DUAL INTEGRAL EQUATIONS WITH TRIGONOMETRIC KERNELS

by J. S. LOWNDES
(Received 13th March 1965)

1. Consider the dual equations

$$
\begin{array}{ll}
\int_{0}^{\infty} \xi^{2 \lambda-1} \psi(\xi) \cos (\xi x) d \xi=f(x), & 0 \leqq x \leqq 1, \\
\int_{0}^{\infty} \psi(\xi) \cos (\xi x) d \xi=0, & x>1, \tag{2}
\end{array}
$$

where $-\frac{1}{2}<\lambda<\frac{1}{2}$.
A solution of these equations has been obtained by Srivastava (1) in the form of a Neumann series. In this note a formal solution for the equations (1) and (2) is obtained by a generalisation of a method due to Tranter (2) who obtained a solution for the special case when $\lambda=0$.

We shall use the representations ((3), pp. 48 and 170)

$$
\begin{align*}
\frac{\sqrt{\pi}}{2} J_{\lambda}(r \check{\zeta}) & =\frac{1}{\Gamma\left(\frac{1}{2}+\lambda\right)}\left(\frac{\xi}{2 r}\right)^{\lambda} \int_{0}^{r} \frac{\cos (\xi x)}{\left(r^{2}-x^{2}\right)^{\frac{1}{2}-\lambda}} d x \tag{3}\\
& =\frac{1}{\Gamma\left(\frac{1}{2}-\lambda\right)}\left(\frac{2 r}{\xi}\right)^{\lambda} \int_{r}^{\infty} \frac{\sin (\xi x)}{\left(x^{2}-r^{2}\right)^{\frac{1}{2} \lambda}} d x \tag{4}
\end{align*}
$$

where $-\frac{1}{2}<\lambda<\frac{1}{2}$.
Equations in which $\sin (\xi x)$ replaces $\cos (\xi x)$ in (1) and (2) are also solved.
2. Integrating equation (2) with respect to x we find, as in (2), that

$$
\begin{equation*}
\int_{0}^{\infty} \xi^{-1} \psi(\xi) \sin (\xi x) d \xi=0, \quad x>1 \tag{5}
\end{equation*}
$$

Multiplying equations (1) and (5) respectively by $\frac{(2 r)^{-\lambda}}{\Gamma\left(\frac{1}{2}+\lambda\right)}\left(r^{2}-x^{2}\right)^{\lambda-\frac{1}{2}}$ and
$(2 r)^{\lambda}$ $\frac{(2 r)^{\lambda}}{\Gamma\left(\frac{1}{2}-\lambda\right)}\left(x^{2}-r^{2}\right)^{-\lambda-\frac{1}{2}}$ and integrating with respect to x between $0, r$ and r, ∞, we find, using the representations (3) and (4), that

$$
\begin{align*}
\frac{\sqrt{\pi}}{2} \int_{0}^{\infty} \xi^{\lambda-1} \psi(\xi) J_{\lambda}(\xi r) d \xi & =\frac{(2 r)^{-\lambda}}{\Gamma\left(\frac{1}{2}+\lambda\right)} \int_{0}^{r} \frac{f(x)}{\left(r^{2}-x^{2}\right)^{\frac{1}{-\lambda}}} d x, \quad 0<r<1 \\
& =0, \quad r>1 \tag{6}
\end{align*}
$$

J. S. LOWNDES

Applying the Hankel inversion theorem to equation (6) gives

$$
\begin{equation*}
\sqrt{\pi} \xi^{\lambda-2} \psi(\xi)=\frac{2^{1-\lambda}}{\Gamma\left(\frac{1}{2}+\lambda\right)} \int_{0}^{1} r^{1-\lambda} J_{\lambda}(\xi r) d r \int_{0}^{r} \frac{f(x)}{\left(r^{2}-x^{2}\right)^{\frac{1}{2}-\lambda}} d x \tag{7}
\end{equation*}
$$

as a solution of equations (1) and (2). When $\lambda=0$ this reduces to Tranter's solution.
3. To solve the similar pair of equations

$$
\begin{align*}
& \int_{0}^{\infty} \xi^{2 \lambda-1} \psi(\xi) \sin (\xi x) d \xi=f(x), \quad 0 \leqq x \leqq 1 \tag{8}\\
& \int_{0}^{\infty} \psi(\xi) \sin (\xi x) d \xi=0, \quad x>1 \tag{9}
\end{align*}
$$

where $-\frac{1}{2}<\lambda<\frac{1}{2}$, we first differentiate (8) with respect to x and find

$$
\begin{equation*}
\int_{0}^{\infty} \xi^{2 \lambda} \psi(\xi) \cos (\xi x) d \xi=f^{\prime}(x), \quad 0 \leqq x \leqq 1 \tag{10}
\end{equation*}
$$

Operating on equations (10) and (9) in the same way as we have on equations (1) and (5) we get

$$
\begin{align*}
\frac{\sqrt{\pi}}{2} \int_{0}^{\infty} \xi^{\lambda} \psi(\xi) J_{\lambda}(\xi r) d \xi & =\frac{(2 r)^{-\lambda}}{\Gamma\left(\frac{1}{2}+\lambda\right)} \int_{0}^{r} \frac{f^{\prime}(x)}{\left(r^{2}-x^{2}\right)^{\frac{1}{2}-\lambda}} d x, \quad 0<r<1, \\
& =0, \quad r>1 . \tag{11}
\end{align*}
$$

Hence the solution of equations (8) and (9) is

$$
\begin{equation*}
\sqrt{\pi} \xi^{\lambda-1} \psi(\xi)=\frac{2^{1-\lambda}}{\Gamma\left(\frac{1}{2}+\lambda\right)} \int_{0}^{1} r^{1-\lambda} J_{\lambda}(\xi r) d r \int_{0}^{r} \frac{f^{\prime}(x)}{\left(r^{2}-x^{2}\right)^{\frac{1}{2}-\lambda}} d x \tag{12}
\end{equation*}
$$

REFERENCES

(1) K. N. Srivastava, Proc. Edin. Math. Soc. (4) 13 (1963), 351-354.
(2) C. J. Tranter, Proc. Edin. Math. Soc. (3) 13 (1963), 267-268.
(3) G. N. Watson, Theory of Bessel Functions (2nd edition, Cambridge University Press, 1944).

Department of Mathematics
 University of Strathclyde
 Glasgow

