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A new graph product
and its spectrum

CD. Godsil and B.D. McKay

A new graph product is introduced, and the characteristic

polynomial of a graph so-formed is given as a function of the

characteristic polynomials of the factor graphs. A class of

trees produced using this product is shown to be characterized by

spectral properties.

1. Notation and preliminaries

All graphs considered in this paper are finite, and without loops and

multiple or directed edges. Any undefined graph-theoretical terms will

have the meanings given to them in Behzad and Chartrand [?].

If G is a graph with adjacency matrix A(G) , then we denote the

characteristic polynomial &et{\I-A(G)) of A(G) by G{\) , and refer to

it as the characteristic polynomial of G . If G is a rooted graph then

we denote by G' the graph obtained from G when the root vertex is

removed. The characteristic polynomial of the rooted graph G is just the

characteristic polynomial of the unrooted graph with the same vertex and

edge sets as G .

DEFINITION 1.1. Let H be a labelled graph on n vertices. Let G

be a sequence of n rooted graphs G , £„, ..., G . Then by H(G) we

denote the graph obtained by identifying the root of G. with the ith

vertex of H . We call H(G) the rooted product of H by G .

Figure 1 illustrates this construction with H the path on three
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vertices and G consisting of three copies of the rooted path on two

vertices

H

I I ! L U
G H(G)

FIGURE 1

DEFINITION 1.2. Given a labelled graph H on n vert ices and a

sequence G of n rooted graphs, we define the matrix A-,(H,G) as

follows:

AAH,G) = [a...)
A 2-J

where

c.u; , 1- = 3 ,

and A(H) = [h. .) i s the adjacency matrix of H .
I'd

If, for example, H and G are represented in Figure 1, then

i4. (fl, G) is the matrix
A

A - 1 - X 0

- X A - 1 - A

0 - A A - 1

2. The polynomial of the rooted product

In this section we prove the following:

THEOREM 2 . 1 . H(G)(X) = de t AX(H, G) .

This resu l t has already been proved by Schwenk [4] in the case where

G consists of n isomorphic rooted graphs. The method we use to prove

the resul t in general i s quite different from h i s , however.

We wi l l need the following lemma.
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LEMMA 2.2. Let K and L be rooted graphs, and let K'L denote

the graph obtained by identifying the roots of K and L . Then

K'UX) = X(X)L'(X) +K'(\)L(\) - XK'(X)L'(X) .

Proof. See Schwenk [ 41 , or Godsi I and McKay [ Z] . •

Proof of Theorem 2.1 . We will use induction on the number of vertices

of H(G) . Suppose this number is N , and that the theorem holds for all

labelled graphs H and sequences G such that B(G) has less than N

vertices. For n = 1 , the theorem follows from the definition of

A. (H , G) , so we assume n 2 2 .
A

Let F denote the sequence of rooted graphs obtained from G by

replacing the graph G by if , the graph with only one vertex. F' will

be used to denote the subsequence of G consisting of the graphs

G., Gp, ..., G . Let H' denote the graph obtained from H by

deleting the vertex labelled n , and let H{¥)' denote the graph obtained

from fl(F) be deleting the vertex which was labelled n in B . Clearly

ff(F)' =fl'(F') . The situation is represented diagrammatically in Figure

2.

(1)

Now

B(G)

FIGURE 2

It follows at once from Lemma 2.2 that

=Cn(X)if(F)
l(X)

ff'(F') =fl(F)'

XCj(X)fl(F)'(X) .
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(2) det , G) = det F1)

-h^GAX)

-h^G'AX)

h 1 G' AX)n-l,n n-1

where h denotes the row vector [h , , h , ..., h ) . Since the
n *• nl n2 n,n-lJ

determinant of a matrix is a linear function of any row, the right side of

(2) can be expressed as

det AAH', F')
-h n G' AX)
n-l,n n-1

XG'(X)

+ det

0

-h n G' AX)n-l,n n-1

G (X)-XG'(X)
n w

which equals

(3) G'AX) det AAH, F) + [GJX)-XG'(X)) det A AH' , F') .
71. A 71 71 A

By our induction hypothesis det A^iH', F') =ff'(F')(X) , and

det AA.H, F) = #(F)(X) . Hence (3) may be rewritten as
A

Since S'(F') = #(F)' , a comparison of (h) with (l) shows that we have

established the theorem.

We note that on dividing the ith row of A-^iH, G) by G^[X) for

i = 1 , 2, ..., n , one obtains a matrix of the form A - A(H) , where

G (X)i
A =

Hence

(5) det ^ x(#, G) T T Ĝ (X)
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In the special case where the G. are all isomorphic, A = [pA\) /G'(X))l

and so

(6) fl(G)U) = GH\)nH

This is the formula given in [4].

Finally if G consists of n copies of P ? , the path on two

vertices, one obtains, from (6),

(7) H(G)(\) = x

since Pg(X) = X2 - 1 , and P^U) = X . We will use (T) in the next

section.

3. A spectral characterization of a class of trees

NOTATION 3.1. A matching of a graph I7 is a set of mutually non-

adjacent edges. An m-matching consists of m such edges. A matching M

such that every vertex of T is an end vertex of some edge in M is

called a \-factor.

We recall, from [3] for example, that if T is a tree on n

vertices, then

(8)
m=0

"•2m

where a_ i s the number of /rc-matchings of T .an

We wil l use T{P-) to denote the rooted product of T by the

collection consisting of one copy of P ? for each vertex of T . I t

follows from (8) tha t , i f T i s a t ree on n vertices, then

T{-\) = ( - l )"r (X) , and so from (7) above we find

(9)
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We will call a polynomial of degree 2n satisfying (9) syrmetric.

THEOREM 3.2. Let T be a tree on 2n vertices. Then T(\) is
symmetric if and only if T = s[p^] for some tree S .

Proof. The sufficiency follows from the remarks above. We give the
proof of the necessity in a number of steps.

We assume n > 2 . Let a~ denote the number of m-matchings of

T .

(a) T has 1 n-matching and 2n - 1 (n-l)-matchings.

Since T(X) is symmetric we have an = a. and a. = a_ o . But
0 dn d dn—d

a. = 1 and a p is just the number of edges of T and so the claim

follows.

(b) T has n end vertices.

Let M be the n-matching of T . By counting (n-l)-matchings we

will show that every edge in M contains an end vertex of T .

Say that an (w-l)-matching N is of type I if it is a subset of

M . Clearly there are n such matchings.

Let v i>, be an edge of T not in M . Then there are vertices V

and v, of T such that both v v and V V, lie in M . Let N be

the (rz-l)-matching obtained from M by replacing v i>2 and v v^ by the

edge W?
yo • W e w i l l call N a type II («-l)-matching. The number of

type II (n-l)-matchings is just the number of edges of T not in M .

This equals n - 1 .

Since a type II (n-l)-matching is not a subset of M we have already

found 2n - 1 distinct (n-l)-matchings.

Let w Vi be an edge in M such that neither V nor V, is an

end-vertex. Let v and v be vertices of T adjacent to v and v^

respectively. Then there exist vertices V and V, in T such that

V V2 and V Vg lie in M . Replacing the edges v^i>2, V V^ , and v Vg

of M by the edges v v and v,v we obtain an (w-l)-matching N .
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Since \N n M\ 5 n - 3 , N is not of type I or II.

Thus the existence of an edge vrP], i n M such that neither U_ nor

U, is an end vertex of T implies that T has at least 2n (n-l)-

matchings. Hence every edge in M contains at least one end vertex of

T . If some edge in M consisted of tvo adjacent end-vertices, then T

would be disconnected. Therefore T must have exactly \M\ = n end

vertices.

(c) T = S[P ) for some tree S .

Let S be the tree obtained by removing the n end vertices from

T . As T has a 1-factor, it cannot have a vertex adjacent to two end

vertices. Hence T = S[P2) . •

We remark that the proof of the theorem actually shows that a tree on

2n vertices with an n-matching, and 2 M - 1 (n-l)-matchings is a rooted

product.

Note that Theorem 3.2 does not hold when the assumption that T is a

tree is dropped. For example the graph shown in Figure 3 is obviously not

a rooted product, although its characteristic polynomial is

X8 - 9X6 + 16A1* - 9A2 + 1 , which is symmetric.

FIGURE 3
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