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1. On reviewing recently the proof which I gave for the Riemann mapping

theorem for simply-connected Riemann surfaces several years ago [2], I observed

that the argument which I used could be so modified that the assumption of a

countable base could be completely eliminated. The problem of treating the

Riemann mapping theorem without this assumption has been current for some

time.** The object of the present note is to give an account of a solution of this

question. Of course, the classical theorem of Radό permits us to dispense with

an attack on the Riemann mapping theorem which does not appeal to the

countable base assumption. In this connection, we recall that Nevanlinna [4]

has given a straightforward potential-theoretic treatment of the Radό theorem

in which neither the Riemann mapping theorem (nor the notion of a universal

covering) enters as they do in Radό's proof. Nevertheless, a certain technical

interest attaches to a direct treatment of the Riemann mapping theorem without

the countable base assumption. An immediate byproduct of such a treatment

is a simple proof of the Radό theorem which invokes the notion of a universal

covering but in a manner different from that of Radό's proof. Indeed, it suffices

to note that a manifold has a countable base if the domain of a universal

covering does.

An essential role will be played in the exposition which follows by the

classification of Riemann surfaces introduced by Ahlfors [1] according to which

a Riemann surface is termed hyperbolic provided that there exists a non-

constant negative subharmonic function on the surface and is termed parabolic

if this is not the case.

We put aside the situation of a compact surface since we have no reason

to modify the exposition already given for this case. However we note that
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the potential-theoretic developments of [3] persist in the case of a non-compact

parabolic Riemann surface. As a consequence of this fact, the difficulties in-

herent in freeing our earlier treatment of the parabolic case of the countable

base assumption are circumvented.

2. HYPERBOLIC CASE. Although it is not explicitly stated, the considerations

of Cl] furnish a proof for the existence of a Green's function for a hyperbolic

Riemann surface without the intervention of the countable base assumption.

The treatment for the hyperbolic case of the mapping theorem given in [3] is

applicable with the Green's function as defined by Ahlfors replacing the Green's

function defined with the aid of exhaustions. One need only note that, if g is

the Green's function (in the sense of Ahlfors) for a hyperbolic surface F with

pole at q £Ξ F and u is a positive superharmonic function on F which satisfies

Urn inf̂  (u - g) > — °°, then u ^ g.

To be precise, we recall that the Green's function (in the sense of Ahlfors)

for F with pole at q is the upper envelope of the class of functions v with

domain F which satisfy: (1) v is subharmonic in F— {q}f (2) if φ is a uni-

formizer satisfying φ(Q) = q, v(ψ(z)) 4-log \z\ is the restriction of a function

subharmonic at 2 = 0, (3) for each e>0, {v ^ e} is relatively compact. For

each v and each pair of positive numbers e, y, (u — v) + r/g> - s o n F-{q}.

Hence u ^ v and consequently u ^ g.

The remarks of this section are probably known and are included only for

the sake of completeness.

3. PARABOLIC CASE. Let F now denote a non-compact parabolic simply-

connected Riemann surface. Our first task is to treat the potential-theoretic

preliminaries. In this connection, the fact that F is simply-connected plays no

role.

Let φ denote a uniformizer with domain {| z| < 2} and let Ω = F — φ{\z I ̂  l}.

There exists a unique bounded continuous function u in Ω which is harmonic

in Ω and whose restriction to fr Ω is an assigned continuous function U on fr Ω.

Further u attains its maximum and minimum on fr £ (cf. [4] p. 210, 6.10).

Unicity follows from the fact that, if u vanishes on fr Ωt the function with

domain F which is equal to I u I on Ω and to zero elsewhere is bounded and

subharmonic and hence is identically zero since F is parabolic.

For the existence of u and the verification of the maximum and minimum
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principles for u, we observe that there exist continuous functions ι\ tv in Ω

which are respectively subharmonic and superharmonic in Ω and agree with U

on fr Ω and, in addition, satisfy: min U = min v #= v = iv <= max iv = max U. The

existence of such functions follows from the possibility of solving the Dirichlet

problem for an annulus. In fact, it suffices to define v on ψ{l ^ \z\ ?= 3/2} as

the solution of the Dirichlet problem with boundary values U on ψ {\z \ = 1} and

mini/ on ψ{\zι =3/2} and elsewhere on Ω as min U w is analogously con-

structed with max U replacing min U. The desired function u is simply the

upper envelope of the continuous functions in Ω which agree with U on fr Ω

are subharmonic in Ω and are dominated by iv.

It is now easily seen that the maximum principle holds for subharmonic

functions in Ω which are bounded above in the following form:

Let v be a subharmonic function in Ω which is bounded above and let v

denote the upper limit function of v. Then sup υ = maxfΓΩ v.

In fact, we put aside the trivial case, v= - ^, and have - ^ < maxflΩz>

^ sup v < + --. Let w now denote the function with domain Ω which is equal

to the solution of the Dirichlet problem in φ ί 1 < | z \ < 3/2} with boundary values

maXfrΩ v on ψ{\z\ -1} and sup v on φ{\z\ =3/2} and elsewhere in Ω is equal

to sup v. Clearly w is a superharmonic majorant of v. Now the upper envelope

of the family of subharmonic functions in Ω which are dominated by ιυ is the

constant function with value maxfΓQ v. The assertion follows.

We observe that the argument of [3] remains valid for non-compact para-

bolic surfaces when we now (using the notation of [3]) let U9 denote the

bounded solution of the Dirichlet problem for F-φ{\z\^p} satisfying

Uoίψipeΐ0)~] = A(p) cosθ + B(p) where A(p) and B(p) are so chosen that the

maximum and minimum of U? on <j>{\z\~l) are respectively 1 and - 1 . It is

to be observed that there exists a decreasing sequence {pn} with lim p,* = 0

such that {Uon} converges uniformly in ^{0 < I z\ < 2} (i.e. uniformly on each

compact subset). As a consequence of the maximum principle enunciated in

the second paragraph of the present section, we are assured that (£/,,„} con-

verges uniformly on Ω and hence that {U?n} converges uniformly in F-{0(O)}.

The remainder of the argument given in [3] persists for the present situation.

We conclude: there exists a harmonic function U in F-{<£(0)} which is

bounded in the complement of a compact neighborhood of ψ{Q) and which is
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such that Uίφ(z)'] admits a representation of the form yϊίaz'^ + hiz), where

a is a complex number * 0 and h is harmonic in {\z\ <2).

Thanks to the fact that F is simply-connected, we are led to the conclusion

that there exists a meromorphic function in F which has a pole of order one

at an assigned point q (Ξ F but no other poles in F and which has the property

that its real part is bounded on the complement of a compact neighborhood

of q.

It follows that for some q e F there exists a meromorphic function fq in

F which has a pole of order one at q but no other poles in F and which is

bounded on the complement of a compact neighborhood of q. Clearly the set

E of q for which such an fq exists is open. Further E is closed. To see this,

let r&Έ and let φ denote a uniformizer with domain {\z\ < 2} which satisfies

φ(0)=r. For each q& φ{\z\ <1} ΠE there exists an fq which satisfies:

max,2i = i \fQ ° φ\ = 2, miniz^i \fQ ° φ\ = 1. There exists a sequence of such q,

say qky satisfying limφ> = r and such that with fQk so normalized, {fQk°φ)

converges uniformly in {0 < | z | < 2 } to a limit function which has at most a

simple pole at zero and no others in {\z\<2}. Thanks to the maximum

principle for subharmonic functions bounded above in an i?, we infer that {fqk)

converges uniformly in F- {r) to an / r . Hence E is closed. Consequently

E = F. There exist admitted fQ for each qE:F. Since F is parabolic, we infer

that for a given q& F the fQ are linear in one another.

The proof of the mapping theorem for the present case may now be

completed along the lines given in §4 of [2]. (It will be noted that there is

an unessential difference between the functions considered here—they may have

a zero—and the reciprocals of those considered in §4 of [2H which do not.)

We fix fqo and ask for the set (£ of q for which each fQ admits a representation

of the form λ ° fqo where λ is a linear fractional transformation. Clearly q0 e (S.

We note that, given /,„ for r(*q) sufficiently near q} C Λ - Λ ί r ) ] " 1 is a n / , .

It follows that (£ is both open and closed. Hence ® = F.

Suppose that fq()(p) =/ηύ(r). From fr = λ°fQo we conclude fr(p)=Mr)

and hence p = r. That is, fQo is univalent. Since F is non-compact parabolic,

f(U omits precisely one point of the extended plane. Hence F is conformally

equivalent to the finite plane,
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