$ is a uniqueness set for H. A subset E of D is a uniqueness set if E satisfies the following: If f in H is zero on E, then $f \equiv 0$ on D. Theorem 8 is a joint work with K. Takahashi.

Lemma 2. Suppose $0<p<\infty$ and μ is a finite positive Borel measure on D. Then the following (1)-(3) are equivalent.
(1) $\sup _{a \in K} R(\mu, p, a)<\infty$ for all compact sets K in D.
(2) $\int_{K} R(\mu, p) d m<\infty$ for all compact sets K in D.
(3) $\int_{K} \log R(\mu, p) d m<\infty$ for all compact sets K in D.

Proof. Both $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$ are trivial. We will show $(3) \Rightarrow(1)$. We may assume that $\mu(D)=1$. For any $f \in P$,

$$
\log |f(0)|^{p} \leq \frac{1}{m\left(D_{r}(0)\right)} \int_{D_{r}(0)} \log |f|^{p} d m
$$

If $a \in D_{r}(0)$, then for all $f \in P$

$$
\log |f(a)|^{p} \leq \frac{1}{m\left(D_{r}(0)\right)} \int_{D_{r}(a)} \log |f|^{p} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m
$$

Assuming $\int|f|^{p} d \mu \leq 1$, we get

$$
\log R(\mu, p, a) \leq \frac{1}{m\left(D_{r}(0)\right)} \frac{(1+|a|)^{2}}{(1-|a|)^{2}} \int_{D_{r}(a)} \log R(\mu, p) d m
$$

Since $D_{r}(a) \subset D_{2 r}(0)$ and $R(\mu, p, a) \geq 1$, there exists a finite positive constant γ_{r} such that for each $a \in D_{r}(0)$ we have

$$
\log R(\mu, p, a) \leq \gamma_{r} \int_{D_{2 r}(0)} \log R(\mu, p) d m
$$

This implies (1).
Lemma 3. Let X be a Banach space which consists of analytic functions on D and contains 1. Suppose there exists a dense subspace Y of X such that if f in Y, then $(f-f(a)) /(z-a)$ belongs to Y for some $a \in D$. If $(z-a) X$ is not dense in X, then the functional $f \mapsto f(a)$ is bounded on Y.

Proof. By the hypothesis, if $f \in Y$, then $f=f(a)+(z-a) g$ for some $g \in Y$. Since $(z-a) X$ is not dense in X, there exists a nonzero $\phi \in X^{*}$ such that $\langle(z-a) h, \phi\rangle=0$. Then, for $f \in Y$ we have $\langle f, \phi\rangle=f(a)\langle 1, \phi\rangle$. Since ϕ is not identically zero we have $\langle 1, \phi\rangle \neq 0$. Thus $|f(a)| \leq \gamma| | f| |$ for all $f \in Y$ where $\gamma=|\langle 1, \phi\rangle|^{-1}\|\phi\|_{*}$.

THEOREM 8. Suppose $1 \leq p<\infty$ and μ is a finite positive Borel measure on D such that $(\operatorname{supp} \mu) \cap D$ is a uniqueness set for H.
(1) $L_{a}^{p}(\mu)$ is closed if and only if for all compact sets K in D

$$
\int_{K} \log r(\mu, p) d m<\infty \text { or } \int_{K} \log s(\mu, p) d m>-\infty
$$

(2) $H^{p}(\mu) \subset L_{a}^{p}(\mu)$ if and only if for all compact sets K in D

$$
\int_{K} \log R(\mu, p) d m<\infty \text { or } \int_{K} \log S(\mu, p) d m>-\infty .
$$

Proof. (1) First suppose that $L_{a}^{p}(\mu)$ is closed. If $f \in L_{a}^{p}(\mu)$, then $(f-f(0)) / z$ belongs to H. Since $(f-f(0)) / z$ is bounded on $|z| \leq t<1$ and $1 / z$ is bounded on $|z| \geq$ $t,(f-f(0)) / z$ belongs to $L_{a}^{p}(\mu)$. This implies that $\left\{f \in L_{a}^{p}(\mu) ; f(0)=0\right\}=z L_{a}^{p}(\mu)$ and hence $L_{a}^{p}(\mu)=\mathbf{C} \oplus z L_{a}^{p}(\mu)$. If $A f=z f$ for $f \in L_{a}^{p}(\mu)$, then A is a bounded operator on $L_{a}^{p}(\mu)$ and the range of A is algebraically complemented in $L_{a}^{p}(\mu)$ by what was just proved. By [4, Part III, Corollary 2.3], the range of A is closed and hence $z L_{a}^{p}(\mu)$ is not dense in $L_{a}^{p}(\mu)$. Applying Lemma 3 with $X=Y=L_{a}^{p}(\mu)$, it follows that $r(\mu, p, a)<\infty$ for $a=0$. The same argument is true for all $a \in D \backslash\{0\}$ and hence $r(\mu, p, a)<\infty$ for all $a \in D$. By the boundedness of holomorphic functions on compact sets and the uniform boundedness principle, $\sup _{a \in K} r(\mu, p, a)<\infty$ for all compact sets K in D. As Lemma 2 also holds for $r(\mu, p, a)$,

$$
\int_{K} \log r(\mu, p) d m<\infty \text { or } \int_{K} \log s(\mu, p) d m>-\infty .
$$

Conversely, suppose $\int_{K} \log r(\mu, p) d m<\infty$ for every compact sets K. Then by the above lemma, $\sup _{K} r(\mu, p)<\infty$ for every compact sets K. If f is in the $L^{p}(\mu)$-norm closure of $L_{a}^{p}(\mu)$, then there exists a sequence $\left\{f_{n}\right\}$ in $L_{a}^{p}(\mu)$ such that $\int\left|f-f_{n}\right|^{p} d \mu \rightarrow$ 0 . Then for any fixed $r<\infty$ if we let $k_{r}=\sup _{a \in D_{r}(0)} r(\mu, p, a)$, then we will have $\sup \left\{|g(z)| ; z \in D_{r}(0)\right\} \leq k_{r}\|g\|_{L_{\mu}}$. Applying this with $g=f_{n}-f_{m}$ we see that the f_{n} are uniformly Cauchy on $D_{r}(0)$ and hence converge uniformly to an analytic function on $D_{r}(0)$. Since r was arbitrary, the f_{n} converge uniformly on compacta to an analytic function g on D, and we must have $g=f, \mu$-a.e. on D.
(2) The 'if' part is same as (1) and hence we will show the 'only if' part. If we put $M=\left\{f \in L^{p}(\mu) ; z f \in H^{p}(\mu)\right\}$, then M is a closed subspace of $L^{p}(\mu)$ such that

$$
M \supseteq H^{p}(\mu) \supseteq z M \supseteq H^{p}(\mu)_{0}
$$

where $H^{p}(\mu)_{0}=\left\{f \in H^{p}(\mu) ; f(0)=0\right\} . H^{p}(\mu)_{0}$ is well defined because $H^{p}(\mu) \subset L_{a}^{p}(\mu)$. Suppose $H^{p}(\mu) \neq z M$. Then $H^{p}(\mu)=\mathbf{C}+H^{p}(\mu)_{0}=\mathbf{C}+z M$ and $\mathbf{C} \cap z M=\{0\}$. As in the proof of (1), by [4, Part III, Corollary 2.3], $z M$ is closed in $H^{p}(\mu)$ and hence $z H^{p}(\mu)$ is not dense in $H^{p}(\mu)$. Applying Lemma 3 with $X=H^{p}(\mu)$ and $Y=P$, it follows that $R(\mu, p, a)<\infty$ for $a=0$. Suppose $H^{p}(\mu)=z M$. Then $z^{-1} \in L^{p}(\mu)$ and hence $\mu(\{0\})=0$. If $A f=z f$ for $f \in M$, then A is a one-one bounded operator from M onto $H^{p}(\mu)$. Therefore A is invertible and hence $A(z M)=z H^{p}(\mu)$ is closed. Since $H^{p}(\mu) \subset$ $L_{a}^{p}(\mu), z H^{p}(\mu) \neq H^{p}(\mu)$ and hence by Lemma 3, $R(\mu, p, 0)<\infty$ follows. The same argument implies that $R(\mu, p, a)<\infty$ for all $a \in D$. Now, as in the proof of (1), Lemma 2 implies the 'only if' part of (2).

COROLLARY 4. Suppose $1 \leq p<\infty$ and $d \mu / d m=W$. If $\log W$ is locally integrable on K_{0}^{c} for some compact set K_{0} in D, then $L_{a}^{p}(\mu)$ is closed and $H^{p}(\mu) \subseteq L_{a}^{p}(\mu)$.

Proof. By (1) of Theorem 8, it is sufficient to prove that for any compact set K in $D, \inf _{K} \log s(\mu, p)>-\infty$. If $\log W$ is integrable on K_{0}^{c}, then by the proof of Theorem 5 $\inf _{K} \log s(\mu, p)>-\infty$. For a more general W in this corollary, we have to proceed as follows. Suppose $a \in D$ and $0<\varepsilon<\delta<1$. As in the proof of Theorem 5,

$$
\begin{aligned}
& s(\mu, p, a) \\
& \quad \geq\left(1-|a|^{2}\right)^{2} \int_{\varepsilon}^{\delta} \exp \left(\int_{0}^{2 \pi} \log W \circ \phi_{a} d \theta / 2 \pi\right) 2 r d r \\
& \quad \geq\left(1-|a|^{2}\right)^{2}\left(\delta^{2}-\varepsilon^{2}\right) \exp \left(\frac{1}{\delta^{2}-\varepsilon^{2}} \int_{\Delta_{\delta}(0) \backslash \Delta_{\epsilon(0)}} \log W \circ \phi_{a} d m\right) \\
& \quad \geq\left(1-|a|^{2}\right)^{2}\left(\delta^{2}-\varepsilon^{2}\right) \exp \left(\frac{2^{4}}{\left(1-|a|^{2}\right)^{2}\left(\delta^{2}-\varepsilon^{2}\right)} \int_{\Delta_{\delta}(a) \backslash \Delta_{i}(a)} \log (W \wedge 1) d m\right)
\end{aligned}
$$

Suppose K is an arbitrary compact set in D. Put $t=\max \left\{|z| ; z \in K_{0}\right\}$ and $k=\max \{|z|$; $z \in K\}$. The Euclidean center and radius of $\Delta_{\gamma}(k)(0<\gamma<1)$ are

$$
C(\gamma)=\frac{1-\gamma^{2}}{1-\gamma^{2} k^{2}} k, R(\gamma)=\frac{1-k^{2}}{1-\gamma^{2} k^{2}} \gamma
$$

respectively. Put $\ell=R(\delta)+C(\delta)$ and $s=R(\varepsilon)-C(\varepsilon)$. There exist δ and ε such that $0<\varepsilon<\delta<1$ and

$$
\overline{\Delta_{\ell}(0) \backslash \Delta_{s}(0)} \subset D \backslash \Delta_{t}(0) .
$$

Then for all $a \in K$

$$
\Delta_{\delta}(a) \backslash \Delta_{\varepsilon}(a) \subset \Delta_{\ell}(0) \backslash \Delta_{s}(0) .
$$

Hence for all $a \in K$

$$
\overline{\Delta_{\delta}(a) \backslash \Delta_{\varepsilon}(a)} \subset K_{0}^{c}
$$

and so for all $a \in K$

$$
s(\mu, p, a) \geq\left(1-|a|^{2}\right)^{2}\left(\delta^{2}-\varepsilon^{2}\right) \exp \left(\frac{2^{4}}{\left(1-|a|^{2}\right)^{2}\left(\delta^{2}-\varepsilon^{2}\right)} \int_{\Delta_{\delta}(a) \backslash \Delta_{i}(a)} \log (W \wedge 1) d m\right)
$$

since $\overline{\Delta_{\delta}(a) \backslash \Delta_{\varepsilon}(a)}$ is a compact subset of $D \backslash K_{0}$ and $\log W$ is locally integrable on $D \backslash K_{0}$. This shows the corollary.

We are very grateful to the referee who improved the exposition and pointed out the errors in the first draft of this paper. In particular, Corollary 2 for $0<p \leq 1$ is due to the referee.

References

1. P. S. Bourdon and J. H. Shapiro, Spectral synthesis and common cyclic vectors, Michigan Math. J. 37(1990), 71-90.
2. J. E. Brennan, Weighted polynomial approximation, quasianalyticity and analytic continuation, J. für Mathematik. 357(1984), 23-50.
3. J. B. Conway, Subnormal operators, Research Notes in Mathematics 51, Pitman Advanced Publishing Program, 1981.
4. I. Gohberg, S. Goldberg and M. A. Kasshoek, Classes of linear operators I, Operator Theory: Advances and Applications, 49, Birkhauser Verlag, Basel, 1990.
5. U. Grenander and G. Szegö, Toeplitz forms and their applications, Chelsea Publishing Company, 1984.
6. P. Koosis, The logarithmic integral I, Cambridge Studies in Advanced Mathematics 12, Cambridge University Press, Cambridge-New York, 1988.
7. T. Kriete and T. Trent, Growth near the boundary in $H^{2}(\mu)$ spaces, Proc. Amer. Math. Soc. 62(1977), 83-88.
8. T. Nakazi and M. Yamada, $\left(A_{2}\right)$-conditions and Carleson inequalities in Bergman spaces, Pacific J. Math. 173(1996), 151-171.
9. R. Rochberg, Toeplitz operators on weighted H^{p} spaces, Indiana Univ. Math. J. 26(1977), 291-298.
10. M. Rosenblum, Summability of Fourier series in $L^{p}(d \mu)$, Trans. Amer. Math. Soc. 105(1962), 32-42.
11. W. Rudin, Functional analysis, McGraw-Hill Book Company, 1973.
12. T. P. Srinivasan and J. K. Wang, Weak*-Dirichlet algebras. In: Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, 216-249.
13. M. Yamada, Weighted Bergman space and Szegö's infimum, preprint.
14. K. Zhu, Operator theory in function spaces, Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, 1990.

Department of Mathematics
Hokkaido University
Sapporo 060, Japan

Department of Mathematics
Hiroshima University
Higashi-Hiroshima 724, Japan

[^0]: The research of the first author was partially supported by grant-in-aid for Scientific Research, Ministry of Education.

 Received by the editors March 2, 1995.
 AMS subject classification: Primary: 46E15, 30A98; Secondary: 47B20.
 Key words and phrases: Hardy space, Bergman space, weight, Riesz's function, Carleson inequality (c) Canadian Mathematical Society 1996.

