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THE DICHROMATE AND ORIENTATIONS OF A GRAPH

GERALD BERMAN

Internal and external activities are defined for any orientation of a graph &
relative to a fixed labelling of its edges. It is shown that the number of such
orientations of % having internal activity r and external activity s is 2"*'x,,
where x, is the coefficient of x7y* in the dichromate x (% ; x, ). It follows that
the number of orientations of % in which the resulting digraph & is acyclic
is given by [P (% ; —1)|, where P(% ; \) is the chromatic polynomial associated
with & . This result was obtained by Stanley [5] using enumeration techniques.
In case ¥ is planar the number of orientations of % in which 2 is strongly
connected is equal to |[P(%’, —1)| where &’ is the planar dual of ¥ .

1. Introduction. Let % be a connected finite graph (possibly with loops
and multiple edges). We shall use the following notation: £ the set of edges,
m = |E| the cardinality of E, V the set of vertices, n = |V|, p the cycle rank
(or cyclomalic number), p' the cocycle rank (or coboundary rank), T a spanning
iree, T = E — T the corresponding spanning coiree, Rre the unique circuil
determined by e € 77, R;'e the unique cocircuit (or bond) determined by
ec T.fec T, Rre=@andife € T, Rye = 0.

Let e, s, ..., en, m = |E| be any labelling of the edges of %. An edge
e € T’ is externally aclive with respect to 7" if e is the first edge of Rye in the
ordering determined by the labelling. An edge ¢ € T is internally active if e
is the first edge of R;'e. We adopt the convention used in [2; 9] rather than
that used by Tutte [6] in which the last edges are used to define the activities.

Let x,, denote the number of trees for which % has r internally active edges
and s externally active edges. The dichromate of ¥ is then given by

(LD x(9;%,9) = 2 xix'y'.

It can be shown [2; 6] that this polynomial is independent of the labelling used
in the definition of internal and external activities.

The dichromatic polynomial Q(% ; x, y) [8; 9] associated with ¥ is related
to the dichromate by the equation

QF:x,9) = xx(Tsx+ 1,y 4+ 1)
and satisfies the identity

Q(T 5 x,x71) = (x + )™
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It follows that the dichromate satisfies the identity

(1.2) " x(Z x4+ 1L,x+1) = x+ 1"

The chromatic polynomial P(G; \) is related to the dichromate by the equation
(L.3) P(F;N) = M=1)""x(9;1—\0).

With each edge e (including loops) there is associated two orientations. An
orientation o of ¥ is a selection of an orientation for each e ¢ E. The set of
directed edges determined by o will be denoted by A = E(0). The correspond-
ing digraph 9 = 9 (0) = (A, V) is an oriented graph. Although different
orientations can lead to isomorphic oriented graphs [3] we have labelled the
edges so that the 2" orientations can be distinguished.

When referring to a digraph & we shall use the terms cycle, circuit, cocircuit,
elementary circuit, etc. as in Berge [1] instead of the words direcled cycle,
directed bond, directed elementary circuit, etc. There is no ambiguity with these
terms, with a different meaning, when used for . Following Berge a directed
edge will be called an arc. Vector spaces A, A" called the cycle space and cocycle
space are associated with the cycles and cocycles.

It was shown by Tutte [6] that every arc of A belongs to either a (directed)
circuit or a (directed) cocircuit of &, but no arc belongs to both. This theorem
also follows from a theorem of Minty [1; 4] on three-coloring the arcs of a di-
graph and can be restated as follows.

THEOREM 1.1. There exists « unique partition 4 = A \J A" into disjoint
subsets, and « corresponding partition E = Eq\J E¢ of the edges of G such that
the arcs of A¢ belong to circuits and the arcs of A¢ to cocircuits. In particular,if 9
is strongly connected, then A = A¢, E = E¢ and if D 1s acyclic, then A = A/,
L =E/.

Let Y. = (4, 1) denote the digraph obtained from & by deleting the
edges of A¢" and let Y/ = (4, V(') denote the digraph obtained from &
by contracting the edges of 4. D¢ is the union of the strongly connected
components of & and & is an acyclic graph which represents the cocircuit
structures of Z. Let 9 = (E¢, 1), G = (E¢, 1'¢') denote the correspond-
ing graphs. It is shown in [1] that for a strongly connected digraph .# the
corresponding cycle space has a basis consisting of p circuits where p = p (%)
is the cycle rank of . (or of the corresponding graph). It follows that A
the cycle space of Z¢ has a basis consisting of p(Z ) circuits. Similarly the
cocycle space A’ of &' has a basis consisting of p' (&) cocircuits. In view
of Theorem 1.1 these are the numbers of independent circuits and cocircuits
of &. The vector spaces A¢, A’ will be called the circuit space and cocircuil

space of 9.

TrarorEM 1.2, The digraph D has p(D o) independent circuits in A which
is a basis for Ac and o' (D) independent cocircuits in Ao’ which is a basis for
ACI-
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Let 0(9) denote the set of 2" orientations of &. Each orientation o € 0(%)
can be represented uniquely by one of the 2" vectors

(14) o= (e, e,...,6), ¢ =F1,1=1,2,...,m

where ¢; represents the orientation of e; € E in 0. For each ¢ the numbers +1,
—1 are associated arbitrarily with the two orientations of e;.

Let Z = (4, V) correspond to any orientation 0 € O(%). Every cycle of 4
can be represented by one of the vectors.

1.5) u= (U1, ue, ..., 0Up), ;=0 +1,2=12 ..., m

where #; = 0 if the arc e,(0) (oriented arc corresponding to e; € E) is not
in the cycle, u; = 1 if the direction of ¢,(0) coincides with the direction in which
the cycle is traversed and u; = —1 otherwise. In particular, u# represents a
circuit (of @) if every nonzero entry is the same. Every cocycle is associated
with a nonempty subset S C V7 and is also represented by one of the vectors
(1.5), where u; = +1 if e;(0) has only its initial endpoint in S; u; = —1 if
e¢;(0) has only its terminal endpoint in .S, and #; = 0 otherwise. In particular
a cocircuit is represented by a vector # in which every nonzero entry is the
same.

It follows that the circuits and cocircuits of & (o), which are bases for
Ac(0), A (0), can be obtained from an enumeration of the cycles and cocycles
by selecting those cycles and cocycles whose representation (1.5) has all non-
zero entries 1. The enumeration of all the cycles and cocycles of & (o) for any
0 € 0(9) can easily be obtained from the enumeration for any one orientation,
say o = (1,1, ..., 1). For, let Z, = Z(0;) and let u denote a cycle of &,
then ou = (eyut1, €xtts, . .., €nity) is a cycle of &, where o is represented by
(1.4) and # by (1.5). Similarly in case u represents a cocycle.

In Section 2 orderings are defined for the sets of circuits and cocircuits of
9 = (o). This leads to a nest of subspaces of A¢, A’ and a corresponding
partitioning of A¢, A¢'. This in turn determines a partition of E. Internal and
external activities 7, s are defined for 0 and a set O(0) C O(%) (containing o)
of 27+ orientations defined having the same activities and determining the
same partition of E. In Section 3 a 1-1 correspondence is shown between the
sets O(0) and sets of orientations corresponding to spanning trees of % with
internal and external activities 7, s (as defined by Tutte for spanning trees).
This correspondence is applied in Section 4 to obtain results relating strongly
connected graphs and acyclic graphs to the chromatic polynomial, as stated
in the abstract.

2. External and internal activities of an orientation. Let & = (o) =
(4, V) be the digraph of the orientation 0 of % = (E, V). The arc of 4 cor-
responding to ¢ € E will be denoted by é = e(0). If S denotes any subset of 4,
let ¥(S) denote the first edge of the set S = {e; € E, é; ¢ S}. The min of a
collection of subsets {S;} of A is defined as follows: S,, = min {S,} if
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(1) ll’(*sm) = ‘p(S,)-] # m, and

(11) if ‘l/(Sm) = l//(S]) for any jr then ‘/’(Sm) - Sm]’ > tp(SJ - S"lj)y
where S, ; denotes the intersection of the sets S,,, S;and = denotes the ordering
of E determined by the labelling.

Let &, denote the digraph associated with the circuits of & as defined in
section 1. We now define a sequence of independent circuits vy, v, . . ., v, of
Ac and a sequence of sets {6, 6; C v;} which partition 4. into disjoint subsets.
The circuits determine a nest of subspaces A¢' C Ac®> C ... C A¢? = A¢ where
A¢7 is the space determined by vy, vs, . .., v;forj =1,2,...,q.

Let Zt = D, and let {v;'} be the set of circuits of A¢'. Set 4, = min, {v,'}.
Let Z¢? denote the diagraph obtained from 2! by contracting §, to a point,
and let {v,2} be the set of circuits of A% Set 6 = min {v;*}. Continue in this
way. Let 2.5 denote the digraph obtained from & /~! by contracting the
circuit §,—, to a point, and let {v *} be the set of circuits of AcF. Set

(2.1) 6, = min {~,}}.

Since & is a finite digraph this procedure finishes after ¢ steps when Z.?
consists of a single circuit.

Notice that for each & the circuit y* of A;* corresponds to a circuit 7y,
of A/~ for a unique 7, obtained by contracting 8,_; M\ v/~ to a point. It
follows that 6, corresponds to a unique circuit v; of A,/ containing §;, and
determines the space A¢?. Further,

22) de=8Us\U... Us,
(2'3) 6k=7k—U6j: k=1721"'1q

i<k
and
(24) 'y,Cél\J(SgUUéL, k=1,2,,q
Further, the circuits of the sequence vi, v2, . . ., v, are independent, forming
a circuit basis for the cycles of A¢?, j = 1,2, ..., ¢. The undirected sets D; =
le; € Elé; €6,},7=1,2,...,qpartition E. into disjoint subsets correspond-

ing to the partition (2.2) of A¢. This is summarized in the following theorem.

THEOREM 2.1. Let vi, vo, . . ., v, be the sequence of circuits of Ae as defined
above. Then {v;} is a circuit basis of A¢, the sets {8;} which partition A into
disjoint subsets satisfy (2.3), (2.4) and the sets {D;} parlition Eq into disjoint
subsets.

We now consider the effect on the ordering of the circuits {v,} and the par-
tition {D,} of E, of reversing the orientation of any one of the sets §,. Consider
two circuits v, < v, (i.e., @ < b), such that vy = va M v, # 0. Let pat, wp!
denote the corresponding circuits in which all the arcs of §;, 7 < «, have been
contracted, so that u,!, u,' are circuits of Ac® and g,! = 8, = min {y,%}. Let
Bap = B! (N Yy paa = o — pap and ppy = py! — pep. Then gy, contains §, and

(2.5) Bt = pad \J par, et = pan Y s,
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If 8, is replaced by 8, (reverse orientation) u,! is replaced by p,? and p,' by p,?
where

(26) ”a2 = faa U Hap, ,Ub2 = Moy U Baa-

This can be obtained from the vector representation (1.5). Using the same
notation as above, but with 4 signs for vector addition we have the cycles
Vval = Maa + Hab I-"bl = Wpp T Hab- It follows that ﬁal = — Paa = Map = Baa T Bav
is a cycle, in fact the circuit containing 8, and u,' + &' = wp + fe is the
circuit containing §, such that the arcs of §, = v,” have opposite orientation.

Now consider the effect on v, of reversing the orientation of v,. From the
definition and (2.1)—(2.4) it is sufficient to consider u,!, u,'. There are two
cases to consider i)fa € up'and ii)]'}a1 € w', where f, = ¢¥(8,). In the first case,
Jo € pap so that Y(ua) > fr = ¥(8), ¥(w?) = ¥(kw) = f. and ¢ (w?) =
Y (up) = fo implying p,? < wy? so that the order is preserved. In the second
case,f”a € Maa 0 that p,2 < w2 if and only if Y (Fm) = ¥ (kar) > f. This means
that the order v, < v, will be preserved under the transformation 8, — §, if
and only if ¢ (k) > fo.

The two cases can be combined by setting 8, = 8,v, if f',, €’ 84y and
845 — 847y otherwise. Then the order v, < v, will be preserved under the trans-
formation 8, — 8, if ¥ (8.) > fo.

The order v, < v, will also be preserved under the transformation 8, — §,.
To see this, first note that the ordering is preserved if the orientation on all
the edges is reversed. Then reversing the orientations on &, &, ..., 8,1 is
equivalent to reversing the orientation on §, in the original, i.e., the ordering
is preserved under the transformation 8, — &, if ¥ (6,,) < f, for all @ < ¢ for
which 8.y, # 0. Proceeding inductively it follows that the order is preserved
under the transformation 8, — &, if ¢ (64,) > f» for every a < b.

This suggests the following definitions. The circuit v, is externally active (in
Ac relative to the underlying ordering of the edges of %) if ¥(8.,) > fi for
every a < k for which §,y, ## 8. Let s be the number of circuits {v;} which are
externally active, then the orientation o has external activity s.

Corresponding to each of the s circuits v, which are externally active there is
a subset &; of {8;} which contains §, and all sets 8,, b > k, such that v, is
inactive and contains an edge f,, ¢ &, where 8, € §.. The sets §, can be con-
structed inductively, beginning with §, where f, = ¢(4¢). In terms of this
notation, the above discussion can be restated.

THEOREM 2.2. Let v, denote un externally active circuit and §; the corresponding
subset of {8;} as defined above. Let o, denote the orientation of ¥ obtwined by
reversing the orientation on all the urcs of the sets &, of & (0). Let u;** denote the
circutt of D (o,) corresponding lo v, in & (0). Then the ordering of the circuits as

determined by the original ordering of the edges of G is wm™ we®, ... w5
The nest of circuit spaces A and lhe corresponding partition of Eq is the saume for
oy as for o.
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Analogous theorems can be obtained for &’ which characterizes the co-
circuits of Z. A sequence of independent cocircuits of A¢" and a corresponding
partition of A into disjoint subsets which leads to a definition of internal
activity can be defined as follows.

Let 2.1 = 9. Let {y/*} be the set of cocircuits of A.* and let 8,/ =
min {v;/*}; P is obtained from &% by deleting the edges of §;". Continue
until {v,;/*} consists of one cocircuit. Corresponding to §,’ there is a unique
cocircuit v;" of A’ such that equations analogous to (2.1)-(2.4) hold and a
Theorem 2.1" analogous to Theorem 2.1 can be stated. The effect of reversing
the orientation on a subset 8" is also analogous. The cocircuit ;" is internally
active (in A¢' relative to the underlying ordering of the edges of %) if (6,,) >
fi for every a < k such that 6,'y,” # @, where 6,/ = 8,/y, if &, € 6,7y, and
0. =6, — d,/v. otherwise. The inlernal activity of o is the number r of
internally active cocircuits of A.'. Every internally active cocircuit v,” deter-
mines a subset §; of {6,'} as in the case of externally active circuits. A Theorem
2.2" analogous to Theorem 2.2 can be stated for cocircuits with primed symbols
instead of unprimed symbols and the term internally active replacing externally
active.

These theorems can be interpreted for & since the circuits of A¢ are equiva-

lent to the circuits of & and the cocircuits of As/ are equivalent to the co-
circuits of 4.

THEOREM 2.3. Let 0 be an orientation of G with internal activity r and external
actwity s and let {AJ7}, {Ac?} be the corresponding mests of subspaces of Ad', Ac
(velative to an ordering of the edges of E). Then there is a set O(0) C O(%) con-
taining 27+ orientations of Y each of which determines these same nests of
subspaces.

A similar statement holds for the partition {D;} \U {D,} of E relative to an
ordering of the edges.

3. Spanning trees. The circuit space A¢ of D¢ has a cycle hasis consisting
of the circuits y1, ¥, . . . , v, where ¢ = p(ZD¢). The equations (2.3) (2.4) imply
that every (directed) circuit of Z¢ (and of &) must contain one of the sets
6, Cv;j=1,2 ...,q sothatevery (undirected) circuit of %, must contain
at least one of the edges f; = ¢(8;), 7 =1, 2, ..., n. Thus the set Eo — Fg,
where Fo = {f;} cannot contain a circuit and must be a spanning forest of Y.
which is the union of spanning trees of its components. Similarly E. — F¢/,
where F/ = {f/V, [/ =v(/),7=1,2, ..., p, which is determined by the
cocircuits of 2/, cannot contain a cocircuit. Since %’ is connected, F¢' is a
spanning tree of ./, In terms of E, I" = (Eq — F¢) \J F¢ is a spanning tree

of .

THEOREM 3.1. Let 0 € O(9) and let { D/} \J {D,} be the corresponding par-
tition of E. Then T = (Ec — {f;}) \J {f/} is a spanning tree of G where f, is
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the first edge in E¢ not in \J ;D7 =1,2,...,qand f} 1s the first edge of E¢’
not in U¢<7D¢l,j = 1,2, e ,P.

Let 7'(0o) denote this tree associated with 0. We now associate a set of orien-
tations O(7) C O(%) with any tree T in such a way that if 7" = 7'(0), then
o ¢ O(T).

Let T denote any (spanning) tree of %. We first show that T together with
the ordering of E determines a decomposition of E into two disjoint subsets
E¢, E¢’ which will be identified with the decomposition determined by o as in
Theorems 2.1, 2.1’. We do this inductively. For any set S C E let (S) denote
the first element of S. Set g; = e, E;V = Rpgy, EZ/®D = R,/ (g1). Let go =
V(E — E;W U E/M) and set Ex® = E;W U Rpge, Ef/® = E;/®W U Ry/gs.
Continue in this way, setting

G = W(E — B0 U E,/6-D)
and
ET(k) = ET(k—_l) U RTgk, ET/(A‘) = ETl(k—l) U ]<T/gk-

The process ends when £ = E;(0\U E,;//(. The sets E,9, E;/ (" are disjoint,
for at each stage one of the sets Rpg;, R/ g is empty and the other set is dis-
joint with E,%D\U E,;/®=1_ Suppose, for example, ¢ € Rpg; and e € R, g,
j # k. Then g; € R;'e, and g, € Rre which is impossible. Setting E. = Ez',
E. = E;' we have

E = EC U EC’, ECECI = ﬂ

where E. is the union of a set of circuits of ¥ and E.’ is the union of a set of

cocircuits.

Let f1, fo, . . ., f, denote the subsequence of g1, go, . . ., ¢, belonging to 7”7 and
let fi, f', ..., f,/ denote the subsequence belonging to 7. Set C; = Ryf;,
1=1,2 ..., ¢gand C/ = R;/f/, 1 =1, 2, ..., p. Finally, set D, = Cj,

Dy = (¢ and in general
(3-1) Dy =C,— U Djv Dkl = Ck' v Dj’
i<k i<k

so that
3.2 ¢G,.CUD, ¢/ CUD/.

ik j<k
Equations (3.1), (3.2) are the analogues of (2.3) (2.4) (and their duals). We
can define graphs ¥, ¥’ analogous to D¢, 2.’ by deleting the edges of E.
and contracting the edges of E.. Since the circuits {C;} of % ¢ are independent
and the cocircuits {C,/} of %, are independent (by (3.1), (3.2)) we obtain
theorems similar to 2.1, 2.1’.

THEOREM 3.2. The circuils {C,} are an independent set of circuits of G ¢ and
the subsets {D;} (defined above) partition Ec into disjoint subsets such that if
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fk‘ = l//(EC - U}'<;\; Dj)v then f]\- E Dk! k= 1, 2, ooy g (lnd Y‘/ = {f;} 7:S @
cotree of G ¢ such that C, = Rypfy.

A similar Theorem 3.2’ holds for the cocircuits of %'

We now construct a set of orientations O(T) C 0(%) corresponding to any
spanning tree 7" in the following way. Suppose 7" = 1°(0) is the tree associated
with o as in Theorem 3.1. If f; is externally active relative to 7 and the ordering
of the edges then f; isthe first element of Rf;. But f; corresponds to an element
7. of 8, (Y(8,) = f.) with the property that the decomposition {D,} was un-
changed by reversing the orientation of the arcs of §, (which includes fA)
Thus we associate an arbitrary orientation with the arcs of Cx. On the other
hand, if f; is not externally active the circuit Rzf; must contain an edge ¢;
corresponding to a set C, with smallest subscript. If we have examined the
edges in the order f1, fs, . . ., then f, has an orientation. Assign this same orien-
tation to the edges of D;. In this way we associate with each active element f;
a subset D, of {D;} all of whose edges have the same orientation. That is, we
have s such sets where s is the external activity of 7. Since the orientations can
be assigned arbitrarily, we have 2 different orientations of % corresponding
to 1" in this way. Further, if o0 is one of these orientations, then §; as defined
in Section 2 corresponds to D; with the assigned orientation and ¢(6;) = f;,
ji=1,2,...,q Similarly for ¥/ .

THEOREM 3.3. Let T be a spanning tree of G with internal activity r and external
actwity s. Let {D,,} \J {D,,} denote the corresponding partition of E as defined
above and let O(T) denote the set of 27+5 orientations of G obtwined by aussigning
arbitrary orientations to each of the sets D,;',j = 1,2,...,7; Ijqj,j =1,2, ...,
s. Then if o € O(T), T(0) = T (where 1(0) is defined 1n Section 3) and each of
the orientations o € O(T') has internal aclivity v and external activity s (as defined
in Section 2).

4. The dichromate. Let x,, denote the number of spanning trees of & with
internal activity » and external activity s. By Theorem 3.3 associated with each
of these trees there are 27t* different orientations with activities 7, s, and
orientations constructed from different trees cannot be the same. Let this set
of x,,2""* orientations be denoted by O(%, r, ), i.e.,

4.1) O(% ;r,s) = U O
where the union is taken over all trees with activities », s. By (1.1), (1.2)

2 xn2 T =x(%,2,2) = 2"

1773 . . ZENa o ¢ . . 7
where x{(% ; x, v) is the dichromate of &. Thus all 2" orientations of % are
accounted for, and we have a partition

(42) 0(%) =U0(;rys)
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of 0(%) into disjoint subsets which are in correspondence with the terms of
the dichromate. If we substitute (4.1) into (4.2) we obtain the decomposition

43) 0(9) = LT) o(I)

corresponding to the expansion of x in the form
44) x(Fix,p) = 2 Ty
T

where 7(T"), s(T") are the activities of 7.

THEOREM 4.1. There are x,27+° elements in the set O(F : r, s) of orientations
of G with activities r, s, where x,, 1s the coefficient of x"y® in the dichromate of Z .
These sets are in 1-1 correspondence with the terms of the dichromate (1.1) and
partition O(9G) into disjoint subsets.

If 2 (0) is an acyclic graph, o is an acyclic orientation of %. In this case
9D = D¢ and the sets O(F ; v, s), s # 0 are empty. It follows that the set of
acyclic orientations O¢'(9) is given by

0.'(F) = U 0(%;1,0)
and by Theorem 4.1 the number of acyclic orientations of % is given by

|0/ (%)| = 2 0(F ;r,0)| = Z 02" = x(%;2,0).

This number can also be expressed in terms of the chromatic polynomial, for
setting A\ = —1in 1.3 we get P(¥, —1) = (—1)"x(9; 2, 0).

Analogously, if £ (o) is a strongly connected graph, then & = % and
the set of these orientations is O¢(9) = U, 0(%; 0, s5) so that |0c(9)| =
x(%;0, 2). If 9 is planar this can be interpreted in terms of the chromatic
polynomial of the dual graph evaluated at —1.

THEOREM 4.2. The number of acyclic orientations of G 1s x(9; 2, 0) =
|P(9, —1)|, where x(9 ; x, v) is the dichromate and P(9 ;\) is the chromatic
polynomial of 9. The number of orientations of G such that 2D (o) is strongly
connected is x(9; 0, 2), and if G is planar this is also given by |P(9G'; —1)|
where G' is the planar dual of Y .

A proof of this result employing enumeration techniques was given by
Stanley [5]. Michel Las Vergnas has obtained analogous results involving
orientable matroids.
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