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The drive to increase the output of animal product in some sectors of ruminant livestock production has led to greater use of feeds such
as cereal grains and soyabean meal that are potentially human-edible. This trend has caused concern since, by so doing, ruminants
compete not only with monogastric livestock but also with the human population for a limited global area of cultivatable land on which
to produce grain crops. Reasons for using potentially human-edible feeds in ruminant diets include increased total daily energy intake,
greater supply of essential amino acids and improved ruminal balance between fermentable energy and degradable protein. Soyabean
meal, produced on land that has been in arable cultivation for many years can fulfil a useful role as a supplier of undegraded dietary
protein in diets for high-yielding dairy cows. However, in the context of sustaining the production of high-quality foods from livestock to
meet the demands of a growing human population, the use of potentially human-edible feed resources by livestock should be restricted
to livestock with the highest daily nutrient requirements; that is, potentially human-edible feed inputs should be constrained to meeting
requirements for energy and protein and to rectifying imbalances in nutrient supply from pastures and forage crops such as high
concentrations of nitrogen (N). There is therefore a role for human-edible feeds in milk production because forage-only systems are
associated with relatively low output per head and also low N use efficiency compared with systems with greater reliance on human-
edible feeds. Profitability on farm is driven by control of input costs as well as product value and examples are given of low-cost bovine
milk and meat production with little or no reliance on potentially human-edible feeds. In beef production, the forage-only systems
currently under detailed real-time life-cycle analysis at the North Wyke Farm Platform, can sustain high levels of animal growth at low
feed cost. The potential of all-forage diets should be demonstrated for a wide range of ruminant milk and meat production systems.
The challenge for the future development of ruminant systems is to ensure that potentially human-edible feeds, or preferably
human-inedible by-products if available locally, are used to complement pastures and forage crops strategically rather than replace them.

Keywords: livestock, feeds, forages, concentrates, food security

Implications

The implications of this paper are for animal scientists
and policy makers. In the context of sustaining global food
security, the use of potentially human-edible feeds as
supplements to forage feeds in ruminant diets should be
restricted to the rectification of dietary imbalances in higher-
producing livestock. The potential of all-forage diets should
be demonstrated for a wide range of ruminant production
systems to deliver high-quality milk and meat, control input
costs, and at the same time utilise land not suitable for
high-yielding arable crop cultivation.

Introduction

The nutrition of ruminant livestock is dominated globally by
locally grown forage feeds, that is whole plants, either

consumed in situ by grazing animals at pasture, or consumed
as silage or hay when pasture is limiting or unavailable due
to adverse weather. However, within the ruminant livestock
sector there is a wide range in types of feed inputs, especially
the proportion of forages making up the total diet (Council
for Agricultural Science and Technology (CAST), 1999).
Of concern to global human food security, defined as an

adequate annual supply of human-edible food to meet the
annual demand of the human population, is the use in live-
stock diets of potentially human-edible foods. It has been
estimated that a third of the annual global cereal grain harvest
is used for livestock feed rather than directly as human food
(Alexandratos and Bruinsma, 2012; Eisler et al., 2014). CAST
(1999) estimated that between 1993 and 2020 the growth in
cereal grain use as livestock feed would be 1.4% per annum,
comprising annual growth rates of 2.7% in developing countries
and 0.7% in developed countries. With global livestock numbers
expected to exceed 35 billion chickens, 2.5 billion cattle
(all bovines); 2.5 billion sheep and goats; 1 billion pigs and† E-mail: j.mike.wilkinson@gmail.com
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25 million camels (Thornton, 2010), by 2050 the quantity of
arable crops given to livestock might exceed that used by
humans (Bailey et al., 2014).
Typically, monogastric livestock (pigs and poultry) diets are

comprised predominantly of wheat (Triticum spp.) and maize
(Zea mays) grain, with soyabean meal (Glycine max) as the
major source of supplementary protein. CAST (1999) and
Wilkinson (2011) found that ruminants converted potentially
human-edible feeds to animal product with similar efficiency
to monogastric livestock, mainly because human-edible feeds
comprised a low proportion of the total feed input to the
system (Table 1). In the context of typical Northern European
systems of livestock production, input of human-edible CP
ranged from 0.03 of total diet CP for lamb production to 0.71
of total diet CP for poultry meat (broiler) production (Table 1).
However, despite large differences between systems in
human-edible protein input, the range in protein efficiency
(output/input) between systems was much smaller, tending to
be higher for ruminant than for monogastric systems and>1.0
for upland beef and grass-based milk production (Table 1).
There is also concern that the increasing global scale of

livestock units may constitute a threat to potable water
quality as a result of the leaching of nitrate into ground water
and rivers, and to air quality as a result of emissions of
ammonia to the atmosphere, notwithstanding concerns over
greenhouse gas (GHG) emissions, which are significantly
higher per unit of product from ruminant systems than
from monogastric systems due to methane from enteric
fermentation. Although livestock manure is a valuable source
of recycled fertilizer N, livestock systems are substantially
less efficient than crop production in terms of N use efficiency
(NUE), defined as N in product as a proportion of total N
input (Audsley and Wilkinson, 2014).
Further, ruminant livestock production is less efficient in

terms of NUE than monogastric systems of production due to
the nature of rumen fermentation, which relies on a balance

between fermentable energy and degradable protein and
also the relatively lower digestibility of forages in ruminant
diets compared with cereal grains and soyabean meal – the
predominant feeds in diets for pigs and poultry. Dijkstra et al.
(2013) calculated a theoretical maximum ruminant NUE
of 0.45, but more typically this is <0.30, especially in high-
forage systems where fermentable energy and degradable
protein are not balanced in the rumen (Lee et al., 2003).
In this paper, the inputs of potentially human-edible animal

feed to different ruminant livestock systems are outlined in
relation to output of animal product. The characteristics of
forages that might limit output and efficiency are discussed
in relation to potential levels of livestock output to identify
systems where the use of potentially human-edible feeds or
by-products might be justified as supplements to forages to
meet animal nutritional requirements. Examples are given
to justify the use of potentially human-edible feeds. Finally,
the scope for replacing potentially human-edible feeds in
all-forage ruminant systems is explored.

Material and methods

Literature sources were used to provide evidence of the extent
of potentially human-edible feed use in ruminant livestock
systems and to generate specific examples of systems, or parts
of systems where the use of potentially human-edible feeds
might be justified. Examples were drawn from the literature of
the extent to which forages and human-inedible by-product
feeds might be used to replace potentially human-edible feeds
in high-yielding systems of ruminant livestock production.

Results and discussion

Human-edible feed use in milk production
Examples of the range of potentially human-edible feed use in
different systems of bovine milk production are given in
Table 2. At one extreme, milk production is reliant almost
entirely on grazed pasture with limited inputs of silage and
either grain or by-products such as extracted palm (Elaeis
guineensis) kernel meal to rectify seasonal deficiencies in
pasture availability. However, daily milk output in the grass-
based system is restricted by limits to grazed pasture intake. In
order to achieve higher levels of daily milk yield, concentrate
inputs are required to achieve higher daily intakes. Thus, a diet
based on grass silage or straw plus by-products is capable of
supporting a higher average daily output of milk per cow
because the input of potentially human-edible and inedible
by-product feeds from the human food and drink industry is
reflected in higher daily dry matter (DM) intake.
Higher levels of potentially human-edible feed inputs are

typical of total mixed rations (TMR) comprising silage and
concentrates. Daily milk output from animals kept in this
type of production system is relatively high, as is the input of
concentrate feeds, including a higher proportion of human-
edible feeds than in diets based on grass silage diet or on
by-product feeds (Table 2). It is notable that NUE is directly

Table 1 Proportion of potentially human-edible feed in the total feed
input and ratio of animal protein output to human-edible protein input
for a range of livestock systems (from Wilkinson, 2011)

Proportion of
human-edible feed
in total feed input Animal protein

output: human-edible
protein input (kg/kg)Livestock system DM CP

Lowland lamb 0.04 0.03 0.91
Upland suckler beef 0.04 0.03 1.09
Upland lamb 0.05 0.04 0.63
Milk (forage-based) 0.09 0.12 1.41
Lowland suckler beef 0.10 0.08 0.50
Dairy beef 0.12 0.10 0.63
Cereal beef 0.45 0.38 0.33
Pig meat 0.64 0.63 0.38
Eggs 0.65 0.62 0.43
Poultry meat 0.75 0.71 0.48

DM = dry matter.

Wilkinson and Lee

1736

https://doi.org/10.1017/S175173111700218X Published online by Cambridge University Press

https://doi.org/10.1017/S175173111700218X


related to milk solids output, reflecting a closer balance
between total N intake and animal net protein requirement
for housed systems compared with the pasture or grass
silage diets.
Edible protein output per unit human-edible feed protein

input was high (>30) for the pasture-based system because
total input of pasture supplement was severely restricted to
only 64 kg DM/head over the total lactation period (Clement
et al., 2016). Protein efficiency was >1.0 for the grass silage
and by-product diets but was <1.0 for the TMR based on
grain and maize silage diet (Table 2).
A further feature of higher milk production systems is that they

are typically based around heavier Holstein cows which produce
a ‘lower quality’ milk in terms of milk solids (<4% fat and 3%
protein) compared with more grazing systems based on Jersey
(~4.5% fat and 4% protein) or Friesians (~4% fat and 3.5%
protein) (Dobson et al., 2007). These differences need to be taken
into consideration when comparing milk volumes from different
production systems. Nevertheless, it is important to recognise
that in an industry where the financial margin between profit and
loss is small, farmers must consider greater reliance on pasture to
improve resource use efficiency. The profitability of dairy farms is
driven by control of input costs over and above milk price
(Agriculture and Horticulture Development Board, 2012a). In
producing milk from pasture, the most efficient approach is to
achieve maximum intake of pasture combined with strategic
supplementation to balance input costs against income
(Agriculture and Horticulture Development Board, 2012b).
Although bovine milk makes up the majority of global

production (~703Mt/year) with 83% from cattle and 13%

from buffalo, small ruminants make an important contribution
to milk production (~15Mt goat milk/year and ~9Mt sheep
milk/year, Food and Agriculture Organisation of the United
Nations (FAO), 2010). Traditionally, milk production from
small ruminants is from high-forage systems, usually scrub
grazing or mountain pasture providing vital nutrition for
subsistence farmers, or high-value niche products. The small
ruminant industry in developed countries is becoming
increasingly intensive with higher-yielding animals being
offered rations containing relatively high proportions of
concentrate (Giger-Reverdin et al., 2014), even ‘non-forage’
diets (Bava et al., 2001). Bava et al. (2001) reported the ability
of goats to adapt to relatively low rumen pH driven by
high concentrate rations, with little adverse effect of feeding
non-forage-based diets during lactation. However, a recent
case report on lameness and ruminal acidosis in intensive
goat dairies indicated causative nutritional factors driven by
low forage intake (Groenevelt et al., 2015).

Human-edible feed use in beef production
There is also a wide range in potentially human-edible
feed use in beef production. The cereal beef system, in which
male calves from the dairy herd are reared from weaning
to slaughter on a grain-based diet and slaughtered at 11 to
13 months of age, has a much higher potentially human-
edible proportion than pasture-based beef systems (Table 1).
Although this system is traditionally less common than suckler
beef systems, it is rapidly becoming a major contributor to the
European beef market with the removal of the EU milk quota
in 2015 and an increasing supply of male calves from the dairy

Table 2 Human-edible feed input and nitrogen use efficiency (NUE) in different systems of milk production

Human-edible feeds

Very low Low Low High

Diet Grazed pasture
Grass silage, grain,

by-products Straw, by-products
Grain, maize silage, hay,

by-products

Live weight (kg) 480 650 650 680
Average daily yield
(kg milk solids)1

1.6 2.1 2.1 2.4

Total intake (kg DM/day) 15.1 18.6 19.5 20.3
Human-edible intake
(kg DM/day)2

0.17 5.58 2.82 8.54

Human-edible proportion of
total DM intake

0.01 0.30 0.14 0.42

Milk protein output:
human-edible protein
input (kg/kg)

30.8 1.03 1.75 0.88

NUE3 0.24 0.29 0.32 0.44
Source Clement et al.

(2016)
Wilkinson and

Garnsworthy (2017)
Wilkinson and

Garnsworthy (2017)
White and Capper4

(2014)

DM = dry matter.
1Fat+ protein; 35 g protein/kg milk for grazed pasture, 31 g protein/kg milk for other diets.
2Human-edible proportions from Wilkinson (2011).
3NUE; milk N as proportion of total N intake.
4Autumn calving, seasonally variable diet.
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herd. These animals, depending on the male sire, have a lower
musculature and propensity to finish off grass than more
traditional beef breeds. Dairy–beef animals therefore require
a higher energy density diet to reach finish for market,
increasing the demand for cereal and human-edible feed. In
any case notwithstanding dairy–beef, cereal-based rations
represent the final finishing period in feedlots of weaned
suckled calves from grazed cow–calf operations (CAST, 1999;
Corona et al., 2005).
Example diets were given by CAST (1999) to illustrate the

large differences in human-edible feed use and in efficiency
of animal edible protein output per unit of human-edible
protein input between systems of milk and beef production in
the United States and South Korea (Table 3). Although there
have been developments since that time associated with
intensification of milk and beef production in South-East
Asia, it is likely that significant differences remain between
the two regions due to local economic circumstances.

Trends in human-edible feed use
In 1990/92 worldwide use of cereal grains in livestock feeds
amounted to 600 million tonnes, of which 31% was used in
developing countries (Hendy, 1995). By 2005 total cereal use for
livestock had risen to 742 million tonnes, of which 38% was
used in developing countries (FAO, 2010). As an example of a
developed country, concentrate feed use by dairy cattle
increased steadily in Great Britain in the period 1990 to 2013
(Figure 1). The graph illustrates a general trend in many other
regions of the world, indicating that most of the increase in
annual milk production per cow has been achieved through
increased input of concentrate feeds containing significant
proportions of potentially human-edible cereal grain and soya-
beanmeal. However, the pattern post-2005 for further increases
in compound feed use for moderate gain in milk yield signifies
an over-reliance on concentrates which needs to be addressed,
especially in relation to the control of feed input costs.

Reasons for human-edible feed use
The use of concentrates may be justified on nutritional
grounds in terms of meeting animal requirement for energy,
especially in late pregnancy (sheep) early lactation (dairy

cows) and the final period of growth (beef cattle). Moreover,
there are specific situations (e.g. the high-yielding dairy cow)
in which the requirement for metabolisable protein cannot
be met by microbial protein synthesis in the rumen and an
additional supply of undegraded dietary protein and/or
essential amino acids is required. This is especially the case
for methionine and lysine where protected supplementation
has been shown to increase milk yield (Nichols et al., 1998),
whereas on high-forage diets histidine is often first limiting
due to the greater reliance on microbial protein (Lee
et al., 2014).
Apart from the issue of competition between livestock and

humans for land and food, concentrate feeding is associated
with several negative aspects including higher input costs,
animal health issues (sub-acute rumen acidosis, acute acidosis,
ruminal parakeratotic hyperkeratosis) and the substitution
effect. Very few energy supplements have a purely additive
effect on forage intake as starch-based concentrates tend
to reduce pH and fibre digestion with detrimental effects
on intake of forage. The decrease in forage intake per
kilogram increase in concentrate intake is dependent on the
nature of both the forage and concentrate with a greater
impact observed with higher digestibility forages (Conrad et al.,
1966).
Although the feeding of concentrates that contain poten-

tially human-edible feeds often includes intercontinental
movement of commodities with subsequent impact on carbon

Table 3 Example diets for dairy cows and beef finishing in the United States and South Korea (CAST, 1999)

Dairy cows Beef finishing

United States South Korea United States South Korea

Proportion of total diet DM
Forages 0.60 0.85 0.12 0.14
Cereal grains 0.20 0.10 0.70 0.14
By-products 0.10 – 0.10 0.51
Oilseed meals1 0.08 0.03 0.05 0.15
Other 0.02 0.02 0.03 0.06

Human-edible proportion of total diet DM 0.30 0.09 0.69 0.12
Animal protein output: human-edible protein input (kg/kg) 2.04 14.3 0.37 6.57

DM = dry matter.
1Sunflower, soyabean and cottonseed meals and whole cottonseed.
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per cow in Great Britain (1990 = 100). From Wilkinson and Allen (2015).
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footprint (CFP) of land-use change and air/ship miles,
there are environmental benefits to ruminants of potentially
human-edible feeds as supplements to forage-based diets.
First, methane production from enteric fermentation is lower
per unit of DM intake when concentrates are included in the
ration than when forage is the sole feed (Harper et al., 1999).
Methane production in the rumen is a by-product of the
removal of hydrogen produced during enteric fermentation.
Forages contain higher proportions of fibre (cellulose) than
concentrates, which favour the formation of acetate as a
by-product of fibrolytic bacterial fermentation, but for every
mole of acetate produced four moles of hydrogen are
formed. Whereas high-starch concentrate supplements favour
amylolytic fermentation with formation of propionate, which
utilises two moles of hydrogen for every mole formed in the
rumen (McDonald et al., 2010). Further, concentrate-based
rations are more digestible, have a greater rumen flow rate
and reduced potential methane production, notwithstanding
the higher protein content of many supplementary feeds
which have been shown to reduce methane formation in the
rumen (Ramin and Huhtanen, 2015).
Second, there is often an imbalance between readily

available energy and rapidly degraded N in the rumen on
pasture-based diets, reflecting a relatively high total N intake.
This imbalance decreases NUE as it is inversely related to total
N intake (Ledgard et al., 2009). For intensive grazing systems,
higher-sugar grasses potentially offer a better balance between
rumen-degradable protein and fermentable carbohydrates
within the grass, resulting in greater NUE (Miller et al., 2001;
Lee et al., 2003). Alternatively, supplementation with fermen-
table carbohydrates (e.g. grain or sugar beet (Beta vulgaris)
pulp) is an effective strategy to increase capture of excess
protein and increase microbial protein synthesis; this strategy is
more effective at increasing NUE than altering the CP of the
overall diet (Broderick, 2003; Sinclair et al., 2014).
As N excretion is directly related to N intake (Castillo et al.,

2001), it follows that a reduction in daily N intake in ruminants
grazing high-protein pasture is desirable from the point of view
of increasing NUE and reducing nitrate leaching and gaseous
emissions of nitrous oxide and ammonia to the atmosphere.
One possible approach to reducing N intake is by providing a
lower protein supplementary feed. Chaves et al. (2002)
emphasised the need to match composition of the supplement
to composition of the pasture. Oilseed by-products such as
palm kernel meal or soyabean meal are inappropriate in this
situation because their concentrations of CP are too high.
Alternatively, pastures can be used with reduced protein
solubility, for example, red clover (Trifolium pratense) through
the action of polyphenol oxidase (see below; Lee, 2014).

Soyabean meal
Soyabean meal is a human-edible feed that fulfils a role as a
source of high-quality protein and energy in diets for poultry,
pigs and high-yielding dairy cows, but its use has been criticised
on environmental grounds and alternatives have been evaluated
(e.g. lupins for poultry diets; Lee et al., 2016). In a study of the
potential environmental impact of a range of diet formulations

for dairy cows yielding 40 kg milk/day, Wilkinson and
Garnsworthy (2017, unpublished data) found the diet with the
lowest feasible concentrate CFP included soyabean meal,
which might seem counter-intuitive given the relatively high
CFP of soyabean meal compared with human-inedible alter-
natives such as wheat distillers’ dried grains or rapeseed meal.
Replacing soyabean meal by other by-products increased the
CFP of the whole diet and decreased NUE because soyabean
meal has a more favourable ratio of digestible undegraded
protein to CFP than other feeds. Soyabean production in North
America has lower GHG associated with its production than
winter oilseed rape grown in Europe (Audsley and Wilkinson,
2014) because soyabeans are leguminous and do not require
fertiliser N. Lehuger et al. (2009) found a dairy cow diet con-
taining Brazilian soyabean was more environmentally efficient
than one containing European rapeseed meal when land-use
change was excluded from the analysis. Huhtanen et al.
(2011) in a meta-analysis of supplementary proteins reported
that rapeseed meal can be substituted successfully for
soybean meal on an isonitrogenous basis and that most
feed evaluation systems overestimate metabolisable protein
concentration of soybean relative to rapeseed.
Land-use change, especially rain forest destruction, has

been cited as a major reason for not using soyabean meal,
but the issue is not straightforward. For a detailed review of
land-use change in soyabean production see Opio et al.
(2013). The trend to more soyabean meal being produced
from land in arable cultivation for more than 20 years will
help to sustain soyabean meal as a suitable raw material for
inclusion in low CFP diets because of its high concentration
of both CP and metabolisable energy (ME) in addition to its
superior amino acid profile. But in terms of competition for
arable land for food production, human-inedible alternatives
to soyabean meal such as rapeseed meal are to be preferred
as sources of supplementary protein in diets for ruminants.

Characteristics of forages that limit intake and efficiency
of feed use
Forage crops have not been ‘designed’ to contain a perfect
balance of nutrients for ruminant production. Ruminants
have evolved to utilise their low energy density and excess N
through slower growth rates and the return of N to the soil to
fertilise subsequent pasture growth. However, issues arise
when slow growth rates, moderate milk yields and low NUE
do not meet production demands. For all-forage diets DM
intake and consequently energy intake is predominately
driven by physical distension of the rumen (Conrad et al.,
1966), although other negative feedbacks such as acetate
and ammonia may also be involved (Moorby and Theobald,
1999). Figure 2 shows the energy demands of a dairy cow
yielding different volumes of milk and due to the limitations
of DM intake the maximum energy intake from three
pastures: low ME (10MJ), median ME (11.6MJ) and the
theoretical maximum ME of 13.6MJ/kg DM calculated from
constituents of forage by Waghorn (2007). For the highest
daily milk yield of 45 l no forage diet could provide the
energy demand of the cow. Even at 35 l/day the median ME
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could not provide the energy demand. Therefore, for modern
high-yielding dairy cows an all-forage diet is simply not able
to provide the energy needed for lactation and therefore the
need for strategic supplementation. Future development of
high-lipid grasses may provide a solution for higher energy
but these are many years away from commercial use
(Hegarty et al., 2013).
The concentration of CP in grass pre-grazing typically

contains >200 g/kg DM (Holmes et al., 2002; Wilkinson
et al., 2014), excessively high in relation to animal require-
ment. Although there is a marked decline in CP from about
330 g CP/kg DM at the three-leaf stage of growth to about
70 g CP/kg DM at full flowering (Beever et al., 2000), the
problem of excess N intake (and excretion) is compounded
by the grazing selection differential. Selection of leaf in
preference to stem results in the grazing animal consuming
herbage of higher quality than the average for the whole
sward. The grazing selection differential for CP has been
quantified at between 1.1 and 1.5, depending on efficiency
of pasture utilisation (Stockdale and Dellow, 1995; Jacobs
et al., 1999). Thus, at a relatively high efficiency of pasture
utilisation (e.g. 75%), which would be a reasonable target
under well-managed grazing systems, the grazing animal
can consume herbage about 10% higher in CP concentration
than the average, that is, 220 g CP/kg DM in the herbage
DM intake when the average for the pre-grazed pasture
allowance is 200 g CP/kg DM. With more mature herbage on
offer and/or higher quantities of residual herbage (and lower
efficiency of utilisation) the grazing animal effectively
negates any reduction in overall pasture CP concentration by
rejecting stem and mature leaf of below-average CP. Forage
breeding has improved the balance of readily available
energy and rumen-degradable protein. Grasses with higher
levels of water-soluble carbohydrate, as already mentioned,
have been used to increase the supply of readily available
energy to increase NUE (Lee et al., 2003), milk yield (Miller
et al., 2001) and animal growth rate (Lee et al., 2001). On the
other side of the imbalance an enzyme system in red clover
(polyphenol oxidase) has been shown to slow down protein

degradation in the rumen and thus improve NUE through
improved balance with energy release (Lee, 2014).

Future outlook and potential ruminant production from
all-forage diets
The drive to increase output per animal has led to excessive use
of potentially human-edible feeds in the diets of ruminants,
especially in developed countries. Use of human-inedible
by-product feeds in concentrate formulations is significant in
regions where there is a large human population and an ample
supply from the human food and drinks industries (Wilkinson,
2013). However, the supply of human-inedible raw materials
is finite and future increases in supply should be used in diets
for monogastric livestock that cannot use grazed pasture and
forage feeds.

Land use. The relative use of different types of land by
different classes of livestock is often overlooked when
discussing the future of livestock production practices, as part
of food security, with emphasis placed on carbon emissions
and water use (Eshel et al., 2014). Although emissions must be
considered and improvements made to practices to mitigate
and control them (Bryngelsson et al., 2016), the vital role
in delivering high-quality food by rain-fed, pasture-based,
ruminant livestock kept on land not suitable for alternative
cultivation must be fully recognised (Eisler et al., 2014;
Van Zanten et al., 2016).
Wilkinson et al. (2017, unpublished data) estimated that it

takes three times as much arable (cultivated) land to produce
the human-edible feeds (mainly cereal grain and soyabean
meal) used in the production of a unit of edible animal protein
in typical Northern European systems of pig meat, poultry
meat and egg production compared with typical Northern
European forage-based systems of beef and lamb production
(Table 4). In contrast, relatively large areas of grassland are
required per unit of animal protein output in the case of
typical ruminant livestock systems, though there is consider-
able variation in land requirement within ruminant systems
reflecting differences in type of product (milk v. meat),

Figure 2 Energy demand for variable milk yields (3.2% protein; 3.5% fat)
for a 650 kg mid-lactation dairy cow v. the energy intake predicted from a
low metabolisable energy (ME) forage (10MJ/kg dry matter (DM)), median
ME (11.6MJ/kg DM) and the theoretical maximum ME from forage
(13.6MJ/kg DM; Waghorn, 2007) predicted using Agricultural and Food
Research Council (1995).

Table 4 Land required per tonne of animal protein output for a range
of livestock systems (from Wilkinson et al., 2017, unpublished data)

Land required (ha/t animal protein)

Livestock system Arable Grassland Total

Lowland lamb 1.10 21.4 22.5
Upland suckler beef 0.94 17.5 18.4
Upland lamb 1.58 26.0 27.6
Milk (forage-based) 0.62 2.50 3.12
Lowland suckler beef 2.04 14.2 16.2
Dairy beef 1.62 7.26 8.88
Cereal beef 3.05 0.19 3.24
Pig meat 3.80 – 3.80
Eggs 3.74 – 3.74
Poultry meat 3.13 – 3.13
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livestock species (cattle v. sheep) and type of diet (cereal
beef v. grass-fed dairy beef). Further, the inverse relationship
between efficiency of feed conversion (output per unit
of input), land area required and GHG emissions per unit of
animal protein output (Bryngelsson et al., 2016) focusses
attention on type of land, climate and potential crop yield in
determining the most efficient use of this scarce resource for
human food production.
Alternative approaches to ruminant livestock production are

essential for future global food security. One approach is to
produce milk, beef and lamb from grassland using forages as
the sole dietary ingredient. However, some grassland,
especially that in lowland regions, might be used more
efficiently for human food production through arable cropping
than by growing forage crops since ruminants are particularly
relevant to add value to biomass produced on marginal
grassland. To determine whether or not a net gain in output
might accrue from the use of a particular type of land by
ruminants rather than through arable cropping, the land use
ratio (LUR) concept developed by Van Zanten et al. (2016) may
be used. The LUR is defined as the maximum amount of
human-digestible protein (HDP) produced from food crops
grown on the land used to produce a kilogram of animal
product divided by the amount of HDP in a kilogram of animal
product. A LUR value >1.0 indicates that the land would be
better used for the production of arable crops, whereas a value
<1.0 implies that the optimal use of that land would be for the
production of ruminant milk or meat. For example, Van Zanten
et al. (2016) calculated that the LUR for dairy cows was 2.10
when the animals were kept on sandy soils and 0.67 when kept
on peat soils. The LUR was lower for cows on peat soils than for
sandy soils because the peat soils were unsuitable for direct
production of food crops. Using this approach identifies those
types of land on which ruminant livestock are more efficient
converters of plant biomass than other classes of livestock or
arable cropping for direct production of human food.
A further consideration, relevant to future human health and

well-being, is that all-forage-based diets produce ruminant meat
and milk with a more beneficial composition of fatty acids and a
greater concentration of certain vitamins (A and E) whose
antioxidant capacity also improves the shelf life of the product,
reducing waste (Warren et al., 2008; Daley et al., 2010).

Milk from all-forage diets. The potential of an all-forage diet to
support milk production from cows and heifers in the United
Kingdomwas investigated by Rae et al. (1987). High-digestibility
ryegrass (Lolium spp.) silage was given to the cows from calving
in late winter to the start of the grazing season. Thereafter, the
animals received grazed pasture as the sole feed until the
autumn when the cows were housed and given lower digest-
ibility silage for the remainder of the lactation and during the dry
period. Whole lactation milk yields averaged 4680 kg for cows
and 4006 kg for heifers at 3.94% fat and 3.14% protein. Animal
health and fertility were satisfactory.
In a study of small organic dairy farms, Ertl et al. (2014)

described the characteristics of eight farms in which no
concentrate feeds were given to the animals over a 2-year

period. The results of the study revealed that the potential of
an all-forage diet was 5093 kg milk/cow per annum at 4.07%
fat and 3.27% protein. It is notable that five of the eight
farms used no silage at all, relying on hay as the conserved
forage feed. Calving interval was higher but veterinary costs
were lower on the zero concentrate farms than on 49
comparable organic farms where typical levels of concentrate
feeds were used and where milk production per cow
was higher (1657 kg concentrate/cow per year and 6824 kg
milk/cow per year). Critically, there was no evidence that a
zero concentrate strategy was reflected in reduced profitability.
In a review by Fulkerson and Trevaskis (1997) they

concluded that a milk yield of 20 to 25 l per day from Friesian
cows was achievable from pasture as a sole feed agreeing with
the predicted requirements in Figure 2. Animal genetic merit,
availability of pasture and pasture species all influence the
actual level of production but responses could be modest. For
example, in high producing cows they showed that available
pasture (DM on offer) must increase by 27 kg DM/cow per day
to increase milk yield by 2.6 l/day. The report also concluded
that C4 grasses typically yielded 5 l/day less than C3 grasses,
whereas clover may give 3.5 l/day more than grass alone,
although these studies were based on relatively low-producing
animals. The potential exists to increase milk production
from pasture by improving the protein: carbohydrate ratio,
as discussed above. One strategy commonly being used in
high-grazing regions is to ensure a high level of non-structural
carbohydrates in the pasture by adjusting time of grazing
with Miller et al. (2001) reporting an increase in pasture
water-soluble carbohydrate concentration from 150 g/kg
DM at 0600 h to >200 g/kg DM at 1800 h (Miller et al., 2001).

Meat from all-forage diets. For ruminant meat production
from all-forage diets, lamb production systems (Table 1)
currently utilise little supplementary feed (trace minerals and
concentrates) for a short period in late pregnancy and early
lactation. For beef, as already discussed, there is an
increasing reliance on concentrates in finishing rations.
However, high levels of production are achievable from
pasture and high ME silage. Warren et al. (2008) reported the
finishing of Holstein-Friesian and Aberdeen Angus steers in
741 and 755 days at 614 and 686 kg, respectively, off grass
silage ad libitum with no supplemental feed. Lee et al. (2009)
finished dairy cull cows on grass and red clover silage
ad libitum with average daily live weight gains of 1.3 kg.
Both studies indicate that feeding high-quality silage can
result in acceptable live weight gains.

Future research
The complex interactions between land use capability, livestock
production system, environmental impact, product quality and
consumer demand require further detailed multi-disciplinary
research so that policy makers and producers can make
informed judgements about allocating limited resources and
financial investment to different livestock sectors, including
appropriate genetic research relevant to both the animals
themselves and their feed inputs.
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Total land required per unit of animal protein output is
considerably greater for ruminant systems than for mono-
gastric systems, especially suckler beef and lamb production
which involve feeding a breeding female throughout the
production cycle (Table 4). This illustrates the need to con-
sider soil quality and climate in assessing land capability as
an essential component in research analyses of the relative
efficiencies of livestock production systems. Priorities for
future research should include identifying appropriate ways
of utilising marginal grassland for ruminant milk and meat
production, assessing agricultural systems to deliver opti-
mum nutrient provision (micro- and macro-nutrients) for
human nutrition per area of land, and establishing the limits
to the use of human-inedible by-product feeds in diets for pig
and poultry systems.
As an example, research at the North Wyke Farm Platform

is determining the potential of all-forage beef finishing
systems using Life Cycle Analysis (www.rothamstedresearch/
farmplatform). The approach will elucidate the true impact
and value potential of three pasture management systems
(permanent pasture; clover and grass swards; and reseeded
pasture) through mapping animal performance and product
quality, environmental impact, labour cost and economic
returns using primary data sets. Latest findings indicate that
live weight gain solely from pasture from weaning to finish
averaged 1.0 kg/day for all treatments, however, CFP was
lowest on the clover and grass system as a result of lower
fertiliser N requirement (Thompson et al., 2014; McAuliffe et al.,
2016). Achieving lifetime cattle growth rates of >1 kg/day live
weight gain on pasture through good pasture management
to finish at <20 months avoids a second winter where
maintenance feed requirements are higher than in summer
and risk of damage to pastures from treading is increased.
Increasing cattle growth rates on pasture will usually require
lower stocking rates (1.5 LU/ha), but if this is associated
with higher daily live weight gain per animal, the reduced
stocking rate is balanced to ensure no reduction of overall
profitability, with the added benefit of significantly lower cost
of feed inputs.

Conclusions

Grazed pasture, the single most important forage feed for
ruminants due to its low unit cost and widespread global
availability, will continue to sustain the profitability of rumi-
nant livestock production systems. Potentially human-edible
feeds have vital roles to play in complementing grazed pasture
and conserved forages, to increase total diet DM intake and
rectify nutritional imbalances, especially for high-yielding dairy
cows. By-product feeds can replace potentially human-edible
feeds as supplements to pasture and forage feeds, but limited
availability may restrict their use in some regions of the world.
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