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Higher torsion in the Abelianization of the full Bianchi groups

Alexander D. Rahm

Abstract

Denote by Q(
√
−m), with m a square-free positive integer, an imaginary quadratic number field,

and by O−m its ring of integers. The Bianchi groups are the groups SL2(O−m). In the literature,
so far there have been no examples of p-torsion in the integral homology of the full Bianchi
groups, for p a prime greater than the order of elements of finite order in the Bianchi group,
which is at most 6. However, extending the scope of the computations, we can observe examples
of torsion in the integral homology of the quotient space, at prime numbers as high as for instance
p = 80 737 at the discriminant −1747.

Supplementary materials are available with this article.

1. Introduction

The Bianchi groups Γ := SL2(O−m) may be considered as a key to the study of a larger class
of groups, the Kleinian groups, which date back to work of Henri Poincaré [17]. In fact, each
non-co-compact arithmetic Kleinian group is commensurable with some Bianchi group [14].
A wealth of information on the Bianchi groups can be found in the monographs [8, 9, 14].
In the literature, so far there have been no examples of p-torsion in the integral homology of
the full Bianchi groups, for p a prime greater than the order of elements of finite order in the
Bianchi group (a recent survey of relevant calculations has been given in [29]). In fact, the
numerical studies that have been made so far, were carried out in the range where the quotient
space of hyperbolic 3-space H by the Bianchi group is often homotopy equivalent to a wedge
sum of 2-spheres, 2-tori and Möbius bands [33].

We make use of Serre’s decomposition [31] of the homology group H1(Γ\H; Z) into the
direct sum of the free Abelian group with one generator for each element of the class group
of O−m and the group Hcusp

1 (Γ\H; Z) computed in Tables 1 and 2. The first computations
of H1(Γ; Z)⊃H1(Γ\H; Z) by Swan [32] were on a range of Bianchi groups with vanishing
cuspidal homology Hcusp

1 (Γ\H; Z). The first example where Hcusp
1 (Γ\H; Z) is non-zero,

occurred in an unpublished calculation of Mennicke. Swan’s manual computations of group
presentations have been extended on the computer by Riley [25]; and later Vogtmann [33] and
Scheutzow [26] systematically computed Hcusp

1 (Γ\H; Q) for a large range of Bianchi groups.
But they were still in the range where Γ\H admits no homological torsion. Aranes [1] has
computed cell complexes for the Bianchi groups for all m6 100, and Yasaki [35] has obtained
GL2(O−m)-cell complexes (with the Voronöı model) for the same range as well as all cases
where O is of class number 1 or 2. This includes two cases, m= 74 and m= 86, where some
2-torsion appears in Hcusp

1 (Γ\H; Z), but the latter two authors have not yet provided homology
computations. When the absolute value of the discriminant becomes greater, torsion in the
integral homology of the quotient space appears (see Table 2) at prime numbers as high as
for instance 80 737 at the discriminant −1747, whereas the order of elements of finite order in
SL2(O−m) is at most 6. A growth of the torsion in the Abelianization of the Bianchi groups with
respect to the covolume can be observed, which is in concordance with the predictions of [3].

Received 18 January 2013; revised 16 May 2013.

2010 Mathematics Subject Classification 11F75 (primary).

Funded by the Irish Research Council.

https://doi.org/10.1112/S1461157013000168 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://journals.cambridge.org/sup_S1461157013000168sup001
http://www.ams.org/mathscinet/msc/msc.html
https://doi.org/10.1112/S1461157013000168


HIGHER TORSION IN ABELIANIZATION OF BIANCHI GROUPS 345

We can also observe that the occurring torsion subgroups are quite likely to occur as squares,
but this is no general principle, because the discriminant −431 produces a counterexample to
this phenomenon.

In order to obtain the results of Tables 1 and 2, in § 7 we fill out Swan’s concept [32] and
elaborate algorithms to compute a fundamental polyhedron for the action of the Bianchi groups
on hyperbolic 3-space. Other algorithms based on the same concept have independently been
implemented by Cremona [7] for the five cases where O−m is Euclidean, and by his students
Whitley [34] for the non-Euclidean principal ideal domain cases, Bygott [5] for a case of class
number 2 and Lingham [13] (used in [6]) for some cases of class number 3 and, finally, Aranés [1]
for arbitrary class numbers. The algorithms presented in § 7 come with an implementation [18]
for all Bianchi groups and we make explicit use of the cell complexes it produces (the source
code of Bianchi.gp is available as online supplementary material available for download from
the publisher’s website). The provided implementation [18] has been validated by the project
PLUME of the CNRS, and is subject to the certificate C3I of the GENCI and the CPU.
Other results obtained with the employed implementation are described in [19, 24]. On the
computing clusters of the Weizmann Institute of Science, this implementation has been applied
to establish a database of cell complexes for over 180 Bianchi groups, using over fifty processor-
months. This database includes all of the cases of ideal class numbers 3 and 5, most of the cases
of ideal class number 4 and all of the cases of discriminant absolute value bounded by 500.

A computational advantage is the shortcut that we obtain in § 4 by linking the Borel–
Serre compactification of the quotient space with Flöge’s compactification in a long exact
sequence, based on the recent paper [22]. Flöge’s compactification admits a computationally
easier cell structure, and we can explicitly calculate the equivariant Leray–Serre spectral
sequence associated with it. In § 5, we describe how to assemble the homology of the Borel–Serre
compactified quotient space and the Farrell cohomology of a Bianchi group to its full group
homology with trivial Z-coefficients. Here, we divide by the center of SL2(O−m), consisting
of plus and minus the identity matrix, yielding PSL2(O−m). As the center of SL2(O−m) is
the kernel of its action on hyperbolic 3-space, this does not change the quotient space. And
for Γ := PSL2(O−m), general formulae for its Farrell cohomology have been given [21] (based
on [20]).

1.1. Organization of the paper

We print in Tables 1 and 2 the isomorphism types of Hcusp
1 (Γ\H; Z) that were obtained. The

homology group H1(Γ\H; Z) is a direct sum of the former homology group and the free Abelian
group with rank the cardinality of the class group of O−m, which we also print. The group
homology H1(Γ; Z) is an extension of H1(Γ\H; Z) by a quotient of the Farrell supplement that
has been computed and printed in a separate column. In § 2, we define the Bianchi fundamental
polyhedron, which induces our cell structure on Γ\H. We use it in § 3 to obtain the Flöge cellular
complex, which we connect in § 4 to the Borel–Serre compactification of Γ\H. Then we proceed
to H1(PSL2(O−m); Z) in § 5, describe Swan’s concept in § 6 and its realization in § 7.

2. The Bianchi fundamental polyhedron

Let m be a squarefree positive integer and consider the imaginary quadratic number field
Q(
√
−m) with ring of integers O−m, which we also just denote by O. Consider the familiar

action by fractional linear transformations (we give an explicit formula for it in Lemma 22) of
the group Γ := SL2(O)⊂GL2(C) on hyperbolic 3-space, for which we will use the upper-half
space model H. As a set,

H= {(z, ζ) ∈ C× R | ζ > 0}.
The Bianchi–Humbert theory [2, 12] gives a fundamental domain for this action. We will

start by giving a geometric description of it, and the arguments why it is a fundamental domain.
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Table 1. The cuspidal homology Hcusp
1 (Γ\H; Z) for the absolute values of the discriminant ∆

fulfilling |∆|< 500.

∆ m Class group Hcusp
1 (Γ\H; Z) Farrell supplement

−7 7 {1} 0 Z/2
−8 2 {1} 0 Z/2⊕ Z/3
−11 11 {1} 0 Z/3
−15 15 Z/2 0 Z/2⊕ Z/3
−19 19 {1} 0 0
−20 5 Z/2 0 (Z/2)2 ⊕ Z/3
−23 23 Z/3 0 Z/2⊕ Z/3
−24 6 Z/2 0 Z/2⊕ Z/3
−31 31 Z/3 0 Z/2
−35 35 Z/2 Z Z/2⊕ Z/3
−39 39 Z/4 0 Z/2⊕ Z/3
−40 10 Z/2 Z (Z/2)2 ⊕ Z/3
−43 43 {1} Z 0
−47 47 Z/5 0 Z/2⊕ Z/3
−51 51 Z/2 Z Z/3
−52 13 Z/2 Z (Z/2)2

−55 55 Z/4 Z Z/2⊕ Z/3
−56 14 Z/4 Z (Z/2)2 ⊕ Z/3
−59 59 Z/3 Z Z/3
−67 67 {1} Z2 0
−68 17 Z/4 Z (Z/2)2 ⊕ Z/3
−71 71 Z/7 0 Z/2⊕ Z/3
−79 79 Z/5 Z (Z/2)3

−83 83 Z/3 Z2 Z/3
−84 21 Z/2× Z/2 Z3 (Z/2)3 ⊕ (Z/3)2

−87 87 Z/6 Z2 Z/2⊕ Z/3
−88 22 Z/2 Z3 Z/2⊕ Z/3
−91 91 Z/2 Z3 Z/2
−95 95 Z/8 Z Z/2⊕ Z/3
−103 103 Z/5 Z2 Z/2
−104 26 Z/6 Z2 (Z/2)2 ⊕ (Z/3)2

−107 107 Z/3 Z3 (Z/3)3

−111 111 Z/8 Z2 Z/2⊕ Z/3
−115 115 Z/2 Z5 Z/2⊕ Z/3
−116 29 Z/6 Z3 (Z/2)2 ⊕ Z/3
−119 119 Z/10 Z (Z/2)2 ⊕ Z/3
−120 30 Z/2× Z/2 Z6 (Z/2)3 ⊕ (Z/3)3

−123 123 Z/2 Z5 Z/3
−127 127 Z/5 Z3 Z/2
−131 131 Z/5 Z3 Z/3
−132 33 Z/2× Z/2 Z6 (Z/2)3 ⊕ (Z/3)4

−136 34 Z/4 Z4 (Z/2)4 ⊕ Z/3
−139 139 Z/3 Z4 0
−143 143 Z/10 Z2 Z/2⊕ (Z/3)2

−148 37 Z/2 Z6 (Z/2)4

−151 151 Z/7 Z3 Z/2
−152 38 Z/6 Z4 Z/2⊕ Z/3
−155 155 Z/4 Z6 Z/2⊕ Z/3
−159 159 Z/10 Z4 Z/2⊕ Z/3
−163 163 {1} Z6 0
−164 41 Z/8 Z4 (Z/2)2 ⊕ Z/3
−167 167 Z/11 Z2 Z/2⊕ Z/3
−168 42 Z/2× Z/2 Z9 (Z/2)3 ⊕ (Z/3)2

−179 179 Z/5 Z5 Z/3
−183 183 Z/8 Z6 Z/2⊕ Z/3
−184 46 Z/4 Z7 (Z/2)2 ⊕ Z/3
−187 187 Z/2 Z7 Z/3
−191 191 Z/13 Z2 Z/2⊕ Z/3
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Table 1. (Continued.)

∆ m Class group Hcusp
1 (Γ\H; Z) Farrell supplement

−195 195 Z/2× Z/2 Z11 (Z/2)2 ⊕ (Z/3)2

−199 199 Z/9 Z4 Z/2
−203 203 Z/4 Z8 Z/2⊕ Z/3
−211 211 Z/3 Z7 0
−212 53 Z/6 Z8 (Z/2)2 ⊕ Z/3
−215 215 Z/14 Z4 Z/2⊕ Z/3
−219 219 Z/4 Z9 Z/2⊕ Z/3
−223 223 Z/7 Z8 (Z/2)3

−227 227 Z/5 Z7 Z/3
−228 57 Z/2× Z/2 Z12 (Z/2)3 ⊕ (Z/3)2

−231 231 Z/6× Z/2 Z9 (Z/2)2 ⊕ (Z/3)2

−232 58 Z/2 Z10 (Z/2)2 ⊕ Z/3
−235 235 Z/2 Z11 (Z/2)3 ⊕ Z/3
−239 239 Z/15 Z3 Z/2⊕ Z/3
−244 61 Z/6 Z9 (Z/2)2

−247 247 Z/6 Z8 Z/2
−248 62 Z/8 Z8 (Z/2)2 ⊕ Z/3
−251 251 Z/7 Z7 Z/3
−255 255 Z/6× Z/2 Z11 (Z/2)2 ⊕ (Z/3)3

−259 259 Z/4 Z10 Z/2⊕ Z/3
−260 65 Z/4× Z/2 Z12 (Z/2)5 ⊕ (Z/3)2

−263 263 Z/13 Z5 Z/2⊕ Z/3
−264 66 Z/4× Z/2 Z12 (Z/2)2 ⊕ (Z/3)3

−267 267 Z/2 Z13 Z/3
−271 271 Z/11 Z6 Z/2
−276 69 Z/4× Z/2 Z15 (Z/2)3 ⊕ (Z/3)2

−280 70 Z/2× Z/2 Z15 (Z/2)3 ⊕ (Z/3)2

−283 283 Z/3 Z10 0
−287 287 Z/14 Z7 (Z/2)2 ⊕ Z/3
−291 291 Z/4 Z13 Z/2⊕ Z/3
−292 73 Z/4 Z12 (Z/2)2 ⊕ Z/3
−295 295 Z/8 Z11 Z/2⊕ Z/3
−296 74 Z/10 Z9 ⊕(Z/2)2 (Z/2)2 ⊕ (Z/3)2

−299 299 Z/8 Z10 Z/2⊕ (Z/3)4

−303 303 Z/10 Z12 Z/2⊕ Z/3
−307 307 Z/3 Z11 0
−308 77 Z/4× Z/2 Z15 (Z/2)3 ⊕ (Z/3)2

−311 311 Z/19 Z4 Z/2⊕ Z/3
−312 78 Z/2× Z/2 Z18 (Z/2)3 ⊕ (Z/3)2

−319 319 Z/10 Z10 Z/2⊕ Z/3
−323 323 Z/4 Z12 Z/2⊕ Z/3
−327 327 Z/12 Z12 Z/2⊕ Z/3
−328 82 Z/4 Z13 Z/2)3 ⊕ Z/3
−331 331 Z/3 Z12 Z/3
−335 335 Z/18 Z8 Z/2⊕ Z/3
−339 339 Z/6 Z15 Z/3
−340 85 Z/2× Z/2 Z19 (Z/2)4 ⊕ (Z/3)2

−344 86 Z/10 Z11 ⊕ (Z/2)2 Z/2⊕ Z/3
−347 347 Z/5 Z12 Z/3
−355 355 Z/4 Z16 Z/2⊕ Z/3
−356 89 Z/12 Z12 (Z/2)2 ⊕ Z/3
−359 359 Z/19 Z6 ⊕ (Z/2)2 (Z/2)3 ⊕ Z/3
−367 367 Z/9 Z11 ⊕ (Z/3)2 Z/2⊕ Z/3
−371 371 Z/8 Z14 Z/2⊕ Z/3
−372 93 Z/2× Z/2 Z23 (Z/2)3 ⊕ (Z/3)2

−376 94 Z/8 Z14 (Z/2)2 ⊕ Z/3
−379 379 Z/3 Z14 0
−383 383 Z/17 Z8 Z/2⊕ Z/3
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Table 1. (Continued.)

∆ m Class group Hcusp
1 (Γ\H; Z) Farrell supplement

−388 97 Z/4 Z17 (Z/2)2 ⊕ Z/3
−391 391 Z/14 Z11 (Z/2)2 ⊕ Z/3
−395 395 Z/8 Z16 ⊕ (Z/2)2 Z/2⊕ Z/3
−399 399 Z/8× Z/2 Z17 (Z/2)4 ⊕ (Z/3)2

−403 403 Z/2 Z17 Z/2
−404 101 Z/14 Z14 (Z/2)4 ⊕ Z/3
−407 407 Z/16 Z13 Z/2⊕ (Z/3)2

−408 102 Z/2× Z/2 Z23 (Z/2)2 ⊕ (Z/3)6

−411 411 Z/6 Z19 Z/3
−415 415 Z/10 Z18 Z/2⊕ Z/3
−419 419 Z/9 Z13 (Z/3)3

−420 105 Z/2× Z/2× Z/2 Z33 (Z/2)8 ⊕ (Z/3)4

−424 106 Z/6 Z17 ⊕ (Z/2)2 (Z/2)2 ⊕ Z/3
−427 427 Z/2 Z19 (Z/2)3

−431 431 Z/21 Z8 ⊕ Z/2 Z/2⊕ Z/3
−435 435 Z/2× Z/2 Z27 (Z/2)2 ⊕ (Z/3)6

−436 109 Z/6 Z19 ⊕ (Z/2)2 (Z/2)2

−439 439 Z/15 Z11 (Z/2)5

−440 110 Z/6× Z/2 Z20 (Z/2)3 ⊕ (Z/3)2

−443 443 Z/5 Z16 Z/2⊕ Z/3
−447 447 Z/14 Z18 Z/2⊕ Z/3
−451 451 Z/6 Z17 Z/3
−452 113 Z/8 Z19 ⊕ (Z/2)2 (Z/2)2 ⊕ Z/3
−455 455 Z/10× Z/2 Z19 ⊕ (Z/2)2 (Z/2)2 ⊕ (Z/3)2

−456 114 Z/4× Z/2 Z24 ⊕ (Z/2)2 (Z/2)2 ⊕ (Z/3)4

−463 463 Z/7 Z16 Z/2
−467 467 Z/7 Z16 Z/3
−471 471 Z/16 Z18 Z/2⊕ Z/3
−472 118 Z/6 Z19 ⊕ (Z/2)2 Z/2⊕ Z/3
−479 479 Z/25 Z8 ⊕ (Z/3)2 Z/2⊕ Z/3
−483 483 Z/2× Z/2 Z29 (Z/2)2 ⊕ (Z/3)2

−487 487 Z/7 Z17 ⊕ (Z/13)2 Z/2
−488 122 Z/10 Z18 ⊕ (Z/2)2 (Z/2)2 ⊕ (Z/3)2

−491 491 Z/9 Z16 Z/3
−499 499 Z/3 Z19 ⊕ (Z/3)2 (Z/2)2

Definition 1. A pair of elements (µ, λ) ∈ O2 is called unimodular if the ideal sum µO + λO
equals O.

The boundary of H is the Riemann sphere ∂H= C ∪ {∞} (as a set), which contains the
complex plane C. The totally geodesic surfaces in H are the Euclidean vertical planes (we
define vertical as orthogonal to the complex plane) and the Euclidean hemispheres centred on
the complex plane.

Notation 2. Given a unimodular pair (µ, λ) ∈ O2 with µ 6= 0, let Sµ,λ ⊂H denote the
hemisphere given by the equation |µz − λ|2 + |µ|2ζ2 = 1.

This hemisphere has centre λ/µ on the complex plane C and radius 1/|µ|.
Let

B := {(z, ζ) ∈H : The inequality |µz − λ|2 + |µ|2ζ2 > 1
is fulfilled for all unimodular pairs (µ, λ) ∈ O2 with µ 6= 0}.

Then B is the set of points in H which lie above or on all hemispheres Sµ,λ.

Lemma 3 (Swan [32]). The set B contains representatives for all of the orbits of points
under the action of SL2(O) on H.
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The action extends continuously to the boundary ∂H, which is a Riemann sphere.
In Γ := SL2(O−m), consider the stabilizer subgroup Γ∞ of the point ∞∈ ∂H. In the cases

m= 1 and m= 3, the latter group contains some rotation matrices such as
(

0
√
−1√

−1 0

)
, which

we want to exclude. These two cases have been treated in [15, 27] among others, and we
assume m 6= 1, m 6= 3 throughout the remainder of this article. Then,

Γ∞ =
{
±
(

1 λ
0 1

) ∣∣∣∣ λ ∈ O} ,
which performs translations by the elements of O with respect to the Euclidean geometry of
the upper-half space H.

Notation 4. A fundamental domain for Γ∞ in the complex plane (as a subset of ∂H) is
given by the rectangle

D0 :=

{x+ y
√
−m ∈ C | 0 6 x6 1, 0 6 y 6 1}, m≡ 1 or 2 mod 4,{

x+ y
√
−m ∈ C

∣∣∣∣ −1
2

6 x6
1
2
, 0 6 y 6

1
2

}
, m≡ 3 mod 4.

Table 2. The cuspidal homology Hcusp
1 (Γ\H; Z), with its torsion decomposed into prime power

factors, for some greater absolute values of the discriminant ∆.

∆ m Class group Hcusp
1 (Γ\H; Z) Farrell supplement

−520 130 Z/2× Z/2 Z28 ⊕ (Z/2)2 (Z/2)4 ⊕ (Z/3)2

−523 523 Z/5 Z19 0
−532 133 Z/2× Z/2 Z29 (Z/2)3 ⊕ (Z/3)2

−547 547 Z/3 Z21 ⊕ (Z/2)2 (Z/3)2

−555 555 Z/2× Z/2 Z35 (Z/2)2 ⊕ (Z/3)2

−568 142 Z/4 Z25 ⊕ (Z/2)2 (Z/2)6 ⊕ Z/3
−571 571 Z/5 Z23 0
−595 595 Z/2× Z/2 Z33 (Z/2)2 ⊕ (Z/3)4

−619 619 Z/5 Z23 ⊕ (Z/3)2 0
−627 627 Z/2× Z/2 Z35 (Z/3)2

−643 643 Z/3 Z27 Z/3
−667 667 Z/4 Z28 Z/2⊕ Z/3
−683 683 Z/5 Z26 Z/3
−691 691 Z/5 Z26 ⊕ (Z/7)2 0
−696 174 Z/6× Z/2 Z38 (Z/2)3 ⊕ (Z/3)3

−715 715 Z/2× Z/2 Z39 (Z/2)2 ⊕ (Z/3)2

−723 723 Z/4 Z37 ⊕ (Z/2)2 Z/2⊕ Z/3
−739 739 Z/5 Z28 0
−760 190 Z/2× Z/2 Z42 ⊕ (Z/2)2 (Z/2)3 ⊕ (Z/3)2

−763 763 Z/4 Z34 Z/2⊕ Z/3
−787 787 Z/5 Z30 0
−795 795 Z/2× Z/2 Z51 (Z/2)2 ⊕ (Z/3)3

−883 883 Z/3 Z35 0
−907 907 Z/3 Z36 ⊕ (Z/13)2 0
−947 947 Z/5 Z37 ⊕ (Z/89)2 Z/3
−955 955 Z/4 Z46 ⊕ (Z/2)4 ⊕ (Z/3)2 Z/2⊕ Z/3
−1003 1003 Z/4 Z44 ⊕ (Z/3)2 Z/2⊕ Z/3
−1027 1027 Z/4 Z44 ⊕ (Z/2)2 Z/2⊕ (Z/3)3

−1051 1051 Z/5 Z43 ⊕ (Z/13)2 0
−1123 1123 Z/5 Z44 ⊕ (Z/7)2 0
−1227 1227 Z/4 Z65 ⊕ (Z/22)2 Z/2⊕ Z/3
−1243 1243 Z/4 Z54 ⊕ (Z/3)4 Z/2⊕ Z/3
−1387 1387 Z/4 Z58 ⊕ (Z/167)2 Z/2⊕ (Z/3)3

−1411 1411 Z/4 Z60 ⊕ (Z/24)2 ⊕ (Z/43)2 Z/2⊕ Z/3
−1507 1507 Z/4 Z66 ⊕ (Z/3)2 ⊕ (Z/5)4 Z/2⊕ Z/3
−1555 1555 Z/4 Z76 ⊕ (Z/22)8 ⊕ (Z/11)2 Z/2⊕ Z/3
−1723 1723 Z/5 Z69 ⊕ (Z/7)2 ⊕ (Z/23)2 ⊕ (Z/883)2 0
−1747 1747 Z/5 Z70 ⊕ (Z/80737)2 (Z/3)2

−1867 1867 Z/5 Z75 ⊕ (Z/2)4 ⊕ (Z/72)2 ⊕ (Z/137)2 0
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A fundamental domain for Γ∞ in H is given by

D∞ := {(z, ζ) ∈H | z ∈D0}.

Definition 5. We define the Bianchi fundamental polyhedron as

D :=D∞ ∩B.

It is a polyhedron in hyperbolic space up to the missing vertex ∞, and up to missing
vertices at the singular points if O is not a principal ideal domain (see § 6.2). As Lemma 3
states Γ ·B =H, and as Γ∞ ·D∞ =H yields Γ∞ ·D =B, we have Γ ·D =H. We observe
the following notion of strictness of the fundamental domain: the interior of the Bianchi
fundamental polyhedron contains no two points which are identified by Γ. Swan proves the
following theorem, which implies that the boundary of the Bianchi fundamental polyhedron
consists of finitely many cells.

Theorem 6 (Swan [32]). There is only a finite number of unimodular pairs (λ, µ) such
that the intersection of Sµ,λ with the Bianchi fundamental polyhedron is non-empty.

Swan further proves a corollary, from which it can be deduced that the action of Γ on H is
properly discontinuous.

3. The Flöge cellular complex

In order to obtain a cell complex with compact quotient space, we proceed in the following way
due to Flöge [11]. The boundary of H is the Riemann sphere ∂H, which, as a topological space,
is made up of the complex plane C compactified with the cusp∞. The totally geodesic surfaces
in H are the Euclidean vertical planes (we define vertical as orthogonal to the complex plane)
and the Euclidean hemispheres centred on the complex plane. The action of the Bianchi groups
extends continuously to the boundary ∂H. Consider the cellular structure on H induced by
the Γ-images of the Bianchi fundamental polyhedron. The cellular closure of this cell complex
in H ∪ ∂H consists of H and (Q(

√
−m) ∪ {∞})⊂ (C ∪ {∞})∼= ∂H. The SL2(O−m)-orbit of a

cusp λ/µ in (Q(
√
−m) ∪ {∞}) corresponds to the ideal class [(λ, µ)] of O−m. It is well-known

that this does not depend on the choice of the representative λ/µ. We extend our cell complex
to a cell complex X̃ by joining to it, in the case that O−m is not a principal ideal domain, the
SL2(O−m)-orbits of the cusps λ/µ for which the ideal (λ, µ) is not principal. At these cusps,
we equip X̃ with the ‘horoball topology’ described in [11]. This simply means that the set of
cusps, which is discrete in ∂H, is located at the hyperbolic extremities of X̃: no neighbourhood
of a cusp, except the whole X̃, contains any other cusp.

We retract X̃ in the following SL2(O−m)-equivariant way. On the Bianchi fundamental
polyhedron, the retraction is given by the vertical projection (away from the cusp ∞) onto its
facets which are closed in H ∪ ∂H. The latter are the facets which do not touch the cusp ∞.
They are the bottom facets with respect to our vertical direction. The retraction is continued
on H by the group action. It is proven in [10] that this retraction is continuous. We denote by
X the retract of X̃.

Notation 7. We will call this 2-dimensional retract X the retracted Flöge cellular complex.

Note that in the principal ideal domain cases, X is a retract of the original cellular structure
on H, obtained by contracting the Bianchi fundamental polyhedron onto its cells which do
not touch the boundary of H. Hence X coincides with Mendoza’s complex [15] in those cases.
In [23], it is checked that the retracted Flöge cellular complex is contractible.

https://doi.org/10.1112/S1461157013000168 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000168


HIGHER TORSION IN ABELIANIZATION OF BIANCHI GROUPS 351

4. Connecting Flöge cell complex and Borel–Serre compactification

Let Γ be a Bianchi group with O admitting as only units {±1}, i.e. we suppose that O is not
the Gaussian or Eisenstein integers. In the latter two cases, the problem of the singular cusps
treated here does not occur in any case. We make use of the Borel–Serre compactification [31]
for Γ\H. Recall that in this case, the Borel–Serre compactification joins a 2-torus T to Γ\H
at every cusp. Details are given in [22]. Let Ti be the torus attached at the cusp i of Γ. We
decompose Ti in the classical way into a 2-cell, two 1-cells and a vertex. Let xi and yi denote the
cycles generating H1(Ti); they are given by the two 1-cells. Let P be the Bianchi fundamental
polyhedron of Γ. Write ‘hyp. cells’ for cells in the interior of hyperbolic space. Denote by ∂̃
the boundary operator for the cell complex X̃. Consider following the short exact sequence of
chain complexes that we obtain from collapsing the singular tori.

0 0 〈P 〉 〈P 〉 0

0
singular⊕

s
〈Ts〉

any cusp⊕
c
〈Tc〉 ⊕ 〈hyp. 2-cells〉 〈T∞〉 ⊕ 〈hyp. 2-cells〉 0

0
singular⊕

s
〈xs, ys〉

any cusp⊕
c
〈xc, yc〉 ⊕ 〈hyp. edges〉 〈x∞, y∞〉 ⊕ 〈hyp. edges〉 0

0 0
any cusp⊕

c
〈c〉 ⊕ 〈hyp. vertices〉

any cusp⊕
c
〈c〉 ⊕ 〈hyp. vertices〉 0

∂3 ∂̃3

β

0 0⊕ ∂2 0⊕ ∂̃2

β

0⊕ ∂1 0⊕ ∂1

Poincaré’s theorem on fundamental polyhedra tells us that ∂3(P ) = 〈
⋃any cusp
c Tc〉 and, hence,

∂̃3(P ) = 〈T∞〉. From [22], we see that for every cusp c, there is a chain of hyperbolic 2-cells
that we denote by ch(xc) and which is mapped to the cycle xc by ∂2. Furthermore, yc is in the
cokernel of ∂2 (of course, this holds up to the appropriate permutation of the labels xc and
yc). This implies that ∂̃2(ch(x∞)) = x∞ and y∞ is in the cokernel of ∂̃2. As the quotient space
is path-wise connected, the cokernel of ∂1 is isomorphic to Z. The above information tells us
that the long exact sequence induced on integral homology by the map β concentrates in the
following diagram.

0
singular⊕

s
〈Ts〉

(any cusp⊕
c
〈Tc〉

)
/〈∪cTc〉 ⊕Hcusp

2 Hcusp
2

⊕
s〈ch(xs)〉⊕

s〈xs, ys〉
⊕

c〈yc〉 ⊕Hcusp
1 Hcusp

1 ⊕〈y∞〉

0 Z Z 0

β2

β1

Here the maps without labels are the obvious restriction maps making the sequence exact and
Hcusp

1 and Hcusp
2 are generated by cycles from the interior of Γ\H.

Note that Hcusp
2

⊕
s〈ch(xs)〉 is non-naturally isomorphic to(any cusp⊕

c

〈Tc〉
)/

〈∪cTc〉
⊕Hcusp

2 ,

namely collapsing a torus Ts moves its 2-cycle into a bubble ch(xs) emerging adjacent to the
singular cusp s in the Flöge complex.
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5. The equivariant spectral sequence to group homology

Let Γ := PSL2(O−m), and let X be the retracted Flöge cellular complex of § 3, the cell structure
of which we subdivide until the cells are fixed pointwise by their stabilizers. We describe now
how to assemble the homology of the Borel–Serre compactified quotient space (see the previous
section) and the Farrell cohomology of Γ, for which general formulae have been given in [21]
(based on [20]), to the full group homology of Γ with trivial Z-coefficients. We proceed by
following [4, VII] and [27]. Let us consider the homology H∗(Γ; C•(X)) of Γ with coefficients
in the cellular chain complex C•(X) associated to X; and call it the Γ-equivariant homology
of X. As X is contractible, the map X → pt. to the point pt. induces an isomorphism

H∗(Γ; C•(X))→H∗(Γ; C•(pt.))∼= H∗(Γ; Z).

Denote by Xp the set of p-cells of X, and make use of that the stabilizer Γσ in Γ of any p-cell
σ of X fixes σ pointwise. Then from

Cp(X) =
⊕
σ∈Xp

Z∼=
⊕

σ ∈ Γ\Xp
IndΓ

ΓσZ.

Shapiro’s lemma yields

Hq(Γ; Cp(X))∼=
⊕

σ ∈ Γ\Xp
Hq(Γσ; Z);

and the equivariant Leray/Serre spectral sequence takes the form

E1
p,q =

⊕
σ ∈ Γ\Xp

Hq(Γσ; Z) =⇒ Hp+q(Γ; C•(X)),

converging to the Γ-equivariant homology of X, which is, as we have already seen, isomorphic
to Hp+q(Γ; Z) with the trivial action on the coefficients Z.

As in degrees above the virtual cohomological dimension, which is two for the Bianchi groups,
the group homology is isomorphic to the Farrell cohomology, we obtain the isomorphism type
from the above-mentioned general formulae.

In the lower degrees q ∈ {0, 1, 2}, the following terms remain on the E2-page, which is
concentrated in the columns p= 0, 1, 2:

q = 2
⊕

s singular

Z⊕ 2-torsion⊕ 3-torsion 2-torsion⊕ 3-torsion 0

q = 1
⊕

s singular

Z2 ⊕ Farrell supplement 2-torsion⊕ 3-torsion 0

q = 0 Z H1(Γ\X; Z) H2(Γ\X; Z)

d22,0
llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

where the ‘Farrell supplement’ is the cokernel of the map⊕
σ ∈ Γ\X0

H1(Γσ; Z)
d11,1←−−−−

⊕
σ ∈ Γ\X1

H1(Γσ; Z)

induced by inclusion of finite cell stabilizers. As the cells are fixed pointwise by their stabilizers,
we see that for q > 0, the E1

p,q-terms are concentrated in the two columns p= 0 and p= 1. We
compute the bottom row (q = 0) of the above spectral sequence as the homology of the quotient
space Γ\X. Then we infer from § 4 that the rational rank of the differential d2

2,0 is the number
of non-trivial ideal classes of O−m.
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Let us use Serre’s decomposition of the homology group H1(Γ\H; Z) into the direct sum
of Hcusp

1 (Γ\H; Z) and the free Abelian group with one generator for each element of the
class group of O−m. Then using the long exact sequence of § 4, we see that H1(Γ\X; Z)∼=
Hcusp

1 (Γ\H; Z)⊕ Z. This has made it possible to compute Hcusp
1 (Γ\H; Z) from the quotient

space of the retracted Flöge cellular complex in Tables 1 and 2. Finally, the group homology
H1(Γ; Z) is an extension of H1(Γ\H; Z) by a quotient of the Farrell supplement.

6. Swan’s concept to determine the Bianchi fundamental polyhedron

This section recalls Richard G. Swan’s work [32], which gives a concept, from the theoretical
viewpoint, for an algorithm to compute the Bianchi fundamental polyhedron. The set B
which determines the Bianchi fundamental polyhedron has been defined using infinitely many
hemispheres. But we will see that only a finite number of them are significant for this purpose
and need to be computed. We will state a criterion for what is an appropriate choice that gives
us precisely the set B. This criterion is easy to verify in practice. Suppose that we have made
a finite selection of n hemispheres. The index i running from 1 through n, we denote the ith
hemisphere by S(αi), where αi is its centre and given by a fraction αi = λi/µi in the number
field Q(

√
−m ). Here, we require the ideal (λi, µi) to be the whole ring of integers O. This

requirement is just the one already made for all of the hemispheres in the definition of B. Now,
we can do an approximation of Notation 2, using, modulo the translation group Γ∞, a finite
number of hemispheres.

Notation 8. Let B(α1, . . . , αn) :=
{

(z, ζ) ∈H: the inequality |µz − λ|2 + |µ|2ζ2 > 1 is
fulfilled for all unimodular pairs (µ, λ) ∈ O2 with λ/µ= αi + γ, for some i ∈ {1, . . . , n} and
some γ ∈ O

}
. Then B(α1, . . . , αn) is the set of all points inH lying above or on all hemispheres

S(αi + γ), i= 1, . . . , n; for any γ ∈ O.

The intersection B(α1, . . . , αn) ∩D∞ with the fundamental domain D∞ for the translation
group Γ∞, is our candidate to equal the Bianchi fundamental polyhedron.

6.1. Convergence of the approximation

We will give a method to decide when B(α1, . . . , αn) =B. This gives us an effective way to find
B by adding more and more elements to the set {α1, . . . , αn} until we find B(α1, . . . , αn) =B.
We consider the boundary ∂B(α1, . . . , αn) of B(α1, . . . , αn) in H ∪ C. It consists of the points
(z, ζ) ∈H ∪ C satisfying all of the non-strict inequalities |µz − λ|2 + |µ|2ζ2 > 1 that we have
used to define B(α1, . . . , αn), and satisfy the additional condition that at least one of these
non-strict inequalities is an equality. We will see below that ∂B(α1, . . . , αn) carries a natural
cell structure. This, together with the following definitions, makes it possible to state the
criterion which tells us when we have found all of the hemispheres relevant for the Bianchi
fundamental polyhedron.

Definition 9. We shall say that the hemisphere Sµ,λ is strictly below the hemisphere Sβ,α
at a point z ∈ C if the following inequality is satisfied:∣∣∣∣z − α

β

∣∣∣∣2 − 1
|β|2

<

∣∣∣∣z − λ

µ

∣∣∣∣2 − 1
|µ|2

.

This is, of course, an abuse of language because there may not be any points on Sβ,α or
Sµ,λ with coordinate z. However, if there is a point (z, ζ) on Sµ,λ, the right-hand side of the
inequality is just −ζ2. Thus, the left-hand side is negative and so of the form −(ζ ′)2. Clearly,
(z, ζ ′) ∈ Sβ,α and ζ ′ > ζ. We will further say that a point (z, ζ) ∈H ∪ C is strictly below a
hemisphere Sµ,λ, if there is a point (z, ζ ′) ∈ Sµ,λ with ζ ′ > ζ.
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6.2. Singular points

We call cusps the elements of the number field K = Q(
√
−m ) considered as points in the

boundary of hyperbolic space, via an embedding K ⊂ C ∪ {∞} ∼= ∂H. We write∞= 1/0, which
we also consider as a cusp. It is well-known that the set of cusps is closed under the action of
SL2(O) on ∂H and that we have the following bijective correspondence between the SL2(O)-
orbits of cusps and the ideal classes in O. A cusp λ/µ is in the SL2(O)-orbit of the cusp λ′/µ′,
if and only if the ideals (λ′, µ′) and (λ, µ) are in the same ideal class. It immediately follows
that the orbit of the cusp ∞= 1/0 corresponds to the principal ideals. Let us call singular the
cusps λ/µ such that (λ, µ) is not principal. And let us call singular points the singular cusps
which lie in ∂B. It follows from the characterization of the singular points by Bianchi that they
are precisely the points in C⊂ ∂H which cannot be strictly below any hemisphere. In the cases
where O is a principal ideal domain, K ∪ {∞} consists of only one SL2(O)-orbit, so there are
no singular points. We use the following formulae derived by Swan, to compute representatives
modulo the translations by Γ∞, of the singular points.

Lemma 10 (Swan [32]). The singular points of K,modO, are given by p(r +
√
−m)/s,

where p, r, s ∈ Z, s > 0, −s/2< r 6 s/2, s2 6 r2 +m and:
• if m≡ 1 or 2 mod 4, s 6= 1, s | r2 +m, the numbers p and s are coprime, and p is taken

mod s;
• if m≡ 3 mod 4, s is even, s 6= 2, 2s | r2 +m, the numbers p and s/2 are coprime; p is taken

mod s/2.

The singular points need not be considered in Swan’s termination criterion, because they
cannot be strictly below any hemisphere Sµ,λ.

6.3. Swan’s termination criterion

We observe that the set of z ∈ C over which some hemisphere is strictly below another is C or
an open half-plane. In the latter case, the boundary of this is a line.

Notation 11. Denote by L(α/β, λ/µ) the set of z ∈ C over which neither Sβ,α is strictly
below Sµ,λ nor vice versa.

This line is computed by turning the inequality in Definition 9 into an equation. Swan calls
it the line over which the two hemispheres agree, and we will see later that the most important
edges of the Bianchi fundamental polyhedron lie on the preimages of such lines. We now restrict
our attention to a set of hemispheres which is finite modulo the translations in Γ∞. Consider a
set of hemispheres S(αi + γ), where the index i runs from 1 through n, and γ runs through O.
We call this set of hemispheres a collection, if every non-singular point z ∈ C⊂ ∂H is strictly
below some hemisphere in our set. Now consider a set B(α1, . . . , αn) which is determined by
such a collection of hemispheres.

Theorem 12 (Swan’s termination criterion [32]). We have B(α1, . . . , αn) =B if and only
if no vertex of ∂B(α1, . . . , αn) can be strictly below any hemisphere Sµ,λ.

In other words, no vertex v of ∂B(α1, . . . , αn) can lie strictly below any hemisphere Sµ,λ.
Let us call the coordinate ζ of the upper-half space model introduced at the beginning of § 2
the height. With this criterion, it suffices to compute the cell structure of ∂B(α1, . . . , αn) to
see whether our choice of hemispheres gives us the Bianchi fundamental polyhedron. This has
only to be done modulo the translations of Γ∞, which preserve the height and, hence, the
situations of being strictly below. Thus, our computations only need to be carried out on a
finite set of hemispheres.
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6.4. Computing the cell structure in the complex plane

We will in a first step compute the image of the cell structure under the homeomorphism from
∂B(α1, . . . , αn) to C given by the vertical projection. For each 2-cell of this structure, there is
an associated hemisphere Sµ,λ. The interior of this 2-cell consists of the points z ∈ C, where all
other hemispheres in our collection are strictly below Sµ,λ. Swan shows that this is the interior
of a convex polygon. The edges of these polygons lie on real lines in C specified in Notation 11.

A vertex is an intersection point z of any two of these lines involving the same hemisphere
Sµ,λ, if all other hemispheres in our collection are strictly below, or agree with, Sµ,λ at z.

6.5. Lifting the cell structure back to hyperbolic space

Now we can lift the cell structure back to ∂B(α1, . . . , αn), using the projection homeomorphism
onto C. The preimages of the convex polygons of the cell structure on C, are totally geodesic
hyperbolic polygons each lying on one of the hemispheres in our collection. These are the 2-cells
of ∂B(α1, . . . , αn).

The edges of these hyperbolic polygons lie on the intersection arcs of pairs of hemispheres
in our collection. As two Euclidean 2-spheres intersect, if they do so non-trivially, in a circle
centred on the straight line which connects the two 2-sphere centres, such an intersection arc
lies on a semicircle centred in the complex plane. The plane which contains this semicircle must
be orthogonal to the connecting line, hence a vertical plane in H. We can alternatively conclude
the latter facts observing that an edge which two totally geodesic polygons have in common
must be a geodesic segment. Lifting the vertices becomes now obvious from their definition.
This enables us to check Swan’s termination criterion.

We will now sketch Swan’s proof of this criterion. Let P be one of the convex polygons of the
cell structure on C. The preimage of P lies on one hemisphere S(αi) of our collection. Now the
condition stated in Theorem 12 states that at the vertices of P , the hemisphere S(αi) cannot
be strictly below any other hemisphere. The points where S(αi) can be strictly below some
hemisphere constitute an open half-plane in C, and hence cannot lie in the convex hull of the
vertices of P , which is P . Theorem 12 now follows because C is tessellated by these convex
polygons.

7. Algorithms realizing Swan’s concept

From now on, we will work on putting Swan’s concept into practice. We can reduce the set of
hemispheres on which we carry out our computations, with the help of the following notion.

Definition 13. A hemisphere Sµ,λ is said to be everywhere below a hemisphere Sβ,α when∣∣∣∣λµ − α

β

∣∣∣∣6 1
|β|
− 1
|µ|
.

Note that this is also the case when Sµ,λ = Sβ,α. Any hemisphere which is everywhere below
another one, does not contribute to the Bianchi fundamental polyhedron, in the following sense.

Proposition 14. Let S(αn) be a hemisphere everywhere below some other hemisphere
S(αi), where i ∈ {1, . . . , n− 1}. Then B(α1, . . . , αn) =B(α1, . . . , αn−1).

Proof. Write αn = λ/µ and αi = θ/τ with λ, µ, θ, τ ∈ O. We take any point (z, ζ) strictly
below Sµ,λ and show that it is also strictly below Sτ,θ. In terms of Notation 8, this problem
looks as follows: we assume that the inequality |µz − λ|2 + |µ|2ζ2 < 1 is satisfied, and show
that this implies the inequality |τz − θ|2 + |τ |2ζ2 < 1. The first inequality can be transformed

into |z − λ/µ|2 + ζ2 < 1/|µ|2. Hence,
√
|z − λ/µ|2 + ζ2 < 1/|µ|. We will insert this into the
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triangle inequality for the Euclidean distance in C× R applied to the three points (z, ζ),
(λ/µ, 0) and (θ/τ, 0), which is√∣∣∣∣z − θ

τ

∣∣∣∣2 + ζ2 <

∣∣∣∣λµ − θ

τ

∣∣∣∣+

√∣∣∣∣z − λ

µ

∣∣∣∣2 + ζ2.

So we obtain
√
|z − θ/τ |2 + ζ2 < |λ/µ− θ/τ |+ 1/|µ|. By Definition 13, the expression on

the right-hand side is smaller than or equal to 1/|τ |. Therefore, we take the square and obtain
|z − θ/τ |2 + ζ2 < 1/|τ |2, which is equivalent to the claimed inequality. 2

Another notion that will be useful for our algorithm is as follows.

Definition 15. Let z ∈ C be a point lying within the vertical projection of Sµ,λ. Define the
lift on the hemisphere Sµ,λ of z as the point on Sµ,λ the vertical projection of which is z.

Notation 16. Denote by the hemisphere list a list into which we will record a finite number
of hemisphere s S(α1), . . . , S(αn). Its purpose is to determine a set B(α1, . . . , αn) in order to
approximate, and finally obtain, the Bianchi fundamental polyhedron.

7.1. The algorithm computing the Bianchi fundamental polyhedron

We now describe the algorithm that we have realized using Swan’s description; it is decomposed
into Algorithms 1–3.

Initial step. We begin with the smallest value which the norm of a non-zero element µ ∈ O
can take, namely 1. Then µ is a unit in O, and for any λ ∈ O, the pair (µ, λ) is unimodular.
We can rewrite the fraction λ/µ such that µ= 1. We obtain the unit hemispheres (of radius 1),
centred at the imaginary quadratic integers λ ∈ O. We record into the hemisphere list those
which touch the Bianchi fundamental polyhedron, i.e. those the centre of which lies in the
fundamental rectangle D0 (of Notation 4) for the action of Γ∞ on the complex plane.

Step A. Increase |µ| to the next higher value which the norm takes on elements of O. Run
through all of the finitely many µ which have this norm. For each of these µ, run through all
of the finitely many λ with λ/µ in the fundamental rectangle D0. Check that (µ, λ) =O and
that the hemisphere Sµ,λ is not everywhere below a hemisphere Sβ,α in the hemisphere list. If
these two checks are passed, record (µ, λ) into the hemisphere list.

We repeat Step A until |µ| has reached an expected value. Then we check whether we have
found all of the hemispheres which touch the Bianchi fundamental polyhedron, as follows.

Step B. We compute the lines L(α/β, λ/µ) of Notation 11, over which two hemispheres agree,
for all pairs Sβ,α, Sµ,λ in the hemisphere list which touch one another.

Then, for each hemisphere Sβ,α, we compute the intersection points of each two lines
L(α/β, λ/µ) and L(α/β, θ/τ) referring to α/β.

We drop the intersection points at which Sβ,α is strictly below some hemisphere in the list.
We erase the hemispheres from our list, for which less than three intersection points remain.

We can do this because a hemisphere which touches the Bianchi fundamental polyhedron only
in two vertices shares only an edge with it and no 2-cell.

Now, the vertices of B(α1, . . . , αn) ∩D∞ are the lifts of the remaining intersection points.
Thus, we can check Swan’s termination criterion (Theorem 12), which we do as follows. We
pick the lowest value ζ > 0 for which (z, ζ) ∈H is the lift inside hyperbolic space of a remaining
intersection point z.
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If ζ > 1/|µ|, then all (infinitely many) remaining hemispheres have radius at most ζ, so (z, ζ)
cannot be strictly below them. So Swan’s termination criterion is fulfilled, we have found the
Bianchi fundamental polyhedron, and can proceed by determining its cell structure.

Otherwise, ζ becomes the new expected value for 1/|µ|. We repeat Step A until |µ| reaches
1/ζ and then proceed again with Step B.

Algorithm 1 Computation of the Bianchi fundamental polyhedron

Input: A square-free positive integer m.
Output: The hemisphere list, containing entries S(α1), . . . , S(αn) such that
B(α1, . . . , αn) =B.

Let O be the ring of integers in Q(
√
−m).

Let hO be the class number of O. Compute hO.
Estimate the highest value for |µ| which will occur in Notation 8 by

the formula E :=


5m
2
hO − 2m+

1
2
, m≡ 3 mod 4,

21mhO − 19m, else.
N := 1.
Swan’s cancel criterion fulfilled := false.

while Swan’s cancel criterion fulfilled = false, do
while N 6 E do

Execute Algorithm 2 with argument N .
Increase N to the next greater value in
the set {

√
n2m+ j2 | n, j ∈ N} of values of the norm on O.

end while
Compute ζ with Algorithm 3.
if ζ > 1/N , then

All (infinitely many) remaining hemispheres have radius
smaller than ζ,
so (z, ζ) cannot be strictly below any of them.
Swan’s cancel criterion fulfilled := true.

else
ζ becomes the new expected lowest value for 1/N:
E := 1/ζ.

end if
end while

Proposition 17. The hemisphere list, as computed by Algorithm 1, determines the Bianchi
fundamental polyhedron. This algorithm terminates within finite time.

Proof. The proof proceeds via the following steps.
• The value ζ is the minimal height of the non-singular vertices of the cell complex
∂B(α1, . . . , αn) determined by the hemisphere list {S(α1), . . . , S(αn)}.
All of the hemispheres which are not in the list have radius smaller than 1/N .
By Remark 19, the inequality ζ > 1/N will become satisfied; and then no non-
singular vertex of ∂B(α1, . . . , αn) can be strictly below any of them. Hence, by
Theorem 12, B(α1, . . . , αn) =B and we obtain the Bianchi fundamental polyhedron as
B(α1, . . . , αn) ∩D∞.
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• We now consider the run-time. By Theorem 6, the set of hemispheres

{Sµ,λ | Sµ,λ touches the Bianchi fundamental polyhedron}

is finite. So, there exists an Sµ,λ for which the norm of µ takes its maximum on this finite
set. The variable N reaches this maximum for |µ| after a finite number of steps and then
Swan’s termination criterion is fulfilled. The latter steps require a finite run-time because
of Propositions 20 and 21. 2

Swan explains furthermore how to obtain an a priori bound for the norm of the µ ∈ O
occurring for such hemispheres Sµ,λ, but he states that this upper bound for |µ| is much
too large. So instead of the theory behind Theorem 6, we use Swan’s termination criterion
(Theorem 12 above) to limit the number of steps in our computations. We then obtain the
following observation.

Observation 18. We can give bounds for |µ| in the cases where K is of class number 1 or
2 (there are 9 cases of class number 1 and 18 cases of class number 2, and we have performed
the computation for all of them). They are as follows:

K of class number 1: |µ|6 |∆|+ 1
2

,

K of class number 2:

|µ|6 3|∆| m≡ 3 mod 4,

|µ|6
(

5 +
61
116

)
|∆|, otherwise,

where ∆ is the discriminant of

K = Q(
√
−m) i.e. |∆|=

{
m, m≡ 3 mod 4,
4m otherwise.

Remark 19. In Algorithm 1, we have chosen the value E by an extrapolation formula
for Observation 18. If this is greater than the exact bound for |µ|, the algorithm computes
additional hemispheres which do not contribute to the Bianchi fundamental polyhedron. On
the other hand, if E is smaller than the exact bound for |µ|, it will be increased in the outer
while loop of the algorithm, until it is sufficiently large. Then the algorithm performs some
preliminary computations of the intersection lines and vertices, which cost additional run-time.
Thus, our extrapolation formula is aimed at choosing E slightly greater than the exact bound
for |µ| we expect.

Proposition 20. Algorithm 2 finds all of the hemispheres of radius 1/N , on which a 2-cell
of the Bianchi fundamental polyhedron can lie. This algorithm terminates within finite time.

Proof. The proof proceeds with two steps.
• Directly from the definition of the hemispheres Sµ,λ, it follows that the radius is given

by 1/|µ|. So our algorithm runs through all µ in question. By construction of the Bianchi
fundamental polyhedron D, the hemispheres on which a 2-cell of D lies must have their
centre in the fundamental rectangle D0. By Proposition 14, such hemispheres cannot be
everywhere below some other hemisphere in the list.
• Now we consider the run-time of the algorithm. There are finitely many µ ∈ O the norm

of which takes a given value. For a given µ, there are finitely many λ ∈ O such that λ/µ
is in the fundamental rectangle D0. Therefore, this algorithm consists of finite loops and
terminates within finite time. 2
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Algorithm 2 Recording the hemispheres of radius 1/N

Input: The value N , and the hemisphere list (empty by default).
Output: The hemisphere list with some hemispheres of radius 1/N added.

for a running from 0 through N within Z, do
for b in Z such that |a+ bω|=N , do

Let µ := a+ bω.
for all of the λ ∈ O with λ/µ in the fundamental rectangle D0, do

if the pair (µ, λ) is unimodular, then
Let L be the length of the hemisphere list.
everywhere below := false, j := 1.
while everywhere below = false and j 6 L, do

Let Sβ,α be the jth entry in the hemisphere list;
if Sµ,λ is everywhere below Sβ,α, then

everywhere below := true.
end if
Increase j by 1.

end while
if everywhere below = false, then

Record Sµ,λ into the hemisphere list.
end if

end if
end for

end for
end for

We recall that the notion ‘everywhere below’ has been made precise in
Definition 13; and that the fundamental rectangle D0 has been specified
in Notation 4.

Proposition 21. Algorithm 3 finds the minimal height occurring amongst the non-singular
vertices of ∂B(α1, . . . , αn). This algorithm erases only such hemispheres from the list, which
do not change ∂B(α1, . . . , αn). It terminates within finite time.

Proof. The proof proceeds via the following steps.
• The heights of the points in H are preserved by the action of the translation group Γ∞, so

we only need to consider representatives in the fundamental domain D∞ for this action.
Our algorithm computes the entire cell structure of ∂B(α1, . . . , αn) ∩D∞, as described
in § 6.4. The number of lines to intersect is smaller than the square of the length of the
hemisphere list, and thus finite. As a consequence, the minimum of the height has to be
taken only on a finite set of intersection points, whence the first claim.

• If a cell of ∂B(α1, . . . , αn) lies on a hemisphere, then its vertices are lifts of intersection
points. So we can erase the hemispheres which are strictly below some other hemispheres
at all of the intersection points, without changing ∂B(α1, . . . , αn).

• Now we consider the run-time. This algorithm consists of loops running through the
hemisphere list, which has finite length. Within one of these loops, there is a loop running
through the set of pairs of lines L(α/β, λ/µ). A (far too large) bound for the cardinality
of this set is given by the fourth power of the length of the hemisphere list. The steps
performed within these loops are very delimited and easily seen to be of finite run-time. 2
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Algorithm 3 Computing the minimal proper vertex height

Input: The hemisphere list {S(α1), . . . , S(αn)}.
Output: The lowest height ζ of a non-singular vertex of ∂B(α1, . . . , αn). And the
hemisphere list with some hemispheres removed which do not touch the Bianchi fundamental
polyhedron.

for all pairs Sβ,α, Sµ,λ in the hemisphere list which touch one another, do
compute the line L(α/β, λ/µ) of Notation 11.

end for

for each hemisphere Sβ,α in the hemisphere list, do
for each two lines L(α/β, λ/µ) and L(α/β, θ/τ) referring to α/β, do

Compute the intersection point of L(α/β, λ/µ) and L(α/β, θ/τ), if it exists.
end for

end for
Drop the intersection points at which Sβ,α is strictly below some hemisphere in the list.
Erase the hemispheres from our list, for which no intersection points remain.
Now the vertices of B(α1, . . . , αn) ∩D∞ are the lifts (specified in Definition
15) on the appropriate hemispheres of the remaining intersection points.
Pick the lowest value ζ > 0 for which (z, ζ) ∈H is the lift on some hemisphere of a remaining
intersection point z.
Return ζ.

7.2. The cell complex and its orbit space

With the method described in § 6.4, we obtain a cell structure on the boundary of the
Bianchi fundamental polyhedron. The cells in this structure which touch the cusp∞ are easily
determined: they are four 2-cells each lying on one of the Euclidean vertical planes bounding
the fundamental domain D∞ for Γ∞ specified in Notation 4; and four 1-cells each lying on one
of the intersection lines of these planes. The other 2-cells in this structure lie each on one of
the hemispheres determined with our realization of Swan’s algorithm.

As the Bianchi fundamental polyhedron is a hyperbolic polyhedron up to some missing cusps,
its boundary cells can be oriented as its facets. Once the cell structure is subdivided until the
cells are fixed pointwise by their stabilizers, this cell structure with orientation is transported
onto the whole hyperbolic space by the action of Γ.

7.3. Computing the vertex stabilizers and identifications

Let us state explicitly the Γ-action on the upper-half space model H, in the form in which we
will use it rather than in its historical form.

Lemma 22 (Poincaré). If γ =
(
a b
c d

)
∈GL2(C), the action of γ on H is given by γ · (z, ζ) =

(z′, ζ ′), where

ζ ′ =
|det γ|ζ

|cz − d|2 + ζ2|c|2
, z′ =

(d− cz)(az − b)− ζ2c̄a

|cz − d|2 + ζ2|c|2
.

From this operation formula, we establish equations and inequalities on the entries of a
matrix sending a given point (z, ζ) to another given point (z′, ζ ′) in H. We will use them
in Algorithm 4 to compute such matrices. For the computation of the vertex stabilizers,
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we have (z, ζ) = (z′, ζ ′), which simplifies the below equations and inequalities as well as the
pertinent algorithm. First, we fix a basis for O as the elements 1 and

ω :=

{√
−m, m≡ 1 or 2 mod 4,
− 1

2 + 1
2

√
−m, m≡ 3 mod 4.

As we have put m 6= 1 and m 6= 3, the only units in the ring O are ±1. We will use the notation
dxe := min{n ∈ Z | n> x} and bxc := max{n ∈ Z | n6 x} for x ∈ R.

Lemma 23. Let m≡ 3 mod 4. Let
(
a b
c d

)
∈ SL2(O) be a matrix sending (z, r) to (ζ, ρ) ∈H.

Write c in the basis as j + kω, where j, k ∈ Z. Then |c|2 6 1/rρ, |j|6
√

(1 + 1/m)/rρ and

2j
m+ 1

− 2

√
((m+ 1)/rρ)− j2m

m+ 1
6 k 6

2j
m+ 1

+ 2

√
((m+ 1)/rρ)− j2m

m+ 1
.

Proof. From the operation equation
(
a b
c d

)
· (z, r) = (ζ, ρ), we deduce |cz − d|2 + r2|c|2 = r/ρ

and conclude r2|c|2 6 r/ρ, whence the first inequality. We insert |c|2 = (j − k/2)2 +m(k/2)2

= j2 +m+ 1/4k2 − jk into it, and obtain

0 > k2 − 4j
m+ 1

k +
4

m+ 1

(
j2 − 1

rρ

)
=: f(k).

We observe that f(k) is a quadratic function in k ∈ Z⊂ R, taking its values exclusively in R.
Hence, its graph has the shape of a parabola, and the negative values of f(k) appear exactly
on the interval where k is between its two zeros,

k± =
2j

m+ 1
± 2

√
∆

m+ 1
where ∆ =

m+ 1
rρ

− j2m.

This implies the third and fourth claimed inequalities. As k is a real number, ∆ must be non-
negative in order that f(k) be non-positive. Hence, j2 6 (1 + 1/m)/rρ, which gives the second
claimed inequality. 2

Lemma 24. Under the assumptions of Lemma 23, write d in the basis as q + sω, where
q, s ∈ Z. Write cz in the basis as R(cz) +W (cz)ω, where R(cz), W (cz) ∈Q. Then

W (cz)− 2

√
(r/ρ)− r2|c|2

m
6 s6W (cz) + 2

√
(r/ρ)− r2|c|2

m
,

and

q =R(cz)− W (cz)
2

+
s

2
±

√
r

ρ
− r2|c|2 −m

(
W (cz)

2
− s

2

)2

.

Proof. Recall that ω =− 1
2 + 1

2

√
−m, so q + sω = q − s/2− s/2

√
−m. The operation

equation yields |cz − d|2 + r2|c|2 = r/ρ. From this, we derive

r

ρ
− r2|c|2 = (cz − (q + sω))

(
cz −

(
q − s

2
− s

2
√
−m

))
=
(

Re(cz)− q +
s

2

)2

+
(

Im(cz)− s

2
√
m

)2

= Re(cz)2 + q2 − qs+
s2

4
− 2Re(cz)q + Re(cz)s+

(
Im(cz)− s

2
√
m

)2

.

We solve for q,

q2 + (−2Re(cz)− s)q +
(

Re(cz) +
s

2

)2

+
(

Im(cz)− s

2
√
m

)2

− r

ρ
+ r2|c|2 = 0
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Algorithm 4 Computation of the matrices identifying two points in H

Input: The points (z, r), (ζ, ρ) in the interior of H, where z, ζ ∈K and r2, ρ2 ∈Q.
Output: The set of matrices (a bc d)∈ SL2(O−m),m≡ 3 mod 4, with non-zero entry c, sending
the first of the input points to the second one.

c will run through O with 0< |c|2 6 1/rρ.
Write c in the basis as j + kω, where j, k ∈ Z.

for j running from −d
√

(1 + (1/m))/rρ e through d
√

(1 + (1/m))/rρ e do

k±limit := 2
j

m+ 1
± 2

√
((m+ 1)/rρ)− j2m

m+ 1
.

for k running from bk−limitc through dk+
limite do

c := j + kω;
if |c|2 6 1/rρ and c non-zero, then

Write cz in the basis as R(cz) +W (cz)ω with R(cz), W (cz) ∈Q.
d will run through O with |cz − d|2 + r2|c|2 = r/ρ.
Write d in the basis as q + sω, where q, s ∈ Z.

s±limit :=W (cz)± 2

√
(r/ρ)− r2|c|2

m
.

for s running from bs−limitc through ds+
limite do

∆ :=
r

ρ
− r2|c|2 −m

(
W (cz)

2
− s

2

)2

;

if ∆ is a rational square, then

q± :=R(cz)− W (cz)
2

+
s

2
±
√

∆.

Do the following for both q± = q+ and q± = q− if ∆ 6= 0.
if q± ∈ Z, then

d := q± + sω;
if |cz − d|2 + r2|c|2 = r/ρ and (c, d) unimodular, then

a := (ρ/r)d− (ρ/r)cz − cζ.
if a is in the ring of integers, then

b is determined by the determinant 1:
b := (ad− 1)/c.
if b is in the ring of integers, then

Check that (a bc d)·(z, r) = (ζ, ρ).
Return (

a b
c d

).
end if

end if
end if

end if
end if

end for
end if

end for
end for
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and find

q± = Re(cz) +
s

2
±
√

∆ where ∆ =
r

ρ
− r2|c|2 −

(
Im(cz)− s

2
√
m

)2

.

We express this as

q± =R(cz)− W (cz)
2

+
s

2
±
√

∆ where ∆ =
r

ρ
− r2|c|2 −m

(
W (cz)

2
− s

2

)2

,

which is the claimed equation. The condition that q must be a rational integer implies ∆ > 0,
which can be rewritten in the claimed inequalities. 2

We further state a simple inequality in order to prove that Algorithm 4 terminates in finite
time.

Lemma 25. Let K = Q(
√
−m) with m 6= 3. Let c, z ∈K. Write their product cz in the

Q-basis {1, ω} for K as R(cz) +W (cz)ω. Then the inequality |W (cz)|6 |c| · |z| holds.

Proof. Let x+ yω ∈K with x, y ∈Q. Our first step is to show that |y|6 |x+ yω|. Consider
the case m≡ 1 or 2 mod 4. Then

|x+ yω|=
√
x2 +my2 >

√
m|y|> |y|,

and we have shown our claim. Else consider the case m≡ 3 mod 4. Then,

|x+ yω|=
√

(x+ ωy)(x+ ωy) =

√(
x2 − 2x

y

2
+
y2

4

)
+
m

4
y2 >

√
m

2
|y|,

and our claim follows for m> 3. Now we have shown that |W (cz)|6 |cz| and we use some
embedding of K into C to verify the equation |cz|= |c| · |z|. 2

Proposition 26. Let m≡ 3 mod 4. Then Algorithm 4 gives all of the matrices
(
a b
c d

)
∈

SL2(O) with c 6= 0, sending (z, r) to (ζ, ρ) ∈H. It terminates in finite time.

Proof. The proof proceeds via the following steps.
• The first claim is easily established using the bounds and formulae stated in Lemmas 23

and 24.
• Now we consider the run-time. This algorithm consists of three loops the limits of which

are at most linear expressions in 1/
√
rρ. For s±limit, we use Lemma 25 and r2|c|2 6 r/ρ to

see this (we obtain a factor |z| here, which we can neglect). 2

Finally, it should be said that the scope of computations one can do with geometric models for
the Bianchi groups does not stop once the integral homology of the full group is known. There
is further interest in homology with twisted coefficients, congruence subgroups and modular
forms (see, for instance, [28, 30]). Currently, Page [16] is working on optimizing algorithms in
order to obtain more cell complexes for Bianchi groups and other Kleinian groups.
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30. M. H. Şengün and S. Turkelli, ‘Weight reduction for mod ` Bianchi modular forms’,

J. Number Theory 129 (2009) no. 8, 2010–2019; MR 2522720(2010c:11064).
31. J.-P. Serre, ‘Le problème des groupes de congruence pour SL(2)’, Ann. of Math. (2) 92 (1970) 489–527.
32. R. G. Swan, ‘Generators and relations for certain special linear groups’, Adv. Math. 6 (1971) 1–77.
33. K. Vogtmann, ‘Rational homology of Bianchi groups’, Math. Ann. 272 (1985) no. 3, 399–419.
34. E. Whitley, ‘Modular symbols and elliptic curves over imaginary quadratic fields’, PhD Thesis, University

of Exeter, 1990.
35. D. Yasaki, ‘Hyperbolic tessellations associated to Bianchi groups’, Proceedings 9th International

Symposium on Algorithmic Number Theory (ANTS-IX), Nancy, France, 19–23 July 2010, 385–396.
MR 2721434(2012g:11069).

https://doi.org/10.1112/S1461157013000168 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://www.ams.org/mathscinet-getitem?mr=2367320(2008k:11057)
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://hal.archives-ouvertes.fr/hal-00703043
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.projet-plume.org/fiche/bianchigp
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=2817377(2012e:20116)
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://www.ams.org/mathscinet-getitem?mr=3003276
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://hal.archives-ouvertes.fr/hal-00618167
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2981344
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=2769243
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=689477(85b:20064)
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2859903
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2522720(2010c:11064)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
http://www.ams.org/mathscinet-getitem?mr=2721434(2012g:11069)
https://doi.org/10.1112/S1461157013000168


HIGHER TORSION IN ABELIANIZATION OF BIANCHI GROUPS 365

Alexander D. Rahm
Department of Mathematics,
National University of Ireland at
Galway

Ireland

Alexander.Rahm@nuigalway.ie

https://doi.org/10.1112/S1461157013000168 Published online by Cambridge University Press

mailto:Alexander.Rahm@nuigalway.ie
https://doi.org/10.1112/S1461157013000168

	1. Introduction
	1.1. Organization of the paper

	2. The Bianchi fundamental polyhedron
	3. The Flöge cellular complex
	4. Connecting Flöge cell complex and Borel--Serre compactification
	5. The equivariant spectral sequence to group homology
	6. Swan's concept to determine the Bianchi fundamental polyhedron
	6.1. Convergence of the approximation
	6.2. Singular points
	6.3. Swan's termination criterion
	6.4. Computing the cell structure in the complex plane
	6.5. Lifting the cell structure back to hyperbolic space

	7. Algorithms realizing Swan's concept
	7.1. The algorithm computing the Bianchi fundamental polyhedron
	7.2. The cell complex and its orbit space
	7.3. Computing the vertex stabilizers and identifications

	References

