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Stratified horizontal convection
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Surface differential heating on a stably stratified fluid body drives an overturning
circulation confined to the upper fluid region – here coined stratified horizontal
convection (SHC). In this manuscript, we investigate the dynamics of SHC via laboratory
experiments, exploring local and global flow properties. By considering the available
potential energy of the system, we derive a unique length scale of SHC and introduce
the Péclet number Pe that captures both the stabilising effect of stratification and the
destabilising effect of the baroclinic adjustment. We found that Pe characterises local and
global flow properties, including the fluid transport of the overturning circulation, the
available mechanical energy and the flow dimensionality. Our study provides insights into
the fluid dynamics of stratified environments that experience horizontal convection, such
as lakes, oceans and atmospheres.
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1. Introduction

Horizontal convection (HC) is a ubiquitous phenomenon (Hughes & Griffiths 2008),
and it manifests across a variety of scales at which horizontal density inhomogeneity is
present; large-scale circulations in the atmosphere, oceans and lakes (Wunsch & Ferrari
2004; Schneider 2006; Verburg, Antenucci & Hecky 2011; Wang, Huang & Xia 2018)
land/sea diurnal breezes (Walsh 1974; Gille et al. 2005), heat/cool-island circulations (Lu
et al. 1997a,b; Mori & Niino 2002; Niino et al. 2006), topographically and thermally
driven flows in coastal waters (Monismith et al. 2006; Ulloa et al. 2022), radiatively
driven flows in inland waters (Coates & Patterson 1993; Mao, Lei & Patterson 2009) as
well as industrial casting processes (Sarris, Lekakis & Vlachos 2002; Gramberg, Howell
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Figure 1. Schematic of (a) HC with T1 < T2 and (b) stratified horizontal convection with T0 < T1 < T2.
Thermal boundary conditions are noted. Overturning circulations are indicated by arrows. Linear density
profiles imposed only by the boundary conditions are drawn by dashed lines, and the solid lines indicate mean
density profiles after convective motions.

& Ockendon 2007; Chiu-Webster, Hinch & Lister 2008). Motivated by such broadly
existing processes, HC continues to be investigated using the conceptual model illustrated
in figure 1(a) (e.g. Wang & Huang 2005; Coman, Griffiths & Hughes 2006; ILIcak &
Vallis 2012; Shishkina, Grossmann & Lohse 2016) since the pioneering study by Rossby
(1965). It is evident, however, that the traditional HC model requires additional elements to
represent the complexity of actual systems, such as rotation and vertical density gradients
(Couston, Nandaha & Favier 2022; Gayen & Griffiths 2022).

The traditional model of HC (figure 1a) considers a closed fluid system that is thermally
insulated except on one of its horizontal surfaces, where a destabilising horizontal
temperature difference, �θ = T2 − T1, is imposed. This system eventually reaches a
statistical equilibrium state characterised by a basin-scale overturning circulation that
penetrates the full depth of the domain and develops over the full horizontal extent.
Two main dimensionless parameters govern the dynamics of this fluid system. One is
the Prandtl number defined as Pr = ν/κ , meaning the ratio of viscous diffusion to heat
diffusion, where ν is the kinematic and κ the thermal diffusivity of the fluid. The
other is the Rayleigh number, Ra = us W/κ , that quantifies the relative strength between
convective and conductive heat transport within the thermally forced fluid system, with
us and W the characteristic velocity scale of the thermally driven flow and the horizontal
length scale across which thermal forcing is exerted. Conventionally, us is derived from a
balance between buoyancy and viscous forces, i.e. us = gα�θW2/ν, where g and α are
the gravitational acceleration and the thermal expansion coefficient. The latter leads to the
classic definition of the Rayleigh number

Ra = gα�θW3

κν
. (1.1)

In addition, the fluid dynamics of HC is also influenced by the aspect ratio of the fluid
body, i.e. A = W/H with H the thickness of the fluid layer. Thus, flow features, such
as the heat transport and energetics, can be characterised in terms of Pr, Ra and A
(Hughes & Griffiths 2008; Gayen, Griffiths & Hughes 2014; Shishkina et al. 2016). In
nature, however, fluid bodies experiencing surface differential heating/cooling – such as
oceans, seas and lakes – hold a density stratification, unlike the idealised scenario above.
Such a background stratification, usually controlled by a vertical temperature gradient,
acts as a stabilising mechanism against destabilising buoyancy-driven fluid motions that
enhance vertical mixing. Thus, when a fluid system is thermally stratified, the overturning
circulation does not penetrate the depth of the basin, as illustrated in figure 1(b).
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Hereafter, we call this system stratified HC (SHC), i.e. HC of a thermally stratified fluid
body driven by surface differential heating. In the case of SHC, the overturning circulation
develops within the uppermost fluid region. In contrast, the cooler and deeper stratified
fluid remains stable and weakly energised. Notice that the dynamic response of differential
cooling at the bottom surface of a thermally stratified basin is an upside-down analogue to
the above scenario: the circulation is confined to the deeper region beneath the warmer
and shallower stratified fluids. Intuitively, the flow features of SHC are bonded to the
strength of the background stratification, characterised, for instance, by the Richardson
number Ri (Peltier & Caulfield 2003), in addition to the destabilising buoyancy force
ruled by Ra. Therefore, unlike in HC where the overturning circulation forms throughout
the full depth, the presence of stratification exerts a confining effect in SHC, requiring
the identification of the optimal vertical length scale characterising the thickness of the
overturning circulation. Finding this vertical length scale from the prescribed parameters
only is essential. To the best of our knowledge, the fundamental flow features of SHC
depicted in figure 1(b) remain unknown. Therefore, the first sound step is building upon
the current understanding of HC. As reported earlier (Scotti & White 2011; Gayen et al.
2013, 2014; Passaggia, Scotti & White 2017), traditional HC can reach three-dimensional
(3-D) states by increasing Ra. Therefore, one can expect that SHC may also experience a
transition from quasi-two-dimensional (Q2-D) to 3-D flow states for specific conditions.
In fact, a transition to a 3-D state has been observed in the atmosphere as formations
of clouds elongated in the flow direction at land–sea/lake borders, known as horizontal
convective rolls (Lemone 1973; Weckwerth, Wilson & Wakimoto 1996; Dailey & Fovell
1999). Identifying the conditions under which such a transition occurs may provide
insights into the mechanisms, energy and parameters governing the local and global fluid
dynamics of SHC. Gaining this knowledge is significant for quantifying the heat and
mass distributions and the ventilation of geophysical fluid environments, all critical factors
influencing their ecosystem’s functioning and health. Here, we shed light on the following
general questions:

(i) What parameters control the dynamics of SHC?
(ii) How much fluid does SHC transport?

(iii) What flow structures can emerge in SHC?
(iv) What mechanism controls the transition from Q2-D to 3-D states?

To address these questions, we designed and performed laboratory experiments utilising a
water tank subject to steady surface differential heating and uniform cooling at its bottom
boundary. The manuscript is organised as follows. In § 2, we introduce the conceptual
model and the characteristic dimensionless parameters. Next, in § 3, we describe the
laboratory experimental set-up. Results are reported in § 4, and we focus on describing
and characterising the local and global flow features, as well as the available mechanical
energy. In § 5, we discuss the mechanisms governing the formation of longitudinal rolls –
the signature of the three-dimensionality. Finally, we summarise our findings in § 6.

2. Characteristic scales and dimensionless parameters

Unlike the traditional HC, the characteristic scales associated with SHC are not set by
the basin aspect ratio A. In the stratified scenario, the background density gradient must
play a role in the controlling parameters and the dynamics of SHC. Yet, these scales
are, a priori, unknown. Here, we derive the characteristic scales for SHC considering an
Oberbeck–Boussinesq fluid with a linear equation of state, (ρ − ρ0)/ρ0 = −α(T − T0),
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where ρ is the density of the fluid. Without loss of generality, let us consider an initially
thermally stratified fluid cooled from the bottom and differentially heated at its surface
boundary. This scenario leads to a baroclinic adjustment owing to the horizontal density
(or buoyancy) gradient developed at the surface, which ultimately drives a horizontal
overturning circulation. The degree of stratification is essential in SHC as the restoring
force exerted by the background stratification may substantially limit the vertical extent of
the overturning circulation. In this case, the Rayleigh number (1.1) alone does not describe
the fluid dynamics, as shown by Noto et al. (2021), and an additional parameter describing
the stabilising mechanism is required. Mori & Niino (2002) investigated the progressive
evolution of HC within a semi-infinite stratified domain caused by a localised cooling
at the bottom. To characterise the influence of stratification on the transient flow, the
authors introduced the dimensionless parameter Γ ′ = (∂T/∂z)/(�θ/
) – instead of Ri.
Here, 
 = [κ2/(gα�θ)]1/3 is the horizontal length scale at which the baroclinic torque is
prominent. The parameter Γ ′ describes the competition between the restoring effect of the
background stratification and the destabilising effect of buoyancy, and it is time dependent
until the system reaches an equilibrium state, as the vertical temperature gradient ∂T/∂z
relaxes with time owing to thermal diffusion. Recently, Noto et al. (2021) confirmed
through laboratory experiments in a closed water basin that Γ ′ characterises well the flow
features developed by HC confined by an underlying stratification. These studies (Mori &
Niino 2002; Noto et al. 2021) have focused only on transient processes towards equilibrium
states. In the equilibrium states for a laterally confined fluid body, however, this horizontal
length scale 
 is no longer relevant since the overturning circulation takes place over the
whole horizontal extent of the system W. In this sense, Γ ′ might help to characterise the
early transient dynamics in a domain large enough such that the initial evolution of HC is
not affected by the lateral boundaries. It is not straightforward to characterise the ‘effective
bulk vertical temperature gradient’ in a laterally confined domain owing to the formation of
the overturning circulation. Hence, in the case of closed, complex fluid environments, new
characteristic scales are required to describe the fluid dynamics of SHC. In particular, for
characterising the global properties of SHC, a universal dimensionless parameter should
integrate bulk quantities, such as the energy available to catalyse fluid motion.

To tackle the above quest, we posit a simple question: how much energy is potentially
available to sustain SHC? To address this question, we consider the available potential
energy (APE) framework (Winters et al. 1995). In a system whose fluid parcels are out of
their gravitational equilibrium positions, APE quantifies the reservoir of energy that can
drive motion and enhance mixing. It is defined as the excess of potential energy that a fluid
system of volume V stores relative to its state of minimum or background potential energy
(BPE)

Ebp ≡
∫

V
gρz� dV, (2.1)

where z� denotes the equilibrium height of each fluid parcel of density ρ in the system.
Computing BPE requires sorting of the fluid parcels adiabatically so that each fluid
element is found at its height of gravitational equilibrium. Therefore, if the gravitational
potential energy (GPE) of a system is Ep = ∫

V gρz dV , with z the height of fluid parcels
relative to a coordinate reference system (conventionally defined positive upward), then
APE is determined by

Eap ≡
∫

V
gρ (z − z�) dV. (2.2)
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Figure 2. Schematic of adiabatic sorting: (a) linear stable stratification, (b) vertical density profiles at x = 0
and W, (c) minimum energy (background) state after adiabatic sorting (d) z�(ρ).

The coordinate z� can be computed by utilising the adiabatic sorting method (Winters
et al. 1995) or the probability density function method (Tseng & Ferziger 2001). Although
the latter is more robust, we follow the former for perceptual explicitness as described
in detail by Winters & Barkan (2013). Here, we summarise the key steps involved in the
algorithm. First, fluid parcels are defined as discretised forms, i.e. the whole volume V
is divided into a number of fluid parcels with a volume of �V(x) and a density of ρ(x)
at a position x. Second, the fluid parcels are sorted into their gravitational equilibrium
positions, such that the densest fluid parcels form the deepest layer while the least dense
fluid parcels form the uppermost layer. Conceptually, this adiabatic sorting is performed
instantaneously, leading to a monotonically increasing density distribution from top to
bottom. Third, the original shape of the parcel is modified to fit on the horizontal area of
the system while keeping �V . That is, each fluid parcel has a height of �V/A, where A
is the horizontal cross-section of the domain. The fluid volume is eventually filled up by
the ‘flattened’ parcels. Thus, we can build a one-to-one relationship between the density
ρ of a fluid parcel at a position x and its equilibrium height, z�(x). The latter allows us
to estimate how far (in the vertical direction) a fluid parcel is from its equilibrium height.
Notice that the definition range of z� matches exactly that of z. Figure 2 schematises the
adiabatic sorting in a fluid system subject to differential heating. Let us consider the fluid
body shown in figure 2(a). Its domain has a maximum height of H, a horizontal length of
W and a thickness of L. The top surface is differentially heated as T(0 ≤ x < cW) = T2
and T(c W ≤ x ≤ W) = T1, where T1 < T2. In contrast, the bottom surface is uniformly
cooled at T0 with x ∈ [0,W]. Here, c is an area ratio of the differentially heated surfaces,
i.e. 0 < c < 1. For the sake of simplicity, we assume that the domain is linearly stratified
only in the z direction, without mixing horizontally. The vertical density profiles are drawn
in figure 2(b). In this hypothetical scenario, each position x has a locally (yet not global)
stable density distribution such that the horizontal density difference between the extreme
lateral boundaries, i.e. x/W = 0 and x/W = 1, increases as a function of z/H. After the
adiabatic sorting, the original density distribution shown in figure 2(a) transforms into the
rearranged density distribution illustrated in figure 2(c). This fully stable density defines
the state of minimum potential energy, i.e. the BPE. Note that density at an arbitrary
horizontal slice, ρ(x, y), for the background state, is constant. Thus, the APE and the
BPE can be readily computed through the one-to-one relationship, z�(ρ), illustrated in
figure 2(d); the APE stored in the system results by subtracting the BPE distribution
(figure 2c) from the GPE distribution (figure 2a).
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Here, we use the concepts of an equilibrium height and APE to characterise the physical
length scales and dimensionless parameters governing SHC. In particular, we seek to
find a characteristic length scale of the system, h, associated with the vertical excursion
that fluid parcels with density ρ1 perform to reach their equilibrium height h� via the
overturning circulation. In this case, the length scale can be obtained without sorting.
After the adiabatic rearrangement, the fluid volume having a temperature lower than
T1 = T0 +�T should be Wh�L. This volume is identical to the sum of the fluid volume
having a temperature lower than T1 in the linearly stratified system before the sorting.
Considering heights of fluid parcels having temperatures of T1 as H1 and H2 in the right
and left regions, respectively, the corresponding fluid volumes are easily computed as

V1 = W1H1L = (1 − c)WHL, (2.3)

and

V2 = W2H2L = cW
(

�T
�T +�θ

)
HL = cW

(
1

1 +Θ

)
HL. (2.4)

Here, Θ is the ratio of the temperature differences Θ = �θ/�T . Considering mass
conservation during the sorting, we obtain the following relationship:

Wh�L = (1 − c)WHL + cW
(

1
1 +Θ

)
HL. (2.5)

Equation (2.5) yields a determination of the equilibrium height h� as

h� =
[

1 + (1 − c)Θ
1 +Θ

]
H. (2.6)

Accordingly, fluid parcels initially at H1 in the right region are displaced by h1 = H1 − h�.
Likewise, those parcels initially at H2 in the left region are displaced by h2 = h� − H2. To
globally define h, these displacements are laterally averaged, giving

h = (1 − c)h1 + ch2 = 2c(1 − c)
(

Θ

1 +Θ

)
H. (2.7)

The displacement h is a fundamental length scale of SHC and can be determined solely
from prescribed parameters while considering the horizontal temperature gradient �θ as
a driving force and the vertical temperature difference �T as a braking force. Notice
that h is maximised at c = 1/2. Here, however, c is fixed at 0.25 for all the conditions
examined in this study, as explained later. The value of h can be derived irrespective of
the thermal boundary conditions as long as the temperatures are prescribed – for instance,
a linear horizontal temperature gradient (Rossby 1965) and more complex cases. Let us
now assume that all the APE in the system is converted into the kinetic energy (KE) of the
overturning circulation, i.e.

Eap ∼ Ek. (2.8)

In the Oberbeck–Boussinesq limit, KE is defined as

Ek ≡ ρ0

2

∫
V

|u|2 dV. (2.9)

The relationship (2.8) allows linking of the characteristic length h and density anomaly
characterising the APE with the advection velocity scale Uadv associated with the KE as

g�ρh ∼ ρ0U2
adv, (2.10)
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Figure 3. Schematics of experimental set-up: (a) front view showing the temperature conditions and (b) top
view showing the optical configurations. Units are in mm.

where�ρ is the density difference of the fluid corresponding to the temperature difference
of �θ , i.e. �ρ = ρ0α�θ . The velocity scale is thus derived as

Uadv = (gα�θh)1/2 . (2.11)

If we consider the magnitude of the controlling parameters at the laboratory scale, Uadv is
typically in the range O(100–101 mm s−1) which agrees well with the observed maximum
values in experiments. Thus, Uadv is a reasonable velocity scale for the SHC problem.
We now define the bulk Richardson number Ri – the ratio of the stratified fluid stability
to the shear driven by the overturning circulation – to represent the strength of the
background stratification. Using the square of the buoyancy frequency N2 = gα�T/H
and the characteristic shear rate of the system S = Uadv/H, we can estimate, a priori, the
bulk Richardson number from the prescribed parameter of the problem as

Ri ≡ N2

S2 = gα�T/H
(Uadv/H)2

= 1
Θ

H
h

= 1 +Θ

2c(1 − c)Θ2 . (2.12)

Finally, we consider the Péclet number Pe – the ratio of convective heat transport to
heat diffusion – as an optimal dimensionless parameter to diagnose the local and global
dynamics of SHC. Here, we assume the system to be in a dynamic regime in which
transport is dominated by convection. Therefore, using the velocity scale Uadv (2.11), Pe
is defined as

Pe ≡ UadvW
κ

= (gα�θh)1/2 W
κ

=
(

Pr Ra
ARiΘ

)1/2

. (2.13)

Remarkably, Pe integrates all the dimensionless parameters introduced so far and is
obtained only using the prescribed parameters of the system. That is, Pe comes forward as
an intrinsic parameter to the global characteristics of SHC ahead of Ra and Ri.

3. Laboratory experiments

Laboratory experiments were performed using a rectangular acrylic fluid container, similar
to that recently developed in Noto et al. (2021) and Terada et al. (2023) to study thermally
driven HC in stratified fluids; see schematic in figure 3(a). The basin-scale dimensions
of the fluid body are W = 200 mm, L = 50 mm and H = 100 mm in the x–y–z directions,
respectively. Accordingly, the aspect ratio is A = 2. The experimental fluid is distilled
water, with characteristic Prandtl number Pr ≈ 7 at 20 ◦C.
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�θ (K) �T (K) h (mm) Uadv (mm s−1) Θ Ra Ri Pe

2 0.2 22.7 8.2 10 2.3 × 108 0.293 1.7 × 104

2 1 16.7 7.0 2 2.3 × 108 2.00 1.4 × 104

2 10 4.2 3.5 0.2 2.3 × 108 80.0 7.2 × 103

10 0.2 24.5 19.0 50 1.2 × 109 0.054 3.9 × 104

10 1 22.7 18.3 10 1.2 × 109 0.293 3.7 × 104

10 10 12.5 13.6 1 1.2 × 109 5.333 2.8 × 104

20 0.2 24.8 27.0 100 2.3 × 109 0.027 5.5 × 104

20 1 23.8 26.5 20 2.3 × 109 0.140 5.4 × 104

20 10 16.7 22.1 2 2.3 × 109 2.00 4.5 × 104

30 0.2 24.8 33.1 150 3.5 × 109 0.018 6.8 × 104

Table 1. Experimental conditions using water (Pr ≈ 7) as the test fluid.

Four independent heating/cooling units imposed thermal boundary conditions on the
top and bottom. Each unit is formed by a copper plate whose inward-looking surface is in
direct contact with the experimental fluid, whereas its outward-looking surface is bathed
by temperature-controlled water. We can thus control the fluid temperature in contact with
the inward-looking copper surface. In the present study, we set a ‘uniform temperature’ on
the bottom, i.e. the four units have the same temperature, T = T0 > Tmd ≈ 4◦C, with Tmd
the temperature of maximum density. In contrast, the top units are differentially heated.
The first three units (from right to left) were set to be at T = T1 = T0 +�T , and they
heat three quarters of the top surface, 3WL/4. On the other hand, the fourth unit was set
to be at T = T2 = T1 +�θ and heats the rest quarter of the total surface area, WL/4.
To ensure a steep horizontal temperature gradient, we used a 4 mm thick rubber sheet
to isolate the upper chambers from each other, as shown in figure 3(a). The horizontally
asymmetric top temperature distribution is chosen to ensure a long-enough downstream
region to develop the fluid motion after the steepest horizontal temperature gradient at x ≈
c W, with c = 1/4. Since the rubber sheets are sandwiched by the neighbouring heating
units, the temperature between the heating units varies linearly. Thus, as shown by Noto
et al. (2021), the top surface temperature distribution can be modelled as

T(x, y, z = H) = Ttop(x, y) = T0 +�T︸ ︷︷ ︸
T1

+�θ
2

{
tanh

[
−2(x − c W)

d

]
+ 1

}
, (3.1)

where d is the characteristic horizontal length between T2 and T1. Here, we consider that
the vertical temperature difference �T and the horizontal temperature difference �θ are
always positive. Under this scenario, SHC requires the following relationship:

Tmd < T0 < T1 < T2. (3.2)

Notice that SHC also emerges for ‘surface cooling’ cases, when Tice < T2 < T1 < T0 <
Tmd, where Tice is the freezing temperature Tice = 0 ◦C under atmospheric pressure.
The above temperature relationships yield that the fluid lying beneath the overturning
circulation is always stably stratified. In this study, we examined three different
stratifications of varying strength, �T = 0.2, 1, 10 K, with varying �θ . Table 1
summarises the parameter space of the experiments.

We measured the velocity field via particle image velocimetry (PIV). For this, we seeded
particles encapsulated thermochromic liquid crystals (TLC) into the fluid as tracers.
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Thanks to their material properties and high traceability (mean diameter of ∼ 20 µm
and specific gravity of 1.01), TLC particles allow for robust PIV measurements. We
emphasise that, although TLC particles enable visualising of the fluid temperature when
excited by white light (Noto et al. 2019; Anders et al. 2020), we did not use them for
that purpose. The set-up of the optical configuration is shown in figure 3(b). We captured
images in two ways to resolve the velocity fields in different planes to thus investigate
their three-dimensionality. Firstly, we visualised the x–z plane at y = 0.5L (the centre of
the fluid layer) using a green laser sheet and camera A, as illustrated in figure 3(b). This
optical configuration enables measuring of the velocity field of the primary overturning
circulation driven by the surface horizontal temperature gradient with a spatial resolution
of 1 mm. Secondly, we visualised ten y–z planes across the x axis, from x = 0.05W to
x = 0.95W, every 0.10W interval. In this case, we used a halogen light sheet and camera
B, as shown in figure 3(b). An actuator, controlled by a micro-computer, allowed the
positioning of the halogen light sheet at the various measurement positions along the x
axis. The two lighting systems were synchronised such that only one of them was on (and
off) at a time. The ten planes were visualised in about 1 min. Thus, an entire measuring
loop of the x–z plane and the ten y–z planes took approximately 1.5 min.

In the beginning, the fluid was at rest and uniformly stratified, T(t = 0, x, y, z = 0) = T0
and T(t = 0, x, y, z = H) = T1. Achieving the stable thermal stratification took typically
∼ 2 h. Once the fluid was stratified, we imposed a horizontal (surface) temperature
difference �θ and started to perform quasi-instantaneous measurements every 20 min to
track the fluid dynamics of SHC. Initially, the flow experienced a transient regime, yet, it
reached a quasi-steady state after 1 h, irrespective of the experimental parameters. In the
following, we only report and analyse the results observed after 2 h of starting the surface
differential heating.

4. Results

4.1. Flow structures
We first examine the characteristic fluid dynamics of SHC. Figure 4 illustrates
experimental results from two thermal forcing conditions. The top panels show the flow
features in a strongly stratified environment, Ri = 5.33. In contrast, the bottom panels show
flow features for a weakly stratified environment, Ri = 0.14. The left panels highlight the
velocity field of the basin-scale overturning circulation on the x–z plane at y = 0.5L. The
circulation is clockwise due to the baroclinic adjustment experienced between the warmer
and the colder surface waters. The effect of stratification in the active layer where SHC
takes place is striking. In a strongly stratified environment, SHC is vertically confined
to a thin region near the surface, z/H � 0.8, and its velocity field is predominantly
horizontal. Whereas, in a weakly stratified environment, SHC covers almost half of the
water column, z/H � 0.5, and its velocity field can reach large vertical magnitudes. In
all of the experiments, the active layer has an upper downstream region of the overturning
circulation that is thinner and moves faster than the thicker lower upstream region. Beneath
the active layer, the fluid is essentially quiescent and decoupled from the SHC. These flow
structures are quasi-steady irrespective of the forcing conditions. Additionally, the centre
and right panels in figure 4 show the normalised vorticity component in the streamwise
(i.e. x) direction, ωx/|ωy|max at two locations along the main axis. Here, ωx is normalised
by the maximum spanwise vorticity magnitude |ωy|max in order to compare the strength
of the secondary flows with the main circulations. The centre panels show ωx/|ωy|max
at x = 0.25W, where the maximum horizontal temperature gradient is imposed. In the
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Figure 4. Flow fields measured by PIV for different conditions: (a) a strongly stratified case Pe = 2.8 × 104

and Ri = 5.33 (�T = 10 K and �θ = 10 K), and (b) a weakly stratified case Pe = 5.4 × 104 and Ri = 0.14
(�T = 1 K and �θ = 20 K). Panels (a i,b i) show the x–z planes at y = 0.5L with a contour of in-plane
velocity magnitude

√
u2 + w2. Panels (a ii,b ii) and (a iii,b iii) show the y–z planes at x = 0.25W and 0.65W

with contours of the streamwise vorticity fields ωx. The in-plane velocity magnitude is normalised by the
maximum value Umax and the streamwise vorticity is normalised by the maximum of the absolute spanwise
vorticity |ωy|max. The reverse triangles in the panels (a i,b i) correspond to the positions of y–z planes displayed
in (a ii,b ii) and (a iii,b iii). Velocity vectors shown here are reduced from the original resolution for visibility.

region 0 ≤ x/W ≤ 0.25, the active layer does not exhibit vorticity, and the largest but still
small magnitudes are observed near the vertical walls. The right panels show ωx/|ωy|max
at x = 0.65W; here, the vorticity field has a distinctive signature, especially for those cases
with weak stratification. However, for systems hosting strong stratifications, the vorticity
magnitude is substantially weaker, less than 10 %, suggesting that SHC is practically
two-dimensional in those cases. Regardless of the strength of the background stratification,
the largest magnitudes of ωx/|ωy|max are found in the region 0.25 < x/W ≤ 1. In this
zone, the warmer fluid transported from the upper left region 0 < x/W ≤ 0.25 gets
exposed to the cooler top surface. This leads to an unstable density distribution within the
upper downstream region of the overturning circulation, which fosters the development of
Rayleigh–Bénard rolls in the y–z planes and vorticity production. Such a coherent vortical
pattern is not identified in strongly stratified cases, suggesting that SHC can transition from
Q2-D to 3-D regimes depending on the forcing conditions.
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Figure 5. Isosurfaces of streamwise vorticity ωx for the case of a 3-D flow state realised with the same �θ .
(a) The intermediate stratification case, Pe = 5.4 × 104 and Ri = 0.14 (�T = 1 K and �θ = 20 K). (b) The
weak stratification case, Pe = 5.5 × 104 and Ri = 0.027 (�T = 0.2 K and �θ = 20 K).

We examine the three-dimensionality of the flow state shown in figure 4(b) by
reconstructing the spatial structure of the streamwise vorticity component, ωx. For this,
we used the PIV measurements made in the y–z plane every 0.1W, between x = 0.05W
and x = 0.95W. Here, ωx was interpolated between two consecutive planes for display.
Figure 5 illustrates isosurfaces of ωx/|ωy|max for two experiments within the upper active
layer, 0.8 ≤ z/H ≤ 1. Both experiments have similar Péclet numbers, Pe = 5.4 × 104 and
5.5 × 104, yet different Ri. Results in panels (a) and (b) are characterised by Ri = 0.14 and
0.027, respectively. Notice that figure 5(a) corresponds to the case shown in figure 4(b). In
both cases, ωx emerges from the zone that hosts the maximum horizontal temperature
gradient, i.e. x/W ≈ 0.25. However, around x/W ≈ 0.3–0.4, the streamwise vorticity
reveals the existence of coherent longitudinal roll structures (LRSs) that self-organise over
the entire spanwise domain until the end of the basin, x/W = 1. The self-organisation
of LRS is complex, however. Figure 5 shows that once LRSs form, their wavenumber
decreases downstream due to the coalescence of adjacent rolls. The latter process is evident
when comparing the number of roles at x/W = 0.5 and x/W = 0.95. In particular, we
identify that the wavenumber attributed to LRS is bigger for the case with the weaker
stratification, figure 5(b), than the scenario with the stronger stratification, figure 5(a). It
is worth noting that LRS has significantly weaker vorticity than SHC. Indeed, the strength
of LRS vorticity is approximately 10 % of that in the basin-scale overturning circulation at
the most. Although earlier studies on traditional HC have reported the emergence of LRS
(Mullarney, Griffiths & Hughes 2004; Gayen et al. 2014; Vila et al. 2016), their emergence
and evolution in stratified environments have not been investigated in detail yet.

4.2. Fluid transport and flow regimes
The basin-scale fluid transport can be characterised by means of the streamfunction, ψ ,
that satisfies the Poisson equation

∇2ψ = ωy, with ψ = 0 at the boundaries. (4.1)
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Figure 6. Maximum streamfunction ψmax plotted for (a) Ra, (b) Ri and (c) Pe. Solid lines represent
power-law trends.

We integrated (4.1) to resolveψ using the successive over-relaxation method, as previously
done in Noto et al. (2021). Here, we investigate the global transport properties of SHC by
mapping ψmax against dimensionless parameters introduced in § 2. Figure 6 displays the
maximum streamfunction ψmax normalised by the thermal diffusivity κ vs Ra, Ri and Pe,
respectively. Solid lines indicate power-law trends, ψmax ∝ Ra1/2, ∝ Ri−1/2 and ∝ Pe.

As shown in figure 6(a), ψmax increases with Ra, meaning that a stronger horizontal
destabilising effect transports more fluid. In the case of HC, i.e. with no stable background
stratification, the maximum streamfunction ψmax has been found to fulfil the well-known
theoretical scaling ψmax ∝ Ra1/5 (e.g. Rossby 1965; Hughes & Griffiths 2008; Shishkina
et al. 2016). The power-law trend of Ra for SHC seems stronger, as indicated by the
solid line, ψmax ∝ Ra1/2. There is, however, an evident deviation among experiments
owing to different background stratifications, making Ra unsuitable for describing the
transport associated with SHC. In contrast to the trend on Ra, ψmax decreases as Ri
increases, as shown in figure 6(b). This trend, ψmax ∝ Ri−1/2, highlights that the strength
of the overturning circulation is substantially controlled by the strength of background
stratification, i.e. the stratification suppresses the convective motions. Similarly to Ra,
however, Ri does not provide a unifying trend. This trend is similar to the previously
obtained experimental scaling ψmax ∝ Γ ′−1/2 found by Noto et al. (2021), even though
it was obtained for transient processes. Since the same scaling was found in different
configurations, Ri defined in this study can be regarded as an analogue of Γ ′ defined for
time-dependent differential heating of cold water bodies. Figure 6(c) illustrates a striking
collapse, i.e.

ψmax ∝ Pe. (4.2)

In fact, the best power-law fit is ψmax ∝ Pe1.02±0.04. Note that the experimental results
collapse to the scaling law (4.2) regardless of the flow dimensionality and the background
stratification condition. Summing up, figure 6 shows that SHC transport is exceptionally
characterised by Pe.

Assuming ∂2/∂x2 � ∂2/∂z2 in (4.1) for the boundary layer on the surface whose
thickness is δν � W, we get the following relationship:

ψ

δ2
ν

∼ wc

W
+ uc

δν
, (4.3)
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Figure 7. Regime diagram of SHC plotted for (a) the two controllable temperature differences,�θ and�T and
(b) the two dimensionless parameters, Ra and RiΘ , for Pr ≈ 7. Colour contour represents the Péclet number
Pe. Dashed line, Pe = 3.3 × 104, is the estimated border for the two different flow regimes.

where uc and wc are the characteristic horizontal and vertical velocities. From the
continuity, wc is negligible as wc ∼ (δν/W)uc. Replacing uc by Uadv , we obtain

ψ

κ
∼ Uadvδν

κ
= δν

W
Pe. (4.4)

Here, δν is considered as a depth of the maximum horizontal velocity from the surface and
may vary with Ra as in HC (Hughes & Griffiths 2008). However, we confirmed that δν
does not change much with the control parameters, and typically δν ∼ 0.03H. Thus, the
maximum streamfunction can be scaled as ψmax ∝ Pe1.

As discussed earlier, SHC exhibits two characteristic flow regimes: (i) a Q2-D
overturning circulation and (ii) an overturning circulation coupled with LRSs that make
the SHC fluid dynamics three-dimensional. Figure 7(a) summarises the flow regimes
for the experimental conditions investigated in this study as a function of the vertical
temperature difference, �T (vertical axis), the horizontal temperature difference, �θ
(horizontal axis) and Pe in the colour map. Green circles denote experiments with
a Q2-D flow state, whereas violet diamonds denote experiments with a 3-D flow
state. Recall that vertical and horizontal temperature gradients characterise stabilising
and destabilising forcing mechanisms, respectively. Thus, from low to high horizontal
temperature differences, we expect the buoyancy-driven flow to intensify and transition
from 2-D to 3-D regimes fostering HC and RBC in the uppermost zone of the fluid
body. In contrast, from low to high vertical temperature differences, we anticipate a
reinforcement of stratification that counteracts vertical motions, resulting in a shift from a
3-D to a 2-D flow regime. This intuitive flow behaviour is actually observed in figure 7.
Furthermore, since Pe ∝ Ra1/2(RiΘ)−1/2 (see (2.13)), we can map the flow regimes into
the Ra–RiΘ space. Figure 7(b) shows that this parameter space successfully segregates
the flow regimes. Empirically, it is possible to identify a border between the two flow
regimes, shown by the dashed lines in figure 7. These lines characterise a unique critical
Péclet number value, estimated as Pec ≈ 3.3 × 104, that allows describing of the flow
dimensionality for SHC.
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4.3. Available mechanical energy
Examining the energy distribution in SHC is relevant to understanding how the controlling
parameters are tied to the production of available mechanical energy in the system. The
system is forced only by the surface heating at a prescribed degree, and part of the
created APE Eap is transformed into KE Ek, in the form of convective motions (Winters
et al. 1995; Winters & Barkan 2013). The parameter Eap requires density distributions
for computation, and these are hard to directly measure from experiments. Accordingly,
we apply the temperature reconstruction method recently introduced in Noto, Ulloa
& Letelier (2023), which is applicable to quasi-steady thermally driven flows under
well-defined boundary conditions. Density and temperature distributions are estimated
from the velocity fields by solving the heat equation

∂T
∂t

+ u·∇T = κ∇2T. (4.5)

Once the system reaches an equilibrium state (after approximately 2 h from imposing
�θ ), heat advection balances heat diffusion. Although SHC supports local 3-D features
for specific Pe numbers, the global overturning circulation remains two-dimensional,
regardless of the Pe conditions. In this regard, a mean temperature field in the x–z plane
can be reconstructed utilising PIV velocity field measurements and the steady state heat
equation

u
∂T
∂x

+ w
∂T
∂z

= κ

(
∂2T
∂x2 + ∂2T

∂z2

)
. (4.6)

The assumption of Q2-D flow is reasonable because the velocity component v in the
y-direction is significantly smaller than those of the x and z components. To obtain a steady
solution of T , we use the Dirichlet boundary conditions for the top and the bottom, and
Neumann boundary conditions for the sidewalls, i.e.

T(x, z = 0) = T0, T(x, z = H) = Ttop,

and
∂T
∂x

∣∣∣∣
x=0

= ∂T
∂x

∣∣∣∣
x=W

= 0, (4.7a–c)

as temperature boundary conditions. Here, the surface temperature distribution Ttop
is estimated from (3.1). Since the heat leakage through the lateral wall estimated by
the material properties is � 4 % for the worst case, the adiabatic thermal boundary
condition is reasonable. For the velocity field, no-slip conditions are imposed for all of
the rigid boundaries, i.e. u(x ∈ ∂V) = 0. Equation (4.6) is discretised by the second-order
central-difference scheme, and T is obtained throughout iterative processes of the
Gauss–Seidel method. Owing to the assumption of Q2-D flow, the estimated temperature
fields should be slightly different from the actual one, in particular for the 3-D flows.
It, however, provides reasonable estimations of temperature distributions in the proximity
of the top surface, as the magnitude of v is significantly smaller than those of u and w.
Once T is computed, density distribution ρ is obtained from a linear equation of state,
ρ = ρ0[1 − α(T − T0)]. As explained in § 2, the potential energy (PE) Ep of the system
can be decomposed into BPE Ebp and APE Eap, i.e. Ep = Ebp + Eap. The BPE does not
contribute to driving fluid motions but constantly restratifies the system; the BPE density
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Ebp is defined as
Ebp = gρz�. (4.8)

The APE, in contrast, is the energy available for fuelling SHC and enhancing mixing in
the active layer. The APE density Eap is defined as

Eap = g(ρ − ρ̄)(z − z�). (4.9)

Here, ρ̄ corresponds to the compensatory displacements that emerge during the adiabatic
sorting, and it is written as

ρ̄ = 1
z − z�

∫ z

z�
ρ(ẑ�) dẑ�, (4.10)

and accordingly,

Eap = gρ(z − z�)− g
∫ z

z�
ρ(ẑ�) dẑ� ≥ 0. (4.11)

Notice that Eap is positive definite, and the second term of the right-hand side can be
cancelled out by integration of the whole domain (Winters & Barkan 2013). The APE is
thus computed by integrating Eap for the whole domain as Eap = ∫

V Eap dV . Considering
the depth of the main overturning circulation, h, a scale of APE can be estimated for the
limited volume V ′ = (h/H)V as

Eap ∼ g�ρhV ′ ∼ gρ0α�θh
(

h
H

V
)

∝ Pe2. (4.12)

For the present study, Eap is estimated to be O(10−6–10−4 J). The KE density, Ek, is
defined for each fluid parcel as

Ek = 1
2
ρ0|u|2 = 1

2
ρ0

(
u2 + v2 + w2

)
, (4.13)

where ρ0 is the reference density corresponding to the bottom temperature T0. In contrast
to Eap, Ek is straightforward to compute as the PIV measurements allow reconstructing
of full velocity fields in the 3-D domain. To obtain the global KE, Ek is integrated over
the whole domain as Ek = ∫

V Ek dV . In non-SHC systems, Ek is typically two orders of
magnitude smaller than Eap (Gayen et al. 2013), meaning that only a few per cent of the
APE is transformed into KE to drive the horizontal overturning circulation. Figure 8 shows
the spatial distributions of the streamfunction ψ , the temperature T , the KE density Ek and
the APE density Eap for the case of Q2-D state, Pe = 2.8 × 104 and Ri = 5.33. The results
show the existence of two basin-scale overturning cells. One is localised immediately
beneath the heating surface, whereas the second cell is found directly under the shallower
overturning, as shown in figure 8(a). The temperature distribution in figure 8(b) shows
that the system is mostly stably stratified, except for the region hosting the most vigorous
circulation (see the bending of the isotherm between x/W ∈ [0.25, 0.5]). As expected,
figure 8(c) shows that Ek peaks within the main overturning circulation, whereas the deep
stratified region remains motionless. Consistently, Eap reaches a maximum in the shallow
region, as shown in figure 8(d). We stress that the velocity component in the y direction
is also taken into account for computing Ek, yet its contribution is less than 3 % at the
maximum. This result shows that APE is mostly spent in stratifying the system and mixing
the uppermost waters, whereas only the shallow region confined immediately beneath the
heating surface is kinetically energised.
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Figure 8. Spatial distributions of (a) streamfunction ψ , (b) temperature T estimated by (4.6), (c) KE Ek and
(d) APE Eap for the case of Pe = 2.8 × 104 and Ri = 5.33 (Q2-D state, corresponding to figure 4a). Dashed
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Figure 9. Mechanical energies plotted for Pe: (a) APE Eap and (b) KE Ek.

Figure 9(a,b) shows the available mechanical energy components, APE and KE, vs Pe.
The APE has an interesting behaviour in terms of Pe. For a Péclet number bigger than
Pe ≈ 3 × 104, the APE follows the anticipated scaling (4.12) as Eap ∼ Pe2. In contrast,
for Pe � 3 × 104, Eap is less dependent on Pe. An intriguing aspect is that the evident
break occurs exactly at Pe ≈ 3.3 × 104, the empirical critical Péclet number at which a
shift from Q2-D to 3-D flow occurs, shown in figure 7. In other words, our results suggest
that the APE has a low-Pe trend linked to a Q2-D SHC and a high-Pe trend (Eap ∼ Pe2)
associated with a 3-D SHC. Conversely, KE collapses into the line of ∼ Pe2. Certainly,
SHC at high-Pe behaves more ‘inviscid’, meaning that the theoretical scalings for KE and
APE are well captured by the advective velocity scale Uadv (2.11) and the length scale h
(2.7) characterising an adiabatic sorting of mass in the system.

We stress that the computed KE is two orders of magnitude smaller than the APE,
irrespective of Pe values. Thus, our results show that the overturning circulation is driven
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Figure 10. Overall view of flow structures and associated length scales.

only by a small part of the APE. Since the system reaches a quasi-steady state, this implies
that the remainder of the APE is transformed into BPE and used to sustain the stratification
via irreversible thermal diffusion. This result agrees with the energy partitioning found by
Gayen et al. (2013) in HC, i.e. a small fraction of APE, less than 10 %, is allocated to KE.

5. Discussion

The results shown in § 4 display similarities to and differences from those in HC. To
understand the fluid dynamics of SHC further, we now focus on discussing the details
of the transitional flow features, LRSs and mechanical energy conversion. Since SHC
posits different vertical length scales, an overall view of the flow structures is illustrated
in figure 10 to clarify their relationship. The SHC exhibits structure layering from top
to bottom, i.e. an overturning circulation, a secondary flow which circulates inversely to
the primary circulation due to viscous coupling and a stably stratified stagnant region
at the bottom. Here, we recall three length scales: h, the intrinsic vertical length scale
of SHC, representing the overturning circulation depth; δν , the thickness associated with
the viscous boundary layer at the surface and comparable to the thermal boundary layer
thickness δt; δs, the thickness of the downstream region, explained later.

5.1. Longitudinal roll structures
As demonstrated in § 4.1, Pe, the ratio of heat transport carried by convection to that
owing to thermal conduction, describes well the flow features and the flow states of SHC.
Therefore, we can hypothesise that 3-D flows resulting from the emergence of LRS occur
when SHC cannot fully remove the heat from the highest temperature surface. Thus, a
secondary flow transports heat vertically in addition to the overturning circulation. In
other words, the formation of the longitudinal rolls may result from the need for extra
vertical heat transport. Here, we investigate the flow structure of longitudinal rolls and
their forming mechanism immediately beneath the heating surface. Vertical profiles of
horizontal velocity u, temperature T , and mean absolute streamwise vorticity 〈|ωx|〉y close
to the heating surface, z/H ≥ 0.8, at the different x positions are shown in figures 11(a),
11(b) and 11(c), respectively. Here, u is measured directly by PIV and normalised by the
bulk maximum horizontal velocity umax. The temperature T is estimated from (4.6) using
the velocity field measured by PIV and normalised by the local maximum Tlmax at each x
position. The streamwise vorticity ωx is computed from PIV, and its mean absolute value
is derived by taking the spanwise average as 〈|ωx|〉y(z) = (1/L)

∫ L
0 |ωx|( y, z) dy at each x
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Figure 11. Detail views of the LRSs for the case of Pe = 5.4 × 104 and Ri = 0.14. (a) Horizontal velocity
profiles u(z), (b) temperature profiles T(z) and (c) mean absolute streamwise vorticity profiles 〈|ωx|〉y(z) at the
different x positions. Here, u is normalised by the maximum horizontal velocity in the bulk umax, and T is
normalised by the local maximum Tlmax at each x position.

position and normalised by the maximum absolute spanwise vorticity |ωy|max. Figure 11(a)
highlights in light blue the shallow streaming regions at which u > 0. The thickness of
the shallow region is expressed as δs, and dashed lines indicate the zero-crossing heights
of u. Similarly, figure 11(b) highlights in light red the regions of unstable temperature
distribution ∂T/∂z < 0. The unstable layer thickness is denoted as δt, and the bottom of
the unstable stratification, shown by dotted lines, corresponds to the local temperature
maximum Tlmax. The above thicknesses are plotted in figure 11(c) for comparison. Positive
peaks in 〈|ωx|〉y shown in figure 11(c) are recognisable at x/W ≥ 0.35 – these peaks should
be attributed to LRSs. The LRSs seem to be encompassed by the shallow streaming region
of the overturning circulation as the peaks are found within δs. As the shallow upper region
thickens downstream, so do the LRSs.

The mechanism forming LRSs in SHC can be investigated via an analogue system,
the so-called Rayleigh–Bénard–Poiseuille (RBP) convection. The RBP convection is a
Poiseuille flow subjected to an unstable vertical temperature gradient environment that
potentially drives Rayleigh–Bénard convection. The similarity between RBP convection
and SHC is illustrated in figures 12(a) and 12(b). The RBP convection has been
studied especially for characterising heat transfer processes of air ducts, and an early
comprehensive review for this problem is found in Nicolas (2002). A mean flow with a
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parabolic (Poiseuille) velocity profile is subjected to a destabilising vertical temperature
difference �T across the full height Hv . Accordingly, the RBP convection can be
characterised by the vertical Rayleigh number, Rav = gα�TH3

v/(κν). Note that the mean
flow itself does not contribute to the development of LRSs. However, the LRS formation
happens when the system is closed in the spanwise direction. The presence of the lateral
walls supports the corner roll formation due to the pressure gradient at the corner, and
this corner roll triggers the generation of LRSs towards the interior. As a result, LRSs are
aligned in the spanwise direction (Akiyama, Hwang & Cheng 1971; Pabiou, Mergui &
Benard 2005; Mergui, Nicolas & Hirata 2011; Taher & Abid 2018; Taher et al. 2021).
Since Ra does not change along the streamwise direction, the characteristics of LRSs
do not change in space under fixed environments. By contrast, in the case of SHC, the
shallow streaming region of the main circulation plays a similar role to that of the main
flow of RBP convection. In addition, the overturning circulation transports heat from the
highest temperature surface (0 ≤ x � W2). This horizontal heat transport spontaneously
creates an unstable temperature gradient in the downstream uppermost region, as the
surface temperature is lower than that upstream. For the onset of Rayleigh–Bénard-like
convection, we can define a local Rayleigh number considering the unstable layer thickness
as Rat = gα�Ttδ

3
t /(κν), where �Tt is the temperature difference imposed over δt. As

shown in figure 11, δt and �Tt change along the streamwise direction, and these changes
eventually result in an increase or decrease of Rat. Once Rat exceeds the critical value,
the confining effect will support the formation of a secondary flow at the top-lateral
corners following the same scenario as that in RBP convection. This corner roll formation
will occur irrespective of the onset of Rayleigh–Bénard-like convection, as shown in
figure 4(a), i.e. weak rolls are formed even in a Q2-D state. The characteristic length
of this initial secondary circulation depends on δs, the thickness of the downstream flow
and the apparent Rayleigh number of the LRSs is Ras = gα�Tsδ

3
s /(κν), where �Ts is

the temperature difference imposed over δs. This roll formation progresses towards the
interior and the downstream directions. Unlike the RBP convection, the secondary flow on
the lateral walls is always downward because of the surface and the spanwise confinement.
This regulates the spinning direction (or the sign of vorticity) of the LRSs formed upstream
(see figure 5). Such LRSs are stable over time. A significant difference between RBP
convection and SHC is their lower boundary. In the latter case, the bottom boundary is
open, leading to spatial changes in the characteristics of LRSs. In figure 12(c), particle
pathline images at two different x positions for the case of the 3-D state (Pe = 5.5 × 104

and Ri = 0.027) are shown. Since the images are compiled using the colour images of
the TLC particles, the colour qualitatively indicates the temperature fields, where blue
is hot and red is cold. In the left panel, there are corner rolls at the top boundaries
and the rest is stably stratified. In the right panel, reddish or greenish cold fluids are
transported from the top and the LRSs occupy the whole spanwise domain, while the
rest maintains stratification. The downstream region has thicker LRSs than the upstream
region, as explained above.

Inspired by the RBP convection system described above, we examine a set of streamwise
flow parameters to characterise the properties of the overturning circulation. Figure 13
displays δs/H and δt/H, �Ts/�θ and �Tt/�θ , Ras and Rat and the number of rolls Nroll
along the streamwise direction, x/W, for three Péclet numbers. Panels (a,d,g,j) show a
Q2-D state with Pe = 7.2 × 103 and Ri = 80. In contrast, panels (b,e,h,k) and (c, f,i,l)
illustrate 3-D state cases with Pe = 3.7 × 104 and Ri = 0.293, and Pe = 5.5 × 104 and
Ri = 0.027, respectively. Figure 13(a–c) shows δs/H and δt/H; the results show that both
δs and δt thicken downstream, almost monotonically, for the higher Pe cases.
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Figure 12. Schematic illustrations of LRS formation mechanism in (a) RBP convection and (b) SHC, and
(c) colour particle pathline images of the TLC particles showing the LRS formations at different x positions
(Pe = 5.5 × 104 and Ri = 0.027). The colour in (c) qualitatively indicates the temperature distribution, and the
flow directions are indicated by the arrows.

Figure 13(d–f ) shows the vertical temperature differences �Ts/�θ and �Tt/�θ . For
the Q2-D state shown in figure 13(a,d,g,j),�Tt becomes positive in a highly limited region
immediately after x = W2, and�Ts is always negative. The latter implies that the system is
mostly stably stratified over δs. On the other hand, �Tt and�s become positive at x > W2
for the 3-D state cases shown in figures 13(b,e,h,k) and (c, f,i,l). Such unstable temperature
distributions decay gradually downstream.

We compute and plot the local Rayleigh numbers, Ras and Rat, as a function of x/W
in figure 13(g–i). For reference, the critical Rayleigh numbers for the case of no-slip
boundaries, Racn = 1708, and free-slip boundaries, Racf = 657.5 (Chandrasekhar 1961;
Cross & Hohenberg 1993), are denoted by the dashed-dotted and dotted lines, respectively.
For the 2-D case, Rat does not exceed the critical values. By contrast, for the 3-D state
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Figure 13. Streamwise-dependent features of RBP convection for different Pe conditions: (a,d,g,j) Pe = 7.2 ×
103, (b,e,h,k) Pe = 3.7 × 104 and (c, f,i,l) Pe = 5.5 × 104. Thicknesses of the downstream region δs and the
unstable layer δt, local vertical temperature difference �Ts and �Tt, local Rayleigh number Ras and Rat and
the number of LRSs Nroll are shown respectively from top to bottom. Grey regions, x/W < 0.25, correspond
to the heated regions with a surface temperature of T2. Dashed-dotted lines and dotted lines correspond to
critical Rayleigh numbers for no-slip Racn and free-slip conditions Racf , respectively. The values of Nroll are
not available for (a,d,g,j) because of the absence of LRSs.

cases, Rat typically starts around 103 at x ∼ W2 which is quite close to the critical values.
This result indicates that the formation of the LRSs is associated with the critical Rayleigh
numbers. The critical Rayleigh number Rac is expressed as

Rac = gα�θδ3
c

νκ
= Pe2

c

Pr
δ3

c

hW2 , (5.1)

where δc is the minimum thickness corresponding to the potential maximum vertical
temperature difference �θ . Here, Pec is the critical Péclet number for the onset of
Rayleigh–Bénard-like convection. Accordingly, Pec can be expressed as

Pec =
(

Pr Rac
h W2

δ3
c

)1/2

. (5.2)

Assuming that Rac ∼ 103 and δc ≈ δt, Pec can be estimated from the experimental results.
Even though δt changes with x, it varies approximately in the range 1–5 mm. Using these
values, Pec is estimated as Pec � 104, which is consistent with the empirical critical values
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Pec ≈ 3.3 × 104 shown in figure 7. This consistency supports the above explanation that
LRSs originated from Rayleigh–Bénard convection. The apparent Rayleigh number Ras
of the LRSs ranges in O(103–104), meaning that the downstream region maintains the
supercriticality. For the case shown in figure 13(b,e,h,k), the Péclet number is marginally
bigger than its critical empirical value for which SHC transitions from a Q2-D flow to a
3-D flow. In this case, Ras remains supercritical and almost uniform along x. However, for
the case with the greatest Pe, shown in figure 13(c, f,i,l), Raδ has a quasi-linear increase.

Figure 13(j–l) shows the number of LRSs Nroll in the y–z planes. the value of Nroll is
zero in the region 0 ≤ x/W ≤ 0.25, and the first pair of LRSs emerges from the lateral
boundaries downstream x > W2. The LRS formation propagates towards the interior,
making Nroll increase until the spanwise domain is fully occupied by LRSs. The full
development of LRSs is achieved at x/W ∼ 0.5. After the full development, the LRSs start
to merge with each other and this trend appears as the decrease of Nroll. The coalescence
keeps the aspect ratio of the LRSs almost constant, not far from unity, over the whole
downstream region, as the roll regions are thickening downstream.

Summing up, the streamwise dependent features shown in figure 13 provide robust
evidence that LRSs developed in SHC obey analogue physical processes to those
controlling the transition to 3-D flow in RBP convection: it is a localised phenomenon that
spontaneously happens at high-Pe conditions (Pe � 3.3 × 104), leading to supercritical
Rat, that support (i) local heat transport via Rayleigh–Bénard-like convection, (ii) the
vertical expansion of the overturning circulation and (iii) ultimately the enhancement of
the horizontal transport.

5.2. Mechanical energy conversion
As shown in figure 9, only a small portion of the APE is converted into KE in SHC.
The latter implies that SHC is a system in which most of the available energy is utilised
in sustaining the stratification and mixing of the overturning region. To quantify the
mechanical energy conversion, we diagnose the mixing efficiency η defined as η = (Φd −
Φi)/(Φd −Φi + ε) (Peltier & Caulfield 2003). Here, Φd = −κg

∫
V(dz�/dρ) |∇ρ|2 dV is

the rate at which Eap depletes due to the irreversible scalar mixing controlling ρ and
Φi = −κgWL(ρtop − ρbottom) is the conversion rate from internal energy to PE, where
ρtop and ρbottom are the laterally averaged densities at the top and the bottom boundaries,
respectively (Winters et al. 1995). Also, ε = ρ0ν

∫
V(|∇u|2 + |∇v|2 + |∇w|2) dV is the

KE dissipation rate. Irrespective of the conditions, we obtained η ≈ 0.99, close to unity.
Please note that the density (temperature) fields are reconstructed under 2-D assumption
(4.6), and the energy budget of the system is not fully closed. Hence, one can expect
that our estimation of η may differ from systems that fully close the energy budget. In
HC systems, η → 1 is predicted theoretically as an upper bound for the inviscid regime
with very large Ra (Scotti & White 2011), whereas numerical simulation shows a slightly
smaller value, η = 0.923 (Gayen et al. 2013).

Considering the difference in the effective lower boundary of the overturning circulation
in SHC (stably stratified layer) and HC (no-slip wall boundary), one would expect SHC to
develop less viscous dissipation than HC. In SHC, the lower stably stratified layer acts as
an adjustable ‘soft no-slip’ boundary, unlike the rigid no-slip bottom set in HS, in which
a vigorous flow has no other option than to intensify its shear rate rather than mix and
expand as in the case of SHC. Despite this fundamental difference, the estimated mixing
efficiency for SHC remains in close agreement with values obtained through numerical
simulations and upper bound scalings for HC.
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6. Concluding remarks

This paper investigated experimentally the fluid dynamics of SHC, the overturning
circulations driven by surface differential heating in stably stratified fluid bodies. The
designed experimental framework allowed us to measure the quasi-instantaneous 3-D
velocity field by utilising multiple cameras and scanning light blade systems. Moreover,
from the measured velocity field and prescribed boundary conditions, we reconstructed
the Q2-D temperature field that fulfils the steady state momentum balance achieved in the
experiments.

SHC can be described by the Rayleigh number Ra, representing the destabilising effect
of buoyancy, and the bulk Richardson number Ri, representing the stabilising effect of
background stratification. We derived a characteristic length scale from the system’s
parameters which predicts the overturning circulation thickness and its characteristic
velocity Uadv by accounting for the hypothetical equilibrium height of fluid parcels.
From these scales, we define the Péclet number, Pe = UadvW/κ = [(Pr Ra)/(ARiΘ)]1/2,
which consolidates all the dimensionless parameters involved in SHC, including the
vertical and horizontal temperature difference ratio Θ , the basin aspect ratio A and the
Prandtl number Pr in addition to Ra and Ri.

We observed experimentally the fluid dynamics of SHC, the formation of a Q2-D
overturning circulation confined at the upper region above the stably stratified layer and
its transition towards 3-D LRSs. Here, we show theoretically and experimentally that Pe
governs the global properties, such as the maximum streamfunction ψmax ∝ Pe and the
available mechanical energy of the system. Furthermore, we showed that local properties,
such as the flow dimensionality, are ruled by Pe. We also discussed mechanical energy
conversion, finding that the irreversible mixing of SHC is extremely high, in agreement
with the theoretical and numerical results of HC.

In conclusion, our study provides insights into stratified fluid environments that
experience horizontal density gradients, such as lakes, oceans and atmospheres. There is a
wide range of aspects that future research could explore via theoretical studies, laboratory
experiments and numerical simulations, for instance: (i) the conditions for developing
secondary LRS; (ii) the transition towards turbulence, potentially at higher Pe; (iii) the
system response to different Pr and A; (iv) the effects of lateral confinements; and (v) the
impact of rotation.

Acknowledgements. The authors are grateful for the helpful discussions with Dr T. Miyagoshi (Japan
Agency for Marine-Earth Science and Technology, JAMSTEC). The authors also thank the anonymous
reviewers for encouraging and constructive comments. D.N. and H.N.U. acknowledge the support of the
Start-up fund at the Department of Earth and Environmental Science, University of Pennsylvania.

Fundings. This work was partially supported by the Grant-in-Aid for the Japan Society for the Promotion of
Science (JSPS) Fellows (grant no. 19JP19006).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Daisuke Noto https://orcid.org/0000-0003-3713-4777;
Hugo N. Ulloa https://orcid.org/0000-0002-1995-6630;
Takatoshi Yanagisawa https://orcid.org/0000-0001-6289-938X;
Yuji Tasaka https://orcid.org/0000-0002-8943-4803.

970 A21-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-3713-4777
https://orcid.org/0000-0003-3713-4777
https://orcid.org/0000-0002-1995-6630
https://orcid.org/0000-0002-1995-6630
https://orcid.org/0000-0001-6289-938X
https://orcid.org/0000-0001-6289-938X
https://orcid.org/0000-0002-8943-4803
https://orcid.org/0000-0002-8943-4803
https://doi.org/10.1017/jfm.2023.625


D. Noto, H.N. Ulloa, T. Yanagisawa and Y. Tasaka

REFERENCES

AKIYAMA, M., HWANG, G.J. & CHENG, K.C. 1971 Experiments on the onset of longitudinal vortices in
laminar forced convection between horizontal plates. Trans. ASME J. Heat Transfer 93 (4), 335–341.

ANDERS, S., NOTO, D., TASAKA, Y. & ECKERT, S. 2020 Simultaneous optical measurement of temperature
and velocity fields in solidifying liquids. Exp. Fluids 61, 113.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.
CHIU-WEBSTER, S., HINCH, E.J. & LISTER, J.R. 2008 Very viscous horizontal convection. J. Fluid Mech.

611, 395–426.
COATES, M.J. & PATTERSON, J.C. 1993 Unsteady natural convection in a cavity with non-uniform absorption

of radiation. J. Fluid Mech. 256, 133–161.
COMAN, M.A., GRIFFITHS, R.W. & HUGHES, G.O. 2006 Sandström’s experiments revisited. J. Mar. Res.

64 (6), 783–796.
COUSTON, L.-A., NANDAHA, J. & FAVIER, B. 2022 Competition between Rayleigh–Bénard and horizontal

convection. J. Fluid Mech. 947, A13.
CROSS, M.C. & HOHENBERG, P.C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3),

851.
DAILEY, P.S. & FOVELL, R.G. 1999 Numerical simulation of the interaction between the sea-breeze front and

horizontal convective rolls. Part I. Offshore ambient flow. Mon. Weath. Rev. 127 (5), 858–878.
GAYEN, B. & GRIFFITHS, R.W. 2022 Rotating horizontal convection. Annu. Rev. Fluid Mech. 54, 105–132.
GAYEN, B., GRIFFITHS, R.W. & HUGHES, G.O. 2014 Stability transitions and turbulence in horizontal

convection. J. Fluid Mech. 751, 698–724.
GAYEN, B., GRIFFITHS, R.W., HUGHES, G.O. & SAENZ, J.A. 2013 Energetics of horizontal convection.

J. Fluid Mech. 716, R10.
GILLE, S.T., LLEWELLYN, S., STEFAN, G. & STATOM, N.M. 2005 Global observations of the land breeze.

Geophys. Res. Lett. 32, L05605.
GRAMBERG, H.J.J., HOWELL, P.D. & OCKENDON, J.R. 2007 Convection by a horizontal thermal gradient.

J. Fluid Mech. 586, 41–57.
HUGHES, G.O. & GRIFFITHS, R.W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185–208.
ILICAK, M. & VALLIS, G.K. 2012 Simulations and scaling of horizontal convection. Tellus A 64 (1), 18377.
LEMONE, M.A. 1973 The structure and dynamics of horizontal roll vortices in the planetary boundary layer.

J. Atmos. Sci. 30 (6), 1077–1091.
LU, J., ARYA, S.P., SNYDER, W.H. & LAWSON JR, R.E. 1997a A laboratory study of the urban heat island in

a calm and stably stratified environment. Part I. Temperature field. J. Appl. Meteorol. 36a (10), 1377–1391.
LU, J., ARYA, S.P., SNYDER, W.H. & LAWSON, R.E. 1997b A laboratory study of the urban heat island in a

calm and stably stratified environment. Part II. Velocity field. J. Appl. Meteorol. 36 (10), 1392–1402.
MAO, Y., LEI, C. & PATTERSON, J.C. 2009 Unsteady natural convection in a triangular enclosure induced

by absorption of radiation–a revisit by improved scaling analysis. J. Fluid Mech. 622, 75–102.
MERGUI, S., NICOLAS, X. & HIRATA, S. 2011 Sidewall and thermal boundary condition effects on the

evolution of longitudinal rolls in Rayleigh–Bénard–Poiseuille convection. Phys. Fluids 23 (8), 084101.
MONISMITH, S.G., GENIN, A., REIDENBACH, M.A., YAHEL, G. & KOSEFF, J.R. 2006 Thermally driven

exchanges between a coral reef and the adjoining ocean. J. Phys. Oceanogr. 36 (7), 1332–1347.
MORI, A. & NIINO, H. 2002 Time evolution of nonlinear horizontal convection: its flow regimes and

self-similar solutions. J. Atmos. Sci. 59 (11), 1841–1856.
MULLARNEY, J.C., GRIFFITHS, R.W. & HUGHES, G.O. 2004 Convection driven by differential heating at a

horizontal boundary. J. Fluid Mech. 516, 181–209.
NICOLAS, X. 2002 Bibliographical review on the Poiseuille–Rayleigh–Bénard flows: the mixed convection

flows in horizontal rectangular ducts heated from below. Intl J. Therm. Sci. 41 (10), 961–1016.
NIINO, H., MORI, A., SATOMURA, T. & AKIBA, S. 2006 Flow regimes of nonlinear heat island circulation.

J. Atmos. Sci. 63 (5), 1538–1547.
NOTO, D., TASAKA, Y., YANAGISAWA, T. & MURAI, Y. 2019 Horizontal diffusive motion of columnar

vortices in rotating Rayleigh–Bénard convection. J. Fluid Mech. 871, 401–426.
NOTO, D., TERADA, T., YANAGISAWA, T., MIYAGOSHI, T. & TASAKA, Y. 2021 Developing horizontal

convection against stable temperature stratification in a rectangular container. Phys. Rev. Fluids 6 (8),
083501.

NOTO, D., ULLOA, H.N. & LETELIER, J.A. 2023 Reconstructing temperature fields for thermally-driven
flows under quasi-steady state. Exp. Fluids 64 (4), 74.

PABIOU, H., MERGUI, S. & BENARD, C. 2005 Wavy secondary instability of longitudinal rolls in
Rayleigh–Bénard–Poiseuille flows. J. Fluid Mech. 542, 175–194.

970 A21-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.625


Stratified horizontal convection

PASSAGGIA, P.-Y., SCOTTI, A. & WHITE, B. 2017 Transition and turbulence in horizontal convection: linear
stability analysis. J. Fluid Mech. 821, 31–58.

PELTIER, W.R. & CAULFIELD, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech.
35 (1), 135–167.

ROSSBY, H.T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study.
In Deep-Sea Res., vol. 12, pp. 9–16. Elsevier.

SARRIS, I.E., LEKAKIS, I. & VLACHOS, N.S. 2002 Natural convection in a 2D enclosure with sinusoidal
upper wall temperature. Numer. Heat Transfer A 42 (5), 513–530.

SCHNEIDER, T. 2006 The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655–688.
SCOTTI, A. & WHITE, B. 2011 Is horizontal convection really “non-turbulent?”. Geophys. Res. Lett. 38,

L21609.
SHISHKINA, O., GROSSMANN, S. & LOHSE, D. 2016 Heat and momentum transport scalings in horizontal

convection. Geophys. Res. Lett. 43 (3), 1219–1225.
TAHER, R. & ABID, C. 2018 Experimental determination of heat transfer in a Poiseuille–Rayleigh–Bénard

flow. Heat Mass Transfer 54 (5), 1453–1466.
TAHER, R., AHMED, M.M., HADDAD, Z. & ABID, C. 2021 Poiseuille–Rayleigh–Bénard mixed convection

flow in a channel: heat transfer and fluid flow patterns. Intl J. Heat Mass Transfer 180, 121745.
TERADA, T., NOTO, D., TASAKA, Y., MIYAGOSHI, T. & YANAGISAWA, T. 2023 Structural variety of

developing and equilibrium horizontal convection confined in a rectangular vessel resulting from different
heating plate arrangements. J. Vis. doi:10.1007/s12650-023-009.

TSENG, Y. & FERZIGER, J.H. 2001 Mixing and available potential energy in stratified flows. Phys. Fluids
13 (5), 1281–1293.

ULLOA, H.N., RAMÓN, C.L., DODA, T., WÜEST, A. & BOUFFARD, D. 2022 Development of overturning
circulation in sloping waterbodies due to surface cooling. J. Fluid Mech. 930, A18.

VERBURG, P., ANTENUCCI, J.P. & HECKY, R.E. 2011 Differential cooling drives large-scale convective
circulation in Lake Tanganyika. Limnol. Oceanogr. 56 (3), 910–926.

VILA, C.S., DISCETTI, S., CARLOMAGNO, G.M., ASTARITA, T. & IANIRO, A. 2016 On the onset of
horizontal convection. Intl J. Therm. Sci. 110, 96–108.

WALSH, J.E. 1974 Sea breeze theory and applications. J. Atmos. Sci. 31 (8), 2012–2026.
WANG, W. & HUANG, R.X. 2005 An experimental study on thermal circulation driven by horizontal

differential heating. J. Fluid Mech. 540, 49–73.
WANG, F., HUANG, S.-D. & XIA, K.-Q. 2018 Contribution of surface thermal forcing to mixing in the ocean.

J. Geophys. Res. Oceans 123 (2), 855–863.
WECKWERTH, T.M., WILSON, J.W. & WAKIMOTO, R.M. 1996 Thermodynamic variability within the

convective boundary layer due to horizontal convective rolls. Mon. Weath. Rev. 124 (5), 769–784.
WINTERS, K.B. & BARKAN, R. 2013 Available potential energy density for Boussinesq fluid flow. J. Fluid

Mech. 714, 476–488.
WINTERS, K.B., LOMBARD, P.N., RILEY, J.J. & D’ASARO, E.A. 1995 Available potential energy and

mixing in density-stratified fluids. J. Fluid Mech. 289, 115–128.
WUNSCH, C. & FERRARI, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu.

Rev. Fluid Mech. 36, 281–314.

970 A21-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1007/s12650-023-009
https://doi.org/10.1017/jfm.2023.625

	1 Introduction
	2 Characteristic scales and dimensionless parameters
	3 Laboratory experiments
	4 Results
	4.1 Flow structures
	4.2 Fluid transport and flow regimes
	4.3 Available mechanical energy

	5 Discussion
	5.1 Longitudinal roll structures
	5.2 Mechanical energy conversion

	6 Concluding remarks
	References

