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1. Introduction
We consider the following problem: A potential function $ satisfies

Laplace's equation V2<̂  = <t>xx+<j>yy = 0 in a region R bounded by a closed
curve C on which mixed boundary conditions are specified, i.e. <j> = f(s) on a
part A of the boundary and dcfr/ dn = g(s) on a part B, where C = A+B and
distance along C is denoted by s. Electrostatic problems of this type have been
solved approximately in (1) and (2) by formulating them in terms of integral
equations and then applying variational principles to the integral equations. In
that approach, attention is concentrated on integrals over the boundary of
the region R. The most common type of variational principle for potential
problems involves integrals over the region R rather than integrals over the
boundary of R. An example is given by the Rayleigh-Ritz method which
depends on the stationary character of Dirichlet's integral

In this paper we show that the variational principles used in (1), (2), are closely
connected with the more usual type of variational principles, by deriving the
principles used in (1), (2) from inequalities deduced by considering integrals of
type (1) over the region R.

We shall use the notation

(/. 9) = f [ f(x, y)g{x, y)dxdy,

Green's theorem states that

[
J
[f^-ds, (2)
Jc dn

where d/dn denotes differentiation normal to the boundary in an outward
direction.

E.M.S.—i
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2. Upper and Lower Limits

Consider the potential function <j> satisfying the mixed boundary conditions
specified at the beginning of this paper. Then using (2), since V2(/> = 0,

Jc
ds

c dn

= f / ( 5 ) ^ ^ + f g(s)<Ks)ds (3)
JA dn JB

Suppose that O is a function which approximates to <j>, so that we can set
O = (p + S where 5 is an error function and we try to choose O so that <5 is small.
Let O satisfy the following conditions:

(i) ao/dn = g(s) on B, so that dd/dn = 0 on B,
(ii) V2O = 0 in R, so that V2<5 = 0 in R.

Then
, VO) = (V<£, V^) + 2(V5, V^) + (V5, VS), (4)

(yd,
Jc

\f\Ks)d-±dS (5)
A dn JA dn

On substituting (5) in (4) we find that

(VO, V*)-2 f f(s)d-^-ds = (V*. V « - 2 f M d4 ds+(VZ, V5) (6)

If we define

, V*)-2 f f(s)d-^-ds = (V*. V«-2 f M d4

/(*)= f 9(s)x(s)ds- { f(s)d/ds (7)
JB JA tin

then (6) gives, on using (3), since (yd, Vc5)2:O,

- 2 [ f(s) — ds-£I(<t>) (8)
J d

If 5 is a first-order quantity then the difference between the two sides is second-
order. We have

f O —
Jc Sn

= f <%s)^ds+ [
JA dn JB

f g(sMs)ds+ f <b(s) ^ ds-l{ f(s) ^ ds*IW (9)
JB JA dn JA dn

(VO, VO) = - ( « , V2O)+ f O — ds
J Sn

g(sMs)ds.
JA JB

Hence (8) gives
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Suppose next that we define a function *P such that *F = <j)+e with e small,
and

(i)' »p = f(s) on A, so that e = 0 on A.

Then
e, Ve),

(Ve, v<p) = — (e, V <p) + I e — as
Jc 5"

= f g(syv(s)ds- f g(s)<Ks)ds.
JB JB

On combining these equations and using (3), (7) we find that

'....(10)J.Is
We now make the assumption that

(ii)' V2x¥ = 0.
Then

C d*¥ C d*¥ C d*¥
(V»P, VT) = *P — ds = \ f(s) — ds+ *P — ds,

Jc Sn JA dn JB dn
and (10) gives

JA dn JB dn JB ~

Equations (9) and (11) give upper and lower limits for I((j>) in terms of line
integrals along the boundary of the region. However the expressions on the
left of (9) and (11) are not very useful as they stand. In (9) for example we have
assumed that d<S>/dn = g(s) on B; this means that <& cannot be chosen arbitrarily
on A and B. A suitable method for specifying O on A and B is given in the
next section.

3. Derivation of the Variational Principles
In addition to assuming that O satisfies conditions (i) and (ii) suppose that

(iii) 8®/dn = G(s) on A, where G(s) is known and has been chosen as an
approximation to the unknown value of 30/dn on A.

Then d<!>/dn is known on the whole of the boundary C and by Green's
theorem, using suitable Green's functions, we can determine expressions for
the unknown function <&(s) on B in terms of g(s) and G(s):

i = f K(s, t)G(t)dt+ f X ( J , i)g{t)dt, (12)
JA JB

https://doi.org/10.1017/S001309150000273X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000273X


116 C. C. BARTLETT AND B. NOBLE

where K(s, t) is assumed to be a known function so that all functions on the
right-hand side of this equation are known. Then substituting in (9) we find

U K(s, t)g{s)g{t)dsdt-J(fi)^I^) (13)
B

where

J{G) = 21 f f(s)G(s)ds+ f f K(s, t)G(s)g(t)dsdt\

t)G(s)G(t)dsdt, (14)
JAJA

and in the derivation we have used the fact that K(s, t) = K{t, s) since Kis derived
from a Green's function.

Similarly, in addition to assuming that *F satisfies (i)' and (ii)', suppose that

(iii)' *P = F(s) on B, where F(s) is known and has been chosen as an
approximation to the unknown value of <j> on B.

Then *P is known on the whole of C and by Green's theorem, using suitable
Green's functions, we can deduce an expression for the unknown function

on A in terms off(s) and F(s):

n = [ Us, t)f(i)dt+ [ Us, t)F(t)dt,
JA JB

where L(s, i) is assumed known. On substituting in (11) we find that

H(F)- [ [ L(s, t)f(s)f(t)dsdt^I(^ (15)
JAJA

where

g(s)F(s)ds- f (us,t)f(s)F(t)dsdt\

Us, t)F(s)F(t)dsdt (16)
BjB

Expressions (13) and (15) yield the required variational principles. By
choosing a form for G(s) which contains arbitrary parameters and by minimising
the left-hand side of (13) with respect to these parameters we can find an upper
bound for /(</>). Similarly by choosing F(s) so as to maximise the left-hand side
of (15) we can find a lower bound for 7(0).

Equations (13), (15) are generalisations of the variational expressions
derived in (1), (2). The method used in these references, due essentially to
J. Schwinger, starts from integral equations from which the variational principles
are derived. Here we have derived the variational principles directly from
Dirichlet's integral.
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For completeness we briefly derive integral equations from our variational
expressions. Suppose that in (13), (14) we have G(s) = F(s) + r]y(s) where T(s)
is the, exact value of d<f>ldn on A and r\y(s) is the error, where r\ is a small para-
meter. Then (14) gives

]{G) = J(T) + 2r,P(T, y)-r,2\ f K(s, l)y(s)y(t)dsdt (17)
JAJA

where, on using the symmetry of K(s, t),

P<r. y)= f y(s)\m- [ K(S, t)g(t)dt- f K(S> tyrwtlds.
JA I Jfl JA J

If the inequality (13) is to be true for any choice of G(s) this implies that .P(r, y)
= 0 for any y(s) and hence that

f K(s, tMt)dt=f(s)- f K(s,
JA JB

t)g(t)dt, (s on A) (18)

This is an integral equation for F(t).
Similarly from (15), (16), if F(s) = ®(s)+t]9(s) where ®(s) is the exact value

of <f> on B, we find the following integral equation for 0 :

f f
L(s, t)®(t)dt = g(s) - Us, t)f(t)dt, (jonB) (19)

JB JA

Special cases of the integral equations (18), (19) form the starting point for
the analysis in (1), (2). In the last paragraph we have reversed the procedure
used in these references since, having derived the variational principles by an
independent method, we can deduce the integral equations from the variational
principles.
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