SUBSPACES OF A GENERALIZED METRIC SPACE
H. A. ELIOPOULOS

Introduction. In a paper published in 1956, Rund (4) developed the
differential geometry of a hypersurface of #» — 1 dimensions imbedded in a
Finsler space of n dimensions, considered as locally Minkowskian.

The purpose of the present paper is to provide an extension of the results
of (4) and thus develop a theory for the case of m-dimensional subspaces
imbedded in a generalized (Finsler) metric space.

We consider an #n-dimensional differentiable manifold X, and we restrict
our attention to a suitably chosen co-ordinate neighbourhood of X, in which
a co-ordinate system x* (¢ = 1,2,...,n), is defined. A system of equations
of the type x* = x({) defines a curve C of X, the tangent vector dx'/dt of
which is denoted by %% We say that the manifold X, is endowed with a
locally Minkowskian (Finsler) metric, if the length of an arc of the curve
C between two points P; and P, of C, corresponding to parameter values
¢, and t,, is defined by an integral of the type

12
F(x*, x%)dt,
131
where the function F(x? %%) is continuous and continuously differentiable up
to any required order in all its arguments, and also positively homogeneous
of the first degree in the %%
Defining the metric tensor of X, by
. O’ F’(x, %) . .
gij(x’ x) = %W ’ gik(x» x)gih(x) x) = 5:1
we can put
F'(x, %) = gi(x, £)2%;
F must satisfy a third condition,
gij(xy x)sigj > Oy
for all £? and all £%, provided not all ¢% are equal to zero.
From Euler's theorem on homogeneous functions we have

a xyx. o1 62 i xyi: .
B —o Huidi—o

Received April 9, 1958. The present paper is based on a thesis submitted at the University
of Toronto for the degree of Doctor of Philosophy. The author wishes to express his sincere
appreciation to Professor H. Rund for direction and advice in the course of this investigation,
and to Professor G. F. D. Duff for valuable comments. The National Research Council of
Canada supported the research by a fellowship.

235

https://doi.org/10.4153/CJM-1959-026-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1959-026-6

236 H. A. ELIOPOULOS

We also define the generalized Christoffel symbols of the first and second
kind by the relations

i
hk) 2.2

[k, f]z.2)

gij(x! x)[hk).]](z )

1 <agk:i(xr %) + ag;,j(x %) aghk(xv x))
2 " ax” x’

Let C be a continuous and continuously differentiable curve. At each point
P of C, with co-ordinates x*, a Minkowskian tangent space T,(P) is defined
by F(x*, £*¥). We consider an arbitrary vector field X*(x*) along C such that
in each T,(P) a vector X* is defined. Let Q be a neighbouring point with
co-ordinates x* 4+ dx* on C, such that the arc length PQ = ds. The covariant
differential DX* of X? at P for the transition from P to Q is then defined by

(A.3) DX' = (an + Pi(x, x’)X")dx",

where

’ m ’ a m x, ‘ l ’
P, o) = {hk} — 3" ) _g_hagc"x : {Pk}u o

and x'? = dx/ds.

We note that (A.3) depends only on the vector X* and the displacement
PQ for which it has been defined, and not on the curve C passing through
P and Q. On the other hand, the covariant derivative of X* with respect
to x* is given by

i
(A.4) X = %——);c + Pri(x, )",
where (5)
5] <) I¢] ,
PU k= ghkPu = [4], k] - <ag,/;{ Pik + gMij aif}’: P)fk) %'

Consider a continuous curve C of X, which lies in some two-dimensional sub-
space X, of X,, and let the parameters of X, be # and v. The parametric curves
u = const. and v = const. may cut C in an arbitrary manner. Two directions

& = o' ko on*

ou’ 3L
are defined at each point of C, and they represent the directions of the tangents
to the co-ordinate curves. Then, for a vector field X*(x¥), we have in the X,,

DX‘_ ik DX' ik

Du =X, Tpy = X
and thus, we obtain the commutation formula (6),
D’x* DX*

(A.6) DoDn " DubDy = & o — X ) EE" A X (o™ — 0'm€").
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If we use the relation

we reduce (A.6) to
D' D!
DvDu ~ DuDy

Introducing the expression

i AN aP:r: _ aP:r:z
A7) Kl i, %) = 0 — <

4 <an; ) o ’)
ax’t ax™  ax't 0" /ey

which we call the relative curvature tensor in view of the derivative dx’!/dx™

which appears in it, we may obtain the commutation relation

X,inm - X,fmn = K.tlmth-

We also define a covariant curvature tensor from the relation

= (ijn - X."mn)gn’?m-

+ PinPh — Pi/Phn

K ppma (%, ") = g45(x, &) K.jhmn(x; x');

then, if YV,;(x*) are the covariant components of the vector field, we may
obtain the relation

(A~8) Yi,mn - Yi.nm = - K{limn Yh-

1. Generalities. Consider a differentiable subspace of m dimensions Fp,
imbedded in a locally Minkowskian (Finsler) space F,, where m < n. Let
(1.1) xt = x'(u), G=1...n,a=1...m),

be the equations defining F,,. We assume that the Jacobian matrix
N _ 6x'>
(Xa) = ((m"
is of rank m.

If the co-ordinate curves are regarded as curves of the F,, then their
tangents are given by

dx*
u”

X! =

and at each point P of F,, we have m independent vectors dx!/du*, which
will span an m-dimensional plane 7T,(P) C T,(P), where by T,,(P) we mean
the m-dimensional linear space tangent to F, at P.

A vector X? lies in F, if Xt € T,,(P), which implies that it is of the form

dx’
ou”’

1.2) Xt=U"
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F,, will be endowed with an induced metric
ds® = gas(u, u")dudu’

with fundamental tensor given by

dx' ax’
1. a "N =g, ' 9%
(L.3) Las (U, u') = g45(x, &) 572 =3,
where the tangent u’* to F,, satisfies the relation
(1.4) X' = X'

In general, we have to consider two sets of normals to F,, at a given point
P of F,. The first set is defined by the solutions n* of the equations

(1-5) nchi = gfj(x, n)ané = 0.
These solutions are normalized by means of the relation
(1'6) F(x) n) =1 or g”-(x, n)ninj = 1.

Since the matrix (X,%) is of rank m, we have n — m independent solutions
and, therefore, # — m independent normal vectors. They span a vector space
at P, and any vector of this space will be a linear combination of the inde-
pendent vectors spanning the space.

We may define a different set of normals in the following way. Let x'* be
an arbitrary but fixed direction tangential to F,, at P. A second set of normals
can be defined by the solutions #*(x, x’) of the equations

L7 gy, x")n  (x, X2 = 0.

The matrix (X% being of rank m, the system (1.7) admits » — m independent
solutions of the direction considered. We may write

* *
”(uﬁ = n(ui)(xy x'), w=1...n—m).

To each direction x’ tangent to F,, at P corresponds a set of vectors n*%,
(x, x"), and the totality of these sets, for the different x’ at P, defines n — m
cones which are the normal cones of the subspace F, at a given point. We
must emphasize that the generators of the normal cones do not necessarily
lie in the space spanned by the normals # at the same point. The concept
of the normal cones for subspaces is an extension of the idea of a normal
cone of a hypersurface F,_, (4).

We assume as in the case of the #n(x), that #n*(x, x’) are normalized according
to the relation

(1.8) Fx, n* (x, 2")) = ga;(x, 0% (%, ")) (e, 0)n* (%, %) = 1.
We may also define n — m tensors, independent of direction,
Yoas(#) = gi5(x, 1) XaXh,

for the # — m normals at P. Then we define the following sets of inverse
projection parameters corresponding to Xpg’:
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Xi(x, x") = guy(x, x’)gaﬂgu, u") X},
Vini(x) = gi(x, n(,,))y‘f‘p)(u)Xé,
so that, in view of the equations (1.5), (1.7), we have

(1.9)

(1.10) '}'L?;.)X‘: =0, Y?u)in(iﬂ) =0,
and also
(1.10a) XX = o5, VX5 = 6.

It is always possible to choose a set of # — m orthogonal independent vectors
n*(x, x’). Indeed, for any vector of the space spanned by the #n*?,, we have

N*(x,x") = (Z; NG (%, %), w=1...n—m).
M

Let us consider a set of n — m such vectors; we can write down the n — m
relations

£ 3 %
NGy (x,57) = Z) Aoywhm @, «),  (@u=1...n—m).
I

In order that N*%, should be orthogonal (with respect to g;; (x,x’)) the
functions A,y must satisfy the relations

(L11)  go;(x, 2 )NGING = 20 20 26, )Ny ot (6, €)1 (v, )

[N C)]

=6(@) (o).
If we put
(1'12) T(I-‘)(K) (xy x,) = gii(xy x’)ntﬂgn*(‘g)y (,LL, k=1...n— m)v
the equation (1.11) can be written
(1.13) 2 2 Twwrmwiew =0, for v # o.

W  x

Our problem reduces to finding # — m sets of functions A,y satisfying the
equations (1.13).

It is known that, if in a projective (# — 1)-dimensional space we introduce
homogeneous co-ordinates, the equation of a hyperquadric has the form

(1.13a) arizz; = 0,
and the co-ordinates %, ¥; of two points harmonically conjugate with respect
to (1.13a) satisfy the relation
arxy, = 0,
(see (1) for the 2-dimensional case). The problem of finding sets of functions

Aww satisfying (1.13), is equivalent to the problem of finding the vertices
of polyhedra self-polar with respect to

> Twwhwiew = 0.

() (k)

One vertex P; of such a polyhedron can be chosen arbitrarily in the space, but
not on the quadric; a second vertex P,, arbitrarily in the polar hyperplane
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of Py, but not on the quadric; a third vertex P, arbitrarily on the intersection
of the polar planes of P, P;, but not on the quadric, P4 on the intersection
of the polar planes of Py, P, P;, and so on. The last one will be on the inter-
section of the polar hyperplanes of all the previous points. Since Py, P, . . .,
P,_1 can be chosen with # —m — 1,n —m — 2,...,1 degrees of freedom
respectively, there are

m—-—m—-14+mn—-—m—-2)+...+1=%3n—-—mm-—m—1)

degrees of freedom in choosing the n — m sets of functions A.

The induced covariant derivative of the vector X* can be defined just as
for a hypersurface (4). Let x* = x'(s) be a curve C of F, so that x’? is tangent
to F,. We consider a continuous and continuously differentiable vector field
tangent to Fp:

(1.16) Xi(x") = XU@b).
The induced covariant derivative of the vector field along C in the space
F,, that is, the tensor defined by

(1.17) Uy (u, ') = S~ + Py (u, w)U’

is given by projection onto F, of the covariant derivative X ;* of X with
respect to F,,

(1.18) gas(%, £V XIXX ! = gy (u, w') Ul
where

aX‘ ,
(1.19) ,ik = Ic + Phk( x )Xh-

One can prove easily that

, 8%’ ,
gi,(x,x)X.f <6 CEW 3+P ng> = P;m(u,u),

with

P;a,'r(u: u') = ngEa-
It is obvious that P*7, are symmetric in the lower indices, because P*%; are
symmetric.

It is very easy to show that the quantities (1.17) form the components of a
tensor, in the sense indicated by their indices, under a transformation of the
co-ordinates u* of F,, Eliopoulos (3).

Since the subspace F, is endowed with a metric tensor g.s(%, #’), we can
write immediately the Euler-Lagrange equations for the geodesics of that

space
d U du du’
2 + {B'Y}(u u’) dS dS O,
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ot
BY) wun

are the intrinsic Christoffel symbols. We may also write

d dul® du”
Bad —; + [ﬂ'Yr 5](uu) ; ;:, =0,

where

or

d I¢I
s 5 +P’” f=0.

We immediately see that

ou'®
os =0

along a geodesic, that is, the geodesics are autoparallel curves.

2. Normal curvatures of F,. We consider a curve C of F,, x; = x(s),
passing through a given point P. We take the parameter s to be the arc-length,
and the unit tangent vector to C at P will be denoted by x’%. Let us assume,
for the moment, that the vector field U~ of equations (1.16) coincides with
the tangent vectors #’* of C. If we denote covariant differentiations in F,
by 6§, we obtain

ou’” - dl_ N 1B, 1Y 4_“: {C! } "8, "
(2.1) 3s + Poy(u, u')un" = s + P
By using the expression of Dx’*/Ds and differentiating ¥’ = X,'u'* we find
121 2 1
lgs = ajﬂ:u ulu 8 +X‘6_u__ _ Xip*:ulﬂul7+P*l Ih
If we put
1 %’ ip* * {7 hyrk
(2.3) Xap = W yPag + PuXoXsg,
we may write
Dx,i i la 8 1614
(2.4) Dy = Xasru” + Xo

The expressions X,.g* which are the components of a tensor, may be considered
as the generalized covariant derivatives of the X,* with respect to ##, in the
sense used in (4, 7). We note that X,s! are symmetric with respect to the
lower indices.

The Xap® can be given the following geometric interpretation: We consider the
geodesic C, of the space F, through the point P, tangent to the given direction
&'t Let &' = £'(s) be the equations of €. We also consider a geodesic € of
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the space F, through the same point P, and tangent to x’!. Let %! = %(s)
be its equations. We choose two points one on € and the other on C corre-
sponding to the same value of s, and in the neighbourhood of P. The co-
ordinates of these points can be expended in Taylor series, for small values
of s, so that
H(s) = b + Tps + LEpST 4.

x'(s) = xp + xp's + 3+,
where by Zp, ¥p, etc., we mean the values of these functions at the point P.
Then

Ei =zt — x—i — %(%ni _ x—//i)SZ + 0(52)

because ¥p* = £p* and ¥p'* = &p''. From the equations of geodesics we have
for C
=1 .
dx R {i } jlhx-/k
ds hk (¢)

Dx"* _ (_19?_” ) —rhark
Ds = ds +{hk}(c)9_c ¥

Also for C, we have

and therefore

~rt
g = %QDx—;sz + 0(s%).

In view of (2.4) applied to a geodesic of F,, we obtain
Xlo(u, u)w'u® = lim =5 .

We consider the formulae (1.5) and (1.7). Since 7, ; and #*(,y, are solutions
of the same linear equations, we may write

(2.8) Ny = ; Puvn*(‘V)ﬁ

multiplying the above equations by ¢ and since n(,* are unit vectors, we
obtain

(Zy; Dty My = 1.
The equations (2.8) can also be written as
g3 (%, n)nw = % a1 (%, &' IMih
and if we multiply by #n*,y¢ we find

j _%q g ki
g4;(x, nw)niwne) = ; P, X )N = pada,
v

since

*j *4
gos(x, X YGIn0S = S

https://doi.org/10.4153/CJM-1959-026-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1959-026-6

SUBSPACES OF A METRIC SPACE 243

(no summation over A involved). The above relation may be written
*
cos(nwy, my) = Pt
or
cos (1, n):m)
(2.9) P =",
_ 12}
since the cosine of the angle of two vectors ), #*y is defined by
J * 7
g(x, 1 )nwnoy
P K | k{ ¥ji}
[ges (e, 7)) Gyt gs (e, Hon ) mosmos

and #n(,, n*n are unit vectors.
We now prove the following theorems.

cos (n, n"{x)) =

TreEOREM 1. The principal normal of a geodesic G of F,, lies in the space
spanned by the secondary normals n*.

Proof. We multiply the relation (1.18) by #’?, obtaining

Dx'? ou'®
XJ —_ i
gi! v DS gcw §S ’

which is satisfied by the tangent vector #'® to any curve Cin F,,. For a geodesic
G we have du’2/és = 0, hence

; Dx")
. 4 I = =
g:i(x, X)) < Ds ) 0
Since the vector Dx’?/Ds, which defines the principal normal to the geodesics

G, satisfies the equation (1.7), it belongs in the space spanned by #n*,, there-
fore

Dx'i _ * g
(2.10) <Ds>(a> = 2 Nwni,

(0]

where n*¥, is a set of # — m orthogonal independent vectors of that space.

THEOREM 1. The tensor Xog* considered as a function of a given line element
(x%, x'?) lies in the space spanned by the secondary normals n*.

Proof. We consider the equations
X'= XU, guXiXoXh = gnUl,
then we can write
e XixiP = gt (520, + Phoxiy)
and because of (2.3) we obtain
(2.11) gy (2, ) X]Xap(u, w') = 0,

which proves the theorem.
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The vector X' (in 7) will be a linear combination of the #n* and therefore
(2.12) &= %)) Qras (4, 4G5
multiplying the relation (2.12) by #(,* and putting
% Qiwas €08 (M0, Mw) = Ly
we find

(2.13) N iXls = Qsap.

It is obvious that Qs are tensors symmetric in «, 8.

The relations (2.12) and (2.13) are fundamental for the whole theory of
subspaces of a Finsler space.

We consider the relation (2.13) and we multiply by #/*u’#, then

o N ra ,
(2.14) Qiyastt’u”® = 10y [mg wu + Prix "x"‘] ;
but

dx'* %' a8
(2.15) no g = i g ag BU U

Therefore, combining the above equation with (2.14), we obtain

,, dx'? Dx'*
(2.16) ﬂ(.).,pu' u'ﬂ = n(,)‘[“d‘s— + P:kx"'x’k = n(.),—l—)s— .
We can easily see that this is the same for all curves of F, with tangent
vector x'!, but depends on the choice of (x, x’), as in classical differential

geometry. Indeed, differentiating the relation

nx't =0
we find
Dn; Dx'*
D ¥ = T mTpo
and since Dn;/Ds x't depends on x, x’ only, so does the right-hand side.
From the identity

Dx'* | Dx'! ( Q_{')
"0t = | Ds cos \ nw, o
we obtain
@.17) D'l _ 1 Qo
Ds pe  cos (ne), Dx'/Ds)

where p, is the radius of curvature of the curve regarded as a curve of F,.
The relation (2.17) may also be written

cos (n(y, Dx'/Ds) _

(2.18)
Pe

Q(V)nﬂumu'ﬂy
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and since

Q(r)aﬂu,aulﬁ

is the same for all curves of F,, tangent to x’%, we obtain Meusnier's theorem
of classical differential geometry. We may therefore regard

s_ 1
R(')

as the normal curvature corresponding to the normal ng,*. It is obvious from
(2.17) that the ratio

Q(.)a,gu"'u’

Qenyaptt '’

cos (n¢y, Dx'/Ds)
is independent of the choice of 7%
The concept of the principal direction of a hypersurface F,_; can be extended

to any subspace F,,. Indeed, we have shown that to each direction at a point
P of F, correspond » — m normal curvatures

- Q(,)wg(u, u’)du“duﬂ
as (4, u')dudu’®

(Ron (u, )™

associated with the given direction #’'.
If we put
(219) Q(,,)a,g(u, u’)du"du'ﬂ = 1,

we obtain a number of # — m loci, of m — 1 dimensions each, on the hyper-
plane spanned by X.,% in the Minkowskian tangent space to F,, at the given
point. The principal directions will be given by the extreme values of gas
(u, u")u'*u’® subject to the conditions (2.19), where u* is kept fixed. In other
words, principal directions are directions for which the normal curvatures
assume extreme values. According to the multiplier rule we must seek solutions
of the equations

9 a g L)
= st w0+ N, ' = 1)] = 0,

which, after performing the differentiations and using Euler’s theorem for
homogeneous functions, may be written

Qe a8 _ o

(2.20) 2 Goy (w4, w')0'™ + 2NQ0 (2, ')’ + N P

The equations (2.20) are of the same type as the corresponding equations
for the principal directions of a hypersurface F,_; (4). Applying the same
algebraic algorithm, we obtain the following eigenvalue equations:

(221) : ga‘)'(ur u/)u/a = R(V) (uy u/)Q(V)a‘Y(ur u’)u’a’

where (R (u, #'))~! is the normal curvature corresponding to a solution of
(2.21). This is a non-linear eigenvalue problem with eigenvalue R,~!and little
can be said about the number of possible solutions.
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Let us assume that at least two independent solutions w1, %2 corre-
sponding to two distinct normal curvatures 1/R 1, 1/R ;)2 exist. Then, from
(2.21) we obtain

’ re ”oo__ ’ ra Y
Bay (%, U 1) UG %02 = Ry 1Qaway (4, %G 1) Ui 1402
Bay (#, U 2) UGy U1 = Ri)2Qyay (4, Uy 2) U2t Giy1,

subtracting, we find

(2.22) cos (%1, Uin2) — oS (Ulu2, Uln1)

RuwyiR 2
’ ra 7Y ra "y
_ [Q(u)av(”r u(u)l)u(mlu(v)z] _ [Qma»f(u, u(v)z)umzu(u)x]
Rys Ry

When we refer to the same normal 7, ¢, the above formula becomes

(2.23) cos (@), %) — cos (Ui, un)
Ry1R )2
_ | Qe (4, wn) Qe (%, u?z))] Wl
= 1Us.
Ron Rye

The equation (2.23) is a generalization of the orthogonality relation between
principal directions of surfaces in classical differential geometry. Indeed, in
a locally Euclidean space, the cosine of the angle of two directions is a sym-
metric function of them. Therefore the left-hand side of (2.23) vanishes and

we obtain

(2.24) Qinray (8, W) )UTUY Qv (0, Ui )ut'ns’ _ 0.
R(v)l R(,)z

But (2.21) provides
Bao (W)U uz”

= Quyar (%, “,)u'laugy
R(v)l

and thus equation (2.24) becomes

1 1 )
’ ’
cos (uy, u —— — —=— ] = 0.

( ! 2) <R(v)l R?v)2

Since R(,1 # R(,» we obtain cos (u,/, #y’) = 0, which demonstrates the
orthogonality of u,’, u.’.

We can also define a secondary normal curvature associated to a line
element x, ¥’ and depending on Q*. For that purpose we consider the relation

Dx'* o'
(2-25) 'E = Z x(u)”?ut) + Xa 5s
for an arbitrary curve of F, and we multiply it by 7,4 then
Dxli

*
ﬂ(mj)’s‘ = E ANwCos (7¢), M)

and
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Dy’ 1wy Dx'*/Ds
s (0 32) = BT = 50 T oG
M
Or, because of (2.17)
Q(t)dﬂulau,ﬁ = ;:) Awcos (), ”Ty))y
"

and hence, in view of (2.12a),

t 3
M = Qasru’.

From (2.25) we obtain

Dx'* * o % ou'”
— Q u/aur n i X{
Ds (;) ( (w)af ) (u) ; a5 !

and for a geodesic

Dx'* * I'NET
3
s = ; (gt “u' ")),
M

We define the secondary normal curvature to be

1 , Dx"Dx" ne¥ * re 1B 1y 18
¥ = gus(x, %) T = 2 Y, 8 QuwaQuyst ' uu.
R DS DS ) !

In the way 1/R* is defined we see that it is independent of the particular
set of normals #n*,.
Let us consider the biquadratic form in the differentials,

¢ = g Y (6, 2" )L apuyysdudu’du’dn’,
M

we may call it the secondary second fundamental form of F,. Generalizing
the concepts of conjugate and asymptotic directions of a surface in classical
differential geometry, we may say that two directions at a point defined
by du* and éu* are conjugate when

(z; Y Qwasnvedu 8’ du’su’ = 0,
M

and asymptotic or self-conjugate when

% ‘/’(u)ﬂ’(k,‘),,,gﬂf,‘).,.;du“duﬁdu"dua = 0.
(N

From the above relation and the one defining the secondary normal curva-
ture we conclude that the secondary normal curvature in an asymptotic direction
is always equal to zero as in Riemannian geometry (2).

3. Covariant derivatives of the normal vectors »*, n. We define the
tensor n*%y, s, covariant derivative of the vector n*%,, by projecting n**y, »
onto Fy,:

*{ % q k
3.1) Nw.8 = NG,k Xp-
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Obviously
o ,
(32) .6 = o ) 1 PRie, # IAKE

The n*%, s are not tangential to F,, in contrast to Riemannian geometry,
and this is the source of much of the difficulty in the derivation of the Gauss-
Codazzi equations.

By differentiating the relation (1.7) with respect to ## and combining the
result with (3.2), we obtain

g4y i s
a (“)

2 1

, x
Xa + gos(x, 6V Xa () s — Pl (e, xWGhXE) + gomtd) o =

=0,

or, after rearranging the terms,

x l¢]
gus(x, ) Xanth s + g 5“—“6“?3 + nhX ( g, — giP5X ) = 0.

We add and subtract g, ;P*%,X,"Xs" in the left-hand side of the above relation,
thus obtaining

) { o%! )
3.3) gis(x, XN Xin'() 6 + gun’?f)(m + P:kaX’x;)
d
+ nidXi 52 — guPliXE — gl,-PZk'Xs> = 0.

The term in the last bracket of (3.3) represents the covariant derivative of
gi; (%, x") with respect to x*, multiplied by X4*; if we put

C)T]’.k(xy x,) = ghj.k(x» x’))
we may write for (3.3),

(34) g4, &) Xinls 4+ Y Qwas + ClyaXEXan(h = 0.
We decompose n*7 g, which is not tangential to F,, as follows:
3.5) nide = BlosXi + X N,

In order to find B,s®, we multiply (3.5) by g;,X.? in view of (1.7) and
(3.4), we have

(3.6) " Bios = — Ywwasg™ — Con(, x)g" XX anGh.
To obtain the N's we multiply (3.5) by n*q,;, then
3.7 \ ”Tu;.ﬁnfx)j =N 8“))3’#(»-

The N’s are not independent since they satisfy some symmetry conditions
which we obtain in the following way. We consider the relations

g4,(%, X)niantd = Yo (no summation is involved in p),

and we differentiate them with respect to ug; between the relation which
we find and the equation (3.2) we eliminate
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an(n)
auﬂ ’

thus

i (x * * *
(3.8) _8_1__3_ naney + gis(x, &) [0G5.4m0) + o) 616

— Pie, 2 i X — Prée, xmihniXs) = S48
If we use the relation (3.7), we find
(3.9) YooN&s + YN = %%Q 8y — Ciantdns Xh.
In conclusion, we have the covariant derivative of n*() given by
(3.10) s = Y XIg " Ues — Cug "Xlinth + (ZM) N,

where the quantities Noys™ (vectors in 8) satisfy the symmetry conditions (3.9).
In the case of a hypersurface F,_;, the equation (3.10) becomes identical
with (4.9) (4), the relation (3.9) giving

1 aw
¢au

The equations (3.10) suffer from the disadvantage that the terms ¥, in
the right-hand side involve the derivatives of the tangent x'* to the curve
along which we are differentiating, so that (3.10) depends on the curve under
consideration.

As in the case of the #n*';, we define the covariant derivative ngys* by
projecting n, .* onto F,

Nﬁ C‘,kn*i *j)(k

6n
@3.11) s = ninaXh = 5> + Ph(x, x")nln X5,
where x'? is some direction tangential to F, at the given point. Here we obtain
3.12) Qwas = — ConinXiXanly — gos(x, neo) Xanln 5,
where
(8.13) Coyim = gisx(%, newy).
We decompose the tensor %, g7 as follows:
(3.14) nén.e = AweXi + TZ), Viosnin;
multiplying (3.14) by gi; (x, 74y) X" we find that
(3.15) Alos = — YedQuas — Yoo ConinXaXinl,
and therefore
a (w)
(3.18)  nins = — YeoLwasX$ — Yo Coo mX IXEX Ity + (Z) »osnin.-
K
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In order to obtain more information on the »'s we multiply (3.14) by nqy;,

then
J _ W 1 _ w
(8.17) Nl Moy = ; Vi innn s = ;) V(03 (0 (V)
K X
where

i
amn = Nmnoys = cos (nopy, na).

We note that in general a(yo) # @) . Assuming that the determinant |a |
is different from zero, we can solve the system (3.17) with respect to the
values of v, s® and we obtain the »’s as linear combinations of the expressions
N s'Mn; that is,

A(k)()\)

(3.18) s = 2 a1 (ndn.enon);
®

where A®W® is the cofactor of the determinant |a(yny| corresponding to the
element a(yoy and 4 is the value of that determinant.

As an application of the above theory we may obtain Rodrigues’ formula
of classical differential geometry.

If we consider the relation (3.16) we may write

Dn{) s 8 5 Itk b ()
(3.19) _Ds" = — YooQuwastt X1 — 7o) Coo mX IXaX "ty + ; vsmipu’®,
K
since 7y = g (%, new)nw?, we obtain by differentiation
Dnys 5 Dny
(3.20) Ds = Cuwy ity + gij(xv Nwy) Ds '

and substituting (3.19) in (3.20), we find

Dngy s e 1By 4 W 18 s
Ds =~ 215(%, 10w) Y0 Qi st X5 + %; vaost” g15(%, M) .

Multiplying the above equation by X,% we obtain

Dngy:
Ds

If Ryy™! (x, x") is the normal curvature corresponding to a principal direction
x't of F,, and to a normal %y, we have from equation (2.21)

i 8 () iyt
3.21) Xa = — Qs + 2 v 2uy(x, n)nco Xa.
(&)

gaﬂ(uv w')u'? = Ry (x, 8")Qeuastt’® .
Combining the above relation with (3.21), we write

i
Dn(u)

(3.22) Xa Ds

= — [Ro (%, &) 'gup(ut, " )0’®

W 8 J oy
+ z(: Yoo @ U g15(%, ny) M0 Xa
k

For m = n — 1 (hypersurface F,_:), the second term in the right-hand
side becomes zero. Indeed in that case the hypersurface has a unique normal
n, and therefore, the sum
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g4;(x, ”(ﬂ))”(jx)Xi

is reduced to gy (x, n)n’X,* which is identically equal to zero. But in the
case of any subspace F,, the second term does not vanish, unless we choose
a particular set of normals 7, such that

() 18 J i
; vost” gy (%, nw )ninXe = 0,
K
then

Dni "ni— ’
X;—l)—;& = [R(F) (xv x )] lgaﬂ(uv u’)u ﬂ,

putting g.s(u, #')u’? = y,, that is, introducing the covariant component in
F,, of 4’8, we find

Dn "y-
(3.22) XiT2 = — (R, %)y

The above formula is analogous to Rodrigues’ formula and it is similar to
the one for a hypersurface (4).

4, The Gauss and Codazzi equations for an F,. We may obtain
relations connecting the curvature tensor of the space F, with the curvature
tensor of F,, and the coefficients @*. To do so, we first consider the covariant
derivative of X,* with respect to #f (metric in F,),

LS e
Combining the above relation with relation (2.3), we obtain
(4.1) Xap = Xag — PuXoXh
or, because of (2.12),
(4.2) af = %:) Qastin — PriXoX5.

We know that
) ) s )
;.B'y - ;,73 = R.aﬁ'yX;,

where R® .5, is the curvature tensor of F, corresponding to the induced
connection coefficients Pg,**. By using the expression (4.2), we can write

(4.3) Rl Xi= X"[(%J:i + ax” 39;”))(5 <6Phk Py ag B)Xlrc]
re(XE L XE — XE XD + %:) (et v — Larn.0)

+ % 160 (Uras.y — Lwar.s)
+ 2 PRt @ XS — QlousXs) -
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With the help of (4.2) the second term of (4.3) can be written
XXXy (PeiPhil — PiPA) — 22 PGl (QarXs — QasX3),

therefore, (4.3) becomes

¥i .p¥ioa 4] * 1 *i o 45
(44) RlpX) = Xz[("—Pﬂ 4 &L Ox )Xs - ("P n g P O )X’é]

du” ax’’ ou” au® ax"” au®
+ XoXEXy(PiiPii — PyPi) + ‘(4:) (Qast.r — VwarG.6)
M

*4 % *
+ ‘(T_‘; 16 (Qwas.y — Awar.8);
u

the first and the second term in the above equation may be substituted by
R.’i,,k,(x, x')Xi'XﬁXi

according to (A.7), where Ry;," is the curvature tensor of the space F,. The
equation (4.4) then becomes

(4.5) XiR%s(u, u') = Ry, x")X2X5X, + ; (Qras.y — Lwarnim.5)
®
+ (Z:) ntli) (Q?u)aﬂ.*t - Q?u)a'r,ﬁ)-
I

If we use (3.12), we may eliminate the derivatives of n*g,, from (4.5) and
thus we obtain

(4.52) XiR’py(u, u') = Riyi(x, x)X2XEX,
+ (Z) \l’(u) (Q?‘u)aﬁﬂt;‘) ey T Qtu)avgtn)w)X ;gk
M

— Coug" ; (et Xy — W X0V + 20 20 (NReras
M

(®) [&N]
) % *i * * * 1
— N Qan)n0s + 2o (Qwasy — Lway.s) 7w
(M)

Multiplying the above equation by g;; (x, ") X»?, we find
(4.6) g,;)\Rig.,(u, u') — ; Yw (Q)(';)aﬂQT#)M - QT#)MQT#)M)
M
= gij(xr x')R.ihkl(xr x,)X:)(gX‘:X)‘\’ - X){C:hk E (Q?{[l)dﬁX‘: - Q?;t)a‘sz)n?#h)
and multiplying the same equation by g;; (x, x") n*/(,, we get

* d hykyrl * * k * kN kK _¥j
(47) iz, )G R (e, x)XaXEXy — Cone 20 (QwesXy — LowarX5)nan )
(»)
(W) % W) % * *
+ ; Y NV 38Qwas — N3rQwar) + ¥0) (Lwragy — Liar.s) = 0.
M

The equations (4.6) and (4.7) represent a generalization of the Gauss-Codazzi
equations of Riemannian geometry.

It is obvious that different forms of Gauss-Codazzi equations are obtained
when one considers the fundamental forms Q(,.sdu*du? together with the
normals #(x). For that purpose, we decompose the vector X,g* (considered
as a vector with respect to the upper index 7) into components along the
normals # and the tangent plane at the considered point. We put
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(4.8) Xog = % Awatin) + Was

where W,s* satisfies the condition

(4.9) Wasno: = 0,

and by multiplying (4.8) by #(,;, we obtain

(4.10) Qyas = ey iXag % Awas €08 (0, M),

hence W,s' is given by the relation

i i 1 * * 17 i
(4.102) W = Xag — Z) AGyas = ; Qastn — 2o Awashin-
(1 H (B)

Since the vectors n® are in general different from the vectors #** and they
do not belong in the space spanned by #**, we look for a decomposition of
the »%s along the #** and the vectors defining the tangent space to F,,. We
decompose the vector »? in the form

(4.11) nio = 23 T&RG) — MiXs;

multiplication by n,* provides

(4.11&) . n(ip)n(p)i = (ZM T((f)) Cos (n(v)y n,(k)\));

from (4.11) we also obtain

(4.12) My = nin X5

Combining (4.11) with (4.10a) and also (4.11a), (4.10), we may write

(4.123) :ﬂ = ; Q‘(ku)aﬁ”,:n) - E (Z) (A(u)aﬂT((;\‘)))”?)‘) +Xg Z A(#)aﬂM(au)y
» »

™
(4.13) Qyag = % ;) A(u)aﬁT((;\‘;) cos (new, Mon)-
M

If we compare the equations (4.13) awith (2.21a), we see that
(4.14) % AwasTE = Unyas.

In view of the equation (4.14), the relation (4.12a) becomes
(4.15) w = X1 2 AwasM i,

thus, M,® is given by (4.12), A e by (4.10) and Wos* by (4.15).
Using the equations (4.1) and (A.8) again, we write

(4.1a) is= 2 Awnby + Wis — PriX2X%;
(B)

differentiating with respect to the metric of F,, and because of (3.11) we
obtain
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(4.16) Xagy = E Ayagtin.y + Was — ; PiiA wasn (o X5
B

oPy | 8P ox\y
_ (_aur;k 3P 35T ¥aXh — PRXAGXE — PRXIXhy + 5 Agpusinb,
(»)
or
(417) 2 (Awasr — Awars)nln + ;:) (Awrasmie .y — Awatie )
B
+ XeXpXsR (0, x") + Wapy — Ways — Pi'(War X — WegXy) = RapXi.

Using the expression for the generalized covariant derivative of W,s* with
respect to ¥ we find

(4.18) XiRegy = %} (A way — Awar.s)niw + g.; (A Wty = Awartin.6)
+ XaXEXaRwr(x, %) + Wasy — Wars,

which, with the help of (3.16), can be written

(4.19) X;[Rasy — Z Yo Qw64 war — QA wes)] = Ripa(, x)X2XEX
- Z g(n)C(n)shkn(u) (A wasXy — AwarX) + Z (Awepr — Awers)nw
+ Z Z 16 (AwasrQy — Awaring) + WaB‘v — Was.

)

The relation (4.19) is important because it provides the Gauss and Codazzi
formulae. Indeed, multiplying (4.19) by gy (x, #())ny? and putting

st
Duyoyme = g% nw)gi1(%, 76)) Ciuy sns

(w)
My = ; Yy €08 (), mny),
™

we obtain the final equation
(4.20) %:) awo (Awasy — Awar,s) = % Dy oy sy (A e Xy
- A(M)OWXz)
- ‘(4:,) (M A was — M 18 way) — RuriXaXEX3n0 4
- (W:ﬁv - Wé‘yﬂ)gu(x’ "(V))n'(’t’)-

It is possible to remove the terms involving Wes,* and replace them by ex-
pressions depending on A.s or Q.
Indeed,

(4.21) Wagy = Xai(z AwasrMby + 2 A(u)aﬂMgu).‘Y)
() (M)
+ (2 AweaMin)Xi,
()

and since X; ¢ = Zwdsnewt + Wit and n,y ;Wi ' = 0, we obtain instead
of (4.20),
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J h k Kk
; aw» (A way — Awars) = ; Dy 6y M0 (A wapXy — A wyeanX5)
I3 I

(4.22) - ; (M) vA was — M) WA ()
m
- (Z; % Myaoy oy (AwasA orsy — Agard ares)
u
— RipXaX§Xnl.
We consider again the equation (4.19). Multiplying by gi;(x, #¢y) X’ we
obtain

(4.23) ”Y(v)bE[Rzﬂ'y - (Z; v (Qw A way — Q(n)eyA(n)aﬂ)]
N
= R;sz(x, x')XﬁX’éX.: jsgu(x, n(v))
- ; 24, 1621506, 1)) Cow omi ) (A was Xy — A arX5)X 1
"

+ (Z) (Awasy — Awar.p)g1s(%, ”(r))XjE”zu)
N

+ 2:) % g15(%, noy) X indy (Awasr o wy — Awar?nyws)
(3

+ (Wapy = Wa)ges(%, n») X t;
by eliminating the derivatives Was,* we find a relation
(4.24)  gus(%, 1) XiWagy — Was) = ‘Y<v>es|:%; (Awapy = Aur.s) MGy
+ 2 AwasMly — A(u)a'yM.aﬁ:l + gu(x, nm)Xé[%:, % (Awasd oy

(»)

— Agard ) - Minoy + Xi20 25 (Awasdovsy — Awaerd ois) MinM 3)] .

[(OICS]

for the last term of (4.23).

The relations (4.22) and (4.23) thus represent alternative forms of the generalized
Gauss and Codazzi equations.
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