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PERTURBED BILLIARD SYSTEMS, L
THE ERGODICITY OF THE MOTION OF A PARTICLE
IN A COMPOUND CENTRAL FIELD

1. KUBO

§ 1. Introduction

The ergodicity of classical dynamical systems which appear really in
the statistical mechanics was discussed by Ya. G. Sinai [9]. He announced
that the dynamical system of particles with central potential of special type
in a rectangular box is ergodic. However no proofs have been given yet.
Sinai [11] has given a proof of the ergodicity of a simple one-particle
model which is called a Sinai billiard system.

In this article, the author will show the ergodicity of the dynamical
system of a particle in a compound central field in 2-dimensional torus
(see. §10). For such a purpose, a new class of transformations, which
are called perturbed billiard transformations will be introduced. Let T,
be a perturbed billiard transformation which satisfies the assumptions
(H-1), (H-2) and (H-3) (see §3). Then T, is expressed in the form

1.1 Te =TT
where T is a Sinai billiard transformation and T, is a rotation such that

(1-2) Tl([, r, 90) = (l,/l" + H,(SD), 90) .

In Theorem 1,2 and 3, the following assertions will be shown.
(a) There exists a generator «© with finite entropy.
(b) Every element of the partition £© = /3, Tia® (resp. £© =
= Tia'®) is a connected decreasing (resp. increasing) curve.
(C) T;IC(C) > C(C), T*C(e) > C(e)’
V Tiee = VT =,

i=—0c0 f=—o00
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2 I. KUBO

7\ TiL© = 7\ TiL® = the trivial partition.

f=—co f=—co

A potential field is called a compound central field, if the potential
function is expressed in the form

(1.3) U@) = 3, Uda - 30D ,

where U, is a central potential with range R, and g(;) is a fixed point
for each ¢, 1 <:<I. The ergodicity of the motion of a particle in a
compound central field can be reduced to the ergodicity of a perturbed
billiard transformation (see §2 and §10). Hence by applying Theorem 3,
the following theorem will be shown.

THEOREM. If U, ¢=1,2,...,1, are bell-shaped and if the energy
E satisfies the inequality

1_. —RL,
A4 0<E< = % Hmin (R — 0)
(1.4 £ in L ( )

¢ min

then the dynamical system is ergodic, where L., is the minimum distance
between different potential ranges.

The K-property of this system is not proved yet. However a partial
result will be presented in the forthcoming article [7]. Moreover, in
the article, the following theorems will be shown.

THEOREM. Under the assumptions (H-1), (H-2) and (H-3), a perturbed
billiard transformation T, is Bernoullian. In particular, «'© is o weak
Bernoullian generator. Further, every finite partition whose elements
have smooth boundaries is weakly Bernoullion.

THEOREM. If the dynamical system of a particle in a compound
central field with bell-shaped potentials satisfying (1.4) has mnot point
spectrum, then the dynamical system is a Bernoulli flow.

§2. Observations

Consider a potential field on a 2-dimensional torus T which is governed
by several potential functions U,(q), ¢=1,2,...,I, with finite ranges.
Suppose that the potential ranges do not overlap and that the boundary
0Q, of the range of U, is a closed curve of C*class and 9Q, encloses a
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PERTURBED BILLIARD SYSTEMS 3

strictly convex open domain @, for every . Assume that U(q) is con-
tinuous in the torus 7 and is continuously differentiable in @, Observe
the motion of a particle with mass m and energy F in the potential field.
Then the motion of the particle is described by the Hamilton canonical

equations
dq® _ oH
dt a ()
) P 1=1,2
ap® _ oH
dt aq®

with the Hamiltonian
I
Hp,q) = ﬁ{(pw)z + OO} + 3 UG, 0®)

where q = (¢°, ¢®) means the position of the particle and p = (p*, p?®)
means the momentum. Denote by {S;} the flow induced from the dynam-
ical system ; that is, for each (q, p), S;(q¢, p) means the state of the particle
at time ¢ whose initial state is (¢, p). Then the Liouville theorem tells that

2.1) dqdp = dq®dq®dp®dp®

is a measure invariant under {S,}. As usual one can restrict {S;} to the
energy surface M. The energy surface is represented in the form

Mz ={(q,p); ®®) + (@®) =2m(E — U(Q),q € Qz}
with Qz = {q; U(@) < E}, moreover the measure
2.2) duy = const. dedq®dq®

on My is invariant under {S,}, where (p®,p®) = (2m(E — U(@))}'”* cos w,
2m(E — U(g)}'* sin w).

Let 7 be the natural projection from M to the configuration space
Qu;a(g,p) =q. Pt Q=T — ., @, and M, = =~ (Q). Then the boundary
9Q of @ coincides with (), 9Q,. Assume that Qj is connected, then almost
every motion of the particle crosses the curves 9Q. Put for x = (q,p)

#x) = sup {t <0; S,xer'(0Q)},

@.3) 9(x) = inf {t > 0; S,z € z7(3Q)} .

Then a transformation 7' of z~'(3Q) is defined by
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4 1. KUBO

2.4 Te =8.,¢  for z=(q,p) in 77'(3Q) .

It can be seen that {S;} is a Kakutani-Ambrose flow built by the basic
Space 7-1(Q), the basic transformation 7' and the ceiling function —z()
(see [1]). In order to clarify this, it is convenient to introduce notation:
A point ¢ in 9Q can be parametrized by (s, 7), where ¢ shows the number
of the curve 9Q, which contains ¢ and r is the arclength between the
point ¢ and a fixed origin of 9Q, measured along the curve 9@, clock-
wise. Let n(q) = n(, r) be the inward normal at ¢ = (¢, ) in 9Q,, and let
k(@) = Kk(¢, r) be the curvature of 0Q, at q¢ = (¢,7). A point 2 = (g, p) in
7=~ '(0Q) is represented by the coordinates (c,7,¢), where ¢ = (¢,7) shows
the position of ¢ and ¢ is the angle between n(;,7) and p.

—z(,7,¢)
~ /
Tz

/——-?J

Fig. 2-1

One can introduce new coordinates of My; a point = = (¢,p) is
represented by (,7,¢,v), where v = 9(x) and (¢, 7, ¢) shows the point S,z
in 9Q. Then My is naturally identified with the set {(;,7,¢,v);0 < v <
—#(6,7,0,0),7€0Q,,0 < ¢ < 27,¢=1,2, ---,I}. Then the invariant meas-
ure is expressed in the form

2.5) dux(e, 7, @, v) = const. cos pdvdedrd: ,

where d: means unit masses distributed on the set {¢; c¢=1,2,...,I}.
Moreover, the measure v on z~(9Q) defined by

(2.6) dv = const. cos pdpdrd:

is invariant under 7. Since the restriction of the measure pr to M, =
7~1(Q) is expressed in the form (2.5) (see [6]), (2.5) and (2.6) are easily
seen by results about induced flows and about Kakutani-Ambrose flows
(see [1] and [2]). Put #(,r,¢) = (¢, 7,¢,0). Then the action of {S,} is
expressed in the form.
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r(T"":&co, vV —t— f} %(T“fxo))

Jj=1

if0<v—t— > e n) < —2(T*x), k=1,

=1
2.7 St = (2, v — t)
fo<v—t< —2x), k=0,

(T“"xo, v —1t+ ’f f(’f“fxo))
7=0

0<o—t+ S a(f-1a) < —2(@rxy), k< —1,
7=0

with z = (,,7,¢,v) and xz, = (¢, 7, ¢) in z7'(0Q).

It is well known that {S;} is ergodic, if and only if T is ergodic.
Thus the ergodicity of {S;} can be reduced to the ergodicity of T. Now
continue reduction. Put

M= {(t,r,so)en”‘(aQ);% Ssoé%} ,

namely M is the set of all incident vectors at 9Q. Introduce an involu-
tion Inv on z7'(0Q) by

2.8 Inv(,r,e)=Cr,en—¢ mod2r.
Since »(TM N M) = 0 and T*M = M, {S,} is a Kakutani-Ambrose flow built

by the basic space M, the basic transformation 7% and the ceiling func-
tion —#(¢,7r,p) — TG, r, ¢)). Therefore {S,} is ergodic if and only if Te
is ergodic. Put

(2.9) S = {(5,7‘, 0); 0= % or 32—”} .

Since 77'(3Q) — M 1is the set of vectors at 9Q going out from (., Q,,
the restriction of 7' to 77Y0Q,) — M is a differentiable mapping from
z7(0Q,) — M to n7'(0Q,) N M. Since Inv maps M — S onto »7'(0Q) — M
and Inv is identical on S, one can define a transformation T, of M by

{TInvx reM — S
Tlx:

xeS.

Then each M® = z~%(0Q,) N M is invariant under T,, and T, is differenti-
able. Since the particle moves along straight lines in @, during the particle
is staying in the interior of @, the transformation T of M defined by
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T =1Inv.-T

is the transformation which appears in the Sinai billiard system given
in the domain @ with elastic collision at 9Q (see [6] and [11]). The trans-
formation T is called a Sinai billiard transformation (or automorphism).
Thus the restriction of 7% to M is resolved into the product of two trans-
formations;

T = T,Tx  for xeM — S.

LEMMA 2.1. The flow {S;} is ergodic if and only if the product T,T
18 ergodic.

Generally, a transformation T, of M is called a perturbed billiard
tramsformation (or automorphism), if T, is expressed in the form

(2.10) T, =TT .

where T, is a differentiable transformation of M which preserves the
measure y and T is a Sinai billiard transformation given in M with elastic
collision at 9Q.

If one obtains a condition of T, under which T, = T,T is ergodic,
then one can solve the problem of the ergodic hypothesis for the case
of one particle in a potential field (moreover for the case of two particles
with interaction potential on a torus).

In the following sections, a special class of perturbed billiard trans-
formations, which has some connection with the dynamical system of a
particle in a compound central field, will be discussed, and a sufficient
condition for the ergodicity will be given.

§ 3. Fundamental properties

In what follows, a special class of perturbed billiard transformations
are discussed. Assume the assumption

(H-1) the transformation T, is given by
T\, 7,0) = (c,7 — H(e, 9, )

with functions H(,¢) of C*-class satisfying H(,n/2) = H(;, (3/2)x) =0
for e=1,2,... 1.

Obviously, T, preserves the measure v. It is convenient to assume
that v is normalized ;
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PERTURBED BILLIARD SYSTEMS 7

dv = —y, cos pdpdrde

with vy, = (2]0Q) !, where [0Q| is the total arclength of the curves dQ =
I,0Q,. For (;,7,¢) in M, put

(¢, 7y 0) = CE /m)*2(, 1, ¢) .

Since the particle moves with speed 2E/m)?, —z(,7,¢) is the distance
between the point in 9Q described by (¢, 7) and the last point crossing
9Q measured in Q.

It is convenient to use the following notations for a given x = (;,7, ¢)
in M; de) =¢, r(@) =7, o) = ¢, k@) = ki, ), K@) = ki, r + HG, ),
@) = b, @), (@) = o(e, 7, 9) and z,(x) = «(T'3'x), with h(, ¢) = dH(, ¢)/de.
More simply, put z; = (4,7, 0) = T3, ¢ = dx), 1, =1@), ¢ = (X)),
k, = k(x), kK = K (x,), h; = h(x) and z; = o(x)).

LEMMA 3.1. The Jacobian matrix of the transformation T3 = T'TT?
is given by

or, or,
o’ 9
I I,
o’ ap
G.1) ( __cos¢p + k' __(cos o + E'z)h + 7,
CoS ¢, ’ COS ¢,
- kycos o + K cos ¢, + kk'r,
- cos o, ’
__(kicos o + K cos o, + kik't)h + ok, 1
COS ¢, J
or by
or i)
or,’  dp,
@1 |9 9
or, 0¢,
[ (k,cos ¢ + K cos ¢, + kk't)h + 7.k, + cos o
cos ¢ ’
. (cos ¢ + K'z)h + 7,
- cos ¢
I cosp + k' cos o, + kk'r, K 1
| oS ¢ ’ cos ¢
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Proof. Put (/,7,¢) = Ti'(,7,¢) and (4, 7,9) = T7(/,7,¢). Since
d=1¢ =1+ H(e) and ¢ = o,

or' or’
o’ dp | (1 kG so))
o a | \0 1
or ¢
is obviously true. On the other hand,
or, or, __cosp + k't . n
o’ oy | cosp, cos ¢,
9o, 99, o __kicosp + Kcoso + kEr,  kr 1
o'’ g cos ¢, " cosg
holds (see [5] §4). Therefore the assertion is true. Q.E.D.

Since T is differentiable on the domain on which T is continuous,
T, is so. More precise statement of the properties concerning with the
continuity and the discontinuity will be presented later.

LEMMA 3.2, Let y be a curve of C'-class in M = z'(dQ,) N M on
which T3' is continuous, and suppose that y is given by the equation
= (). Put y, = T3'y and suppose that r, is given by ¢, = (1) tn M“».
Then it holds that

Ay _ (kicosy + K cos ¥y + kik'z)(h + dr/dy) + Kz, + cos
dr, (cos ¥ + Kr)(h + dr/dy) + =,

dyr

dr

b

_ k,cos + K cosyy, + k k't — (cos ¥ + E'c)dy,/dr,
(k, cos yr+ & cos v, + kK )b+ kv, + cos Y, —{(cos Y + K/ b+ 7 }dopr, [ drry

dy, _ _ kicosy + K cosyy + kik'r, {h n dr } _ kr 1
dr oS Yy dyr oS ’
dir — kicosy + K cosyp, + ke, dry, Kz 1
dyry cos dy;,  cosq ’
dr, _ _cosy + Kz _ (cosy + Kz)h + 7, dyr
dr oS Y, CoS 1, dr ’
dr _ _ (kcosy + K cosyy + kik'z)h + kir + cos
dr, oS
+ (cosy + K'r)h + 7, dy, ’
coSs dr,
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dfl —_ g COS\[/‘ + k/Tl /1 h d'\l/‘ ) Ty o (1 )
dr sm%{ cosv;, \ + T dr +cos«[f1} sin {1+ & ’

dr . cos 7 {k _ d%)
dr, sm«pl+sm«[r{ oS + cosv \ - dr, }

dyr
dr

Proof. Since

—gi = tan ¢(cos ¢, + ki) + sing, and O —7,tang

/3 0¢,

hold, the last equality of the lemma is true. The other equalities follow
from Lemma 3.1. Q.E.D.

Assume the following two additional assumptions throughout this
article;
(H-2) every @, is a strictly convex domain such that the boundary 9Q, is

a curve of C’-class, and {Q, UdQ,; ¢=1,2,---,I} are disjoint.
~17 -1
(H-3) min {h(:, o) + [max kG, 7) + (min e, 7, ¢')1) ] } >0.
(134 4 6,7,

It is useful to introduce the following constants;

kmin = min k(‘7 T)’ ITImin = min IT([’ 7, 90) I’ 77 = kmin Irlmin ’
IR 61,9
K_.() = max k(, ) + (min 212, 7 0) 1)‘1 ,
T Ty

K, = max [min ) + 1 /f[*{,m(g)]'1 )

K, = [max G, o) + 1 /kmm] "and 7 = min {5, @ + Ko/ Koas) -

Then 0 < K,;, < kb < Kooz < Koy < 00 holds. Further constants ¢, =
A+ K23 ¢, = Koe /Koy € = log 16¢4 and ¢, = 1 + ¢, will be used.
For a subset F of M, define ¢ ..(F), ¢n.(F), maxcos(F) and
min cos (F) by
Puax(F) = SUD ¢, ¢, (F)= inf o,
(e,7y0) EF (e,7,0)EF

max cos (F) = sup |cos¢| and mincos(F) = inf |cose].
(¢,7,0)EF (e,7,9)EF

For a monotone connected curve y in M, define 6(y) and p(y) by

00 = [ dp = puut) — puas) and o) = | ar.

For a fixed point « in 7, define 8(y,z) and 4@, ) by
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0, %) = e — o) and O, 2) = (@) — Pruiay) -
For a countable union y of monotone connected curves 7, § =1,2,3,---,
define 6(y) and p(y) by
o) = f,l 6¢r) and p(p) = ip(r"’) .
Jj= J=

LEMMA 38.3. Let y be a curve of C'-class as in Lemma 3.2. Then

the following assertions hold.
G If 0<dy/dr < K. ,.(0), then

kmiu é d"ll‘l S Kmax(ll) ’
dr,

dr, . Cos Yy

dyr
LA | , —
dy t dr — cosv

and  0Gr) > (L + DoG) .
(i) If dy,/dr, <0, then

Kmin S _‘dl S Kmax ’
dr

—% >147 and 60 > 1+ 790G .

Proof. If 0 < dy/dr < K_,.(0), then it follows from the assumption
(H-3) that A(c, ) + dr/dy > 0. Hence by Lemma 3.2, the estimate

k,cos + K cosr, + kKT, < dir, <k, + 08 A
cos r + k', dr, 7

is given. Therefore one can prove (i). The assertion (ii) is obvious
from the estimate

7 dr cos y, + ki

hy——— < —————<h+
cosy + k' dir k,cos + K cosp, + ki k't

which is true under the assumption (H-3) and the condition dy,/dr, <O0.

Q.E.D.

In order to investigate the ergodicity of T,, it is useful to see

properties of the curves of discontinuity of T, and T3'. Here the
curves of discontinuity of T, (resp. T3!) is defined by

TS (resp. T.S),

with S ={(,r,9) e M; cosp = 0}. By assumption (H-1), 7',S = S holds,
hence
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T3S = TS (resp. TS = T.TS) .

Therefore the curves of discontinuity of 7, coincides with those of T,
and the curves of discontinuity of 73' are merely a deformation of
those of 7! in the r-direction, that is,

TS ={,r — H(p),9); (,7,0) € TS} .

Hence almost all properties of the curves of discontinuity are preserved
under a small perturbation. The image T;'S (or T,S) consists of countabl-
ly many curves of C?-class. A maximal connected component of such
a curve in C? is called a branch of the curves of discontinuity.

(1°) Let y be a branch of the curves of discontinuity of T, (resp.
T:Y). Then 7 is an increasing curve (resp. a decreasing curve) which
satisfies the equation

dp _ p 4 COSp
dr T

/
(resp. dp _ cos o + k't )’

dr B (cosg + E'tph + ,

though the solution of the equation are not unique.

Proof. By Lemma 3.2, the equations are easgily obtained and the
2-times differentiability is obvious. The non uniqueness is checked by

observing the curve 7:r =r, — H,(p) and T3'f (resp. #:r =1, and T,
with a constant »,. Q.E.D.

2°) Put S(+) ={Gr,¢;9==x/2} and S(—) ={¢7r,¢; ¢ = 3x/2}.
Give a sign to each branch y of T3'S (resp. T,S) as follows: sign (y) =
(4+) if 7 is included in the image of S(+), and sign () = (—) if ¢ is in-
cluded in the image of S(—). Then, only the following types of branch-
ing of the curves of discontinuity appear:

(=) (=) (=) (+)
- VA

HH =)

=)= ) (=)
i \ \ \ \

B BE)
Fig. 3-1
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In general for given connected curves r,7’ and y”, let us say that
7 joins ¢’ and y” if one of ends of y lies on 7’ and the other end lies
on 7”.

For any z in T{'S (or T.S), there exists a monotone curve y in
TE'S (resp. T,S) with « on y such that y joins S(+) and S(-).

(3°) The situation of the mapping T, near the curves of discon-
tinuity is shown in Fig. 3-2.

3 z

2" @

=) e i Tz
) v

v — 4
T2 Ti%z

1 ) ~— 1y —
z

Fig. 3-2

(=)

=
x
<

Let y be a branch of T3S (resp. T,S) and let W be a small closed
neighbourhood of z in y. If sign(y) = (+), then T*(resp. T;) is con-
tinuous on the closed half part of W below y and the image intersects
with S(4). While if sign(y) = (—), then T* (resp. T3") is continuous
on the closed half part of W above y and the image intersects with S(—).

(4°) Let « be a partition of M such that each element X of a®
is a maximal connected set on which T, is continuous. Then «® is the
partition separated by the curves T;'S. Let y be a segment of a branch
such that y is a part of the boundary of X®. Then, y is included in
X, either if sign(y) = (+) and y lies above X{ or if sign(p) = (—)
and 7 lies below X,

Let a‘” be a partition of M such that each element X{ of « is
a maximal connected set on which 73! is continuous. Then @ is the
partition separated by the curves T,S. Let y be a segment of branch
such that y is a part of boundary of X©. Then, y is included in X,
either if sign () = (—) and 7 lies below X{ or if sign(y) = (4+) and 7
lies above X{.

Further one can choose the numbering of {X{¢} and {X{} such that
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T,X9 =X®. Then T, is a C*-diffeomorphism from the interior of X
onto the interior of X{.

(5°) One can see that (M); T%S consists of at most a finite number
of points, say z(1),2(2), ---,2(I). There exists branches 2; of T,S and
Y7 of T3'S which contain z(i) as a common end point. There exist an
at most countable branches X}, of T,S (resp. 3;; of Ty'S), 7 =1,2,---,
such that one end lies on X (resp. 2;) and the other end lies on S.
Putz*(G, ) =S N3}, 250, ) =2 N2}, 270, ) =SN3;,, 2:0, ) =27 N5,
Then one can choose suffices j7’s such that distance between z(7) and
2*(t,7) (resp. 27(1,7)) are decreasing with increasing j. The remaining
branches T,S — U, 2F — U, U; 25, (resp. TE'S — UL, 27 — Uit Uy 255
are finite in number, say

2L L1 +1<i<, (resp. 27, I +1<i<1).

4

- )
0G=*)

oG

@) 26,7 +1) 26,9 [ J-O(m
<= 0G™)
Fig. 3-3

Generally, a decreasing curve 7, ¢ = (7), is said to be K-decreasing, if

. /
Kmmg—i!’&%—:—%(fr—)_gKm for r = 1.
For an increasing curve y in M, ¢ = (1), is said to be K-increasing, if
_ /
B < w < K,..(0 for r =1 .
LEMMA 3.4. There exist constants c,, ~ ¢,; which admit the following
estimates:
(1) e <0037 ) < enf ™, ™ <0027 < epf™,
i L 03F) — 03], < i and
cuj-s/z < 0(27;_,1) - 0(2€:j+1) < c\zj_m .
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(ii) Let y be a K-increasing (resp. K-decreasing) curve which joins
2, and X}y, (resp. 27, and 27 ;). Then

cf P < 0(7’) < eyf?

(iii) Let X} ; (resp. X;i;) be the element of a® (resp. a'®) enclosed
by 3F,27;, 255, and S (resp. by 27,27;,37;,, and S). Then

¢ < inf |[e(T3'w)| < sup |[o(TR20)| < ¢y 4,

xex,f, xexj:,
cf < inf [z(@)] < sup [z(@)] < ¢l
zEX7, TEX s

sup [7(T32%) — «(TF3y| < ¢y

2EXY pYEX T p

sup [t(@) — ()| L ey .

TEXT pYEXT 1

(iv) Let 3 and X’ be two branches of T,S (resp. T3'S) such that X
lies below (resp. above) 2’ and that sign (2) = (—) and sign 2') = (4).
Let y be a K-increasing (resp. K-decreasing) curve which joins 3 and
2'. Then

0(?’) = Cy -

(6°) One can choose a suitable numbering of {X{} and {X®} which
admits the following lemma for suitablly rechosen constants ¢,; ~ ¢y

LEMMA 3.5.

( i ) 011.7'_1/2 < max cos (Xg_c)) < clzj—l/z ,
€77V < max cos (XP) < ¢,V .

(ii) Except for a finite number of j’s, X{P (resp. X{P) is enclosed
by three K-decreasing (resp. K-increasing) branches and a segment of
S. Let y be a K-increasing (resp. K-decreasing) curve which joins two
sides of X (resp. X{) with the same sign. Then

cl Tt < ﬂ(?’) <eut.

(iii) ¢ < inf |[c(T3'z)| < sup [c(T3'w)| < ¢f

zeX (9 z€X; (0

cxf < inf |z(x)| < sup [z(@)] < ¢y -

xex;” xex")
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§4. Construction of transversal fibres

The purpose of this section is to construct transversal fibres, and to
show that «© and «® are generators and that almost every element of
£ = Vi Tia™ (and 9 = ;5 Tia®) is a local fibre. The method of
the construction of the transversal fibres is similar to Sinai billiard
systems (see [6], [11]).

LEMMA 4.1. Let C be an element of \/72 Tia'® (resp. /224 T3ia®),
and fix x,y in C.

(i) C is a maximal connected set on which T3" (resp. T%) is con-
tinuous.

(ii) The boundary of C consists of several K-decreasing (resp. K-
inereasing) curves of C*-class and segments of S.

(i) If x and y are joined by a connected increasing (resp. decreas-
ng) curve, then the curve is included in C.

@(iv) If x and y are not joined by connected increasing (resp. decreas-
ng) curve, then there exists a decreasing (resp. increasing) curve, which
joins x,y and is included in C.

Proof. The assertion (i) is obvious by (4°) in § 3. (ii) is a consequence
of (1°) in §3 and Lemma 3.2. (iii) and (iv) are obvious by (i), (ii) and
the property (2°) in §3. Q.E.D.

Let dist (x, ¥) be the Euclidean distance between z and ¥ in the same
M@, Put for ¢ =0,+1,+2,.-.,

@1 dw@zma@¢gmwy
LEMMA 4.2.
(i) v({z; d9x) < u}) < p(HHur?

with some constant p,(&) and p(f) = 249+ — 1)1,
(ii) Put ¢, = A + K;2)Y* and

inf L+ gopoyy i 0>
0<i<eo 26,

“.2) A9(z) = i
inf A+ gorie i £< —1.

0<i<oo 2¢,

Then 4®(x) > 0 for almost every x and for ¢ # 0.
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Proof. From the properties (5°) and (6°) in §3, it follows that for
any j>1 and j’ > chei’s®

X9 NXP =g

holds. Hence the intersection T3'S N X consists of K-increasing curves
whose number is less than clep’?.  Since X = Ty'X®, TSN XP con-
sists of K-increasing curves whose number is less than cez%? Since by
the above discussion T3S N T(X¥® N T, X¥) consists of K-decreasing
curves whose number is less than chep’i?, T3S N X consists of K-
decreasing curves whose number is less than

[0%01}’]‘2]

2. Culil” < (6hew?)'s’
£

Recursively, it can be proved that the intersection T3S N X consists
of K-increasing curves whose number is less than const. j#"'-2. Hence
(Ui-1 T3%S) N X7 ; consists of K-increasing curves whose number is less
than const. 72*"~1. Therefore, for £ > 1 and ¢, = 2¢*!

const.u "6
v({z; d¥(x) < u}) < zu?® 4+ const. u StZ 7472 < const. u?® .
=1
holds. For ¢ < —1, one can see similarly. The second assertion is
obtained from (i) using the Borel-Cantelli lemma. Q.E.D.

Put
C(C) = _\/0 T:Zka(C) and C(e) = Vo T;’la(e) — _\/1 T;ia(c) .
i= i= i=

It will be shown that almost every element of {‘® is a connected curves
of Cl-class. Let z = (7,7, p) be a fixed point with 4®(z) >0, and let C
be the element of {° which contains Z. Since ¢© > /72 Tia®, there
exists the element Y, of \/7Z} Tia® which includes C. Therefore Tz
is continuous on C (of course on Y,) by Lemma 4.1. Note that T3*Y,
is an element of \/7_, T3'a®.

Let 7™ be a K-decreasing curve of C'-class passing through z, =
Tz such that

0GP, Ba) = OGP, Tn) = (L + 7)7"4V(3) .

By definition, (1 + »)~"4®°@) < d*(%,)/2¢,. Hence for any y in ¢™, the
inequality d(y) > $d®(Z,) holds, since dist(z,,y) < d®(%,)/2. Therefore
T, is continuous on ™. By Lemma 3.3, T,r™ is a connected K-decreas-
ing curve and satisfies the inequality
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min {§(T 7, Tn_), 0Ty, Tp_)} = (L + )7 "H4Y(T) .
Therefore one can choose a connected segment y™, of T.r™ such that
O0G2s Tuot) = 0GP, Bn) = (1 4 7)""H4D(T) .

By the same reason in above, one can choose a sequence of connected
K-decreasing curves of C'-class such that

Boer® C Ty, =012 ,n—1.
O, &) = 0™, B) = (1 + )*4(=) 1=0,1,---,m.

And T, is continuous on 7, 1 <7 < n. In particular,
0G5, ® = 0Gr§”, &) = AV(%)

and Tz" is continuous on y{. Furthermore,

4.4) dist (T34, S U TEWS) > 4dM(Z,) 0<ign.

Hence ¢{® is included in Y,. Thus for any » >1, there exists a con-
nected K-decreasing curve y{® of C'-class which is defined on the interval
[6 — 4°(@), ¢ + 4V(@)] and is included in Y,. Let 7™ be a segment of
the line given by the equation ¢ = ¢ for a fixed ¢ in the interval such
that the segment 7™ joins ¢ and y{"**. By Lemma 4.1, # is included
in Y,, and hence p(™) < (1 4+ n) "p(T5"#™)/|cos ¢| < (1 + n)~"x/|cos ¢| by
Lemma 3.3 (i). Therefore > 7., o(,) < co and hence 7§” converges uni-
formly in [¢ — 4Y(@), 5 + 4V(@X)] as n— . Let 7, be the limit curve of
{r®}. Then by (4.4)

dist (T570 S U T3'S) > 3d®(z)  for i >0

holds, and of course y,C Y, for all » > 0. Therefore C includes the curve
7o Now it will be proved that C is a curve. Let y be a point in C
which is different from % Then Z and ¥ are joined by a decreasing
curve. In fact, suppose the contrary, then there exists a point z in C
such that 7(z) = r(¥), ¢(z) = ¢(Z), 2+ y and z #+ . Let y be the horizontal line

which joins Z and z. Then for any n > 1

14+ miy (L + p~"
) < @+ T < =T %7
P> eos @[ * 7= Ko c0s o@)]

Hence p(y) = 0; that is, 7»(y) = r(@). Thus the above assertion was
proved. Since T3¢ = VVi_, Tia® > (@, T3"C is included in an element
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C’ of (. Hence Ty"r and T;"™y are joined by a decreasing curve 7®
in T;*Y,. By the same reason in the above, T%7™ converges to a curve
7, Which contains Z and y. Furthermore I% is continuous on 7, for all
n > 0. Therefore C is a curve.

Denote by r*“(z) the element of (‘ which is a K-decreasing curve
passing through z. Then T%y(T'3"%) is the element of 7%, which con-
tains #, and is an at most countable union of curves which are elements
of £©, Put I'%) = Unso T%r2(T3*x). Then I'“(x) is a countable union
of curves which ‘are elements of (. The connected component of Z in
I'“(x) coincides with ¢*“(z). By the Borel-Cantelli Lemma, for almost
every T the inequality d®(T3’%) > 2z(1 + 5)~¢ holds for all sufficiently
large j’s. Hence the estimate

0Tzr @) < =1 + )77 < (T3
is obtained. Therefore for z in 7“(z)
d(l)(T—j—iz) 2 %d(l)(T;i—jﬁ)

and hence

inf A+ 077 goyp-i-igy > L*‘zl)imn(ﬂ;io—c) > %A“’(:T:) >0.

20 ¢,

Since z is not in |Jj., T3’S, 4®(2) > 0 holds for any z in y©(z). Thus,
for almost every Z and for every z in (%), 4“(z) > 0.
In order to show that y(z) belongs to C'-class and to calculate the

gradient, it is useful to prepare the following lemma. Define functions by

. (cosp + ko)t — =
{k cos o_,+ k., cos o+ kk_c}t—(cos o_,+ Kk ;v)

b_(x;t) = —k_,

4.5) <bx;t)=t,

b(z;t) = (cos o+ Er)(h + 1) + =,
BT {kcos o + K cos o, + Ek (b + t) + cos g, + ki,

where x; = (4,7, ;) = Ti'x and the notations in §3 are used. Define a
sequence of functions recursively by

{b~n_,(x; D) = b_y(Tiz; b_n(z; 1)

(4.6) ban(®@; ) = b(T"x; ba(2; 1))

for n > 1.
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LEMMA 4.3. (i) Let y be a curve of C'-class given by the equation
r = u(p). Suppose that y; = T3y is defined by the equation r; = upy),
with (¢, wi@s), p) = T30, ulp), @). Then, for any <,

du; du
L= b ute), 93 2.
do, oy d?’
(ii) When t > 1/K_ (o) and n >0,
1
— < by(x;t) <1/K,;,
Kmnx(ln) - (x ) / '
With Tp = (tny Tny @) = T3"x. When t <0 and n <0,
L < b@sp<t
max min
(iii)) When t<0 and n <0,
0< L b,(Tya;t) < S8t 4
dt cos ¢

and b,(Tz"x;t) converges wuniformly in wide sense as n— —oo N
M — 8S) X (—o0,0] to a function independent of t which will be denoted
by 1/4(x). Further y'(x) is continuous on M — \J5-, T4S.

(iv) When t > 1/K _,.(¢,) and n >0,

d
0<
—dt

bo(Trz; t) < 98P (1 4 p)-om
cos ¢

and b,(Trxz; t) converges uniformly in wide sense as n— —oo in (M — S)
X [1/K (), 00) to a function independent of t, which will be denoted
by 1/ (x). Further x'“(x) is continuous on M — \J5.. T,S.

Proof. By Lemma 3.2, (i) is obviously seen. By Lemma 3.3, (ii) is
obvious. Since

Edi‘b-—l(xin ;0

— CcoSs ®; COS Di 41
[{ki+1 Ccos (203 + k; cos §0i+1 + ki+lkéti+1}t - (COS Soi + k;Ti+l)]2

0<% b (@ t) < S8 4 5
dt cos ¢;

holds. Therefore the inequality in (iii) is true. Since
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[bn_ (T 5 1) — b, (T 25 8)|

< EBPon (1 4 )b @i 8) — Dos@onss; O]
cos ¢

holds, b,(Tnx; t) converges uniformly in wide sense as n — oo to a function
independent of ¢ by (ii). Since b,(T%x; t) is continuous on M — J7., T3S,
¥, 7, ¢) is continuous. The assertion (iv) is shown similarly. Q.E.D.

Fix z with 4%(z) > 0. Suppose that the curves y“(%) and T3"“(%) are
represented by the equations r = u(p) and r = u,(p) respectively. Since
the curves y@(z) and T;"r“(x) are K-decreasing, u(p) and u,(p) are
absolutely continuous. By Lemma 4.3 (i), it is easily seen that for almost
every ¢

du ( du
—_— = b—n (‘m un(ﬁon); Son); " )
do don

holds with (¢, u,(@n), 72) = T5™¢, u(p), 7). By Lemma 4.3 (iii), the right

hand term converges to x'“(;, u(p), 9)"'. Hence for almost every ¢

au

4.7 do

— X(C)(‘, ’lt(go), SD)—l
holds. Since () is included in M — (5., T4S, 3@, u(p), ¢) is continu-
ous in ¢. Therefore, y*“(z) is in C'-class and has the gradient ¥*“(x) at
z in O(Z).

Similarly, almost every element (® = \/,T!® is an increasing
curve passing through # which is denoted by ¢*(®). Then ['“(x) =
U Tir®(T3'm) is a countable union of the curves which are elements of
{@. Furthermore 7°(z) is the connected component of z in I"®(z). The
gradient at z is given by y“(x), where ¥ (x) is the limit of 5,(T%x; ¢)~*
as n— oo with ¢t >1/K,_, (). Thus the following theorem was obtained.

THEOREM 1. Let ¢ and {® be the partitions defined by
C(c) = O T:‘ka(c) a/ud g(e) = {7 T;ia(e) .
i=0 =0

Then almost every element of £© (resp. £'9) is a connected K-decreasing
(resp. K-increasing) curve of C'-class, on which Tz (resp. T%) is con-
tinuous for any n>0. The curve y*(Z) (resp. (X)) is a solution curve
of the equation
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o

i X9, 7, @) (resp. % = 3, r, so)) ,

where 3'(x) (resp. ' (x)) is defined by

. _ 1 . _ 1

2 = b T —o0) (”Sp ) = e T oo>> :

The curve y(Z) (resp. (%)) is called the locally contracting (resp.
expanding) transversal fibre of %, and the union of curves I'(Z) (resp.
I'e(z)) is called the complete contracting (resp. expanding) transversol
fibre of Z.

In order to show more precise results, refer to a theorem of V. I.
Rohlin = Ya. G. Sinai [8]. The proof will be omitted, however one can
refer to Appendix 9 in [6].

LEMMA 4.4. Let T be a given measure preserving transformation
on a Lebesgue space. '
(i) Let & be a measurable partition such that

Te>¢, VT%¢=e, MI§E =MD <oco.

Then A T* = a(D).
(ii) Let « be a countable partition with entropy H(a) < co. Put
E= V. _.Tta. If \/,T% =¢, then W(T&|&) = KT) and Ay T* = (D).
(dii) #(T) = =(T7Y).

THBEOREM 2. (i) o® and «® have the same finite entropy.
(i) ¢9 = Vi Tia@ and 9 = ;5 Tqa'® satisfy

T;IC(B) > C(c) , T*C(e) > C(e)
\0/ T:‘kc(c) — C/ Tfkg(e) =,
i=0

fe=m—o0

Z\l Tic© = 7\1 Tic® = o(T) .

1= —00

(lll) h(z‘l;lc(c)[c(c)} — h(T*C(e) lc(e)) —_ h(T)

(iv) The partition O = Ap, TiL® (resp. £, = A\72_. Ti{®) is the
measurable covering of the partition into {I“(x)} (resp. {I"“(®)}).

Proof. By Lemma 3.4, the estimate

Yo Yo

C:;1(313(.7. + DL V(X;,j) <

max min

]
ClaCys]
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is true. Therefore (i) is true. Since (T;"r'“(@)) < z(1 + )~ for n >0,
{T3"¢“; n > 0} separates any pair of different points. Hence \/}._.. TiL©®
=¢. By Lemma 4.4, the other equalities in (ii) and (iii) are shown.
(iv) is obvious by definition. Q.E.D.

§ 5. Lemmas

In §6 ~ §8, certain measure theoretical regularities of the partition
@ and ¢ will be discussed. By using those regularities, it will be shown
that #(T) is the trivial partition {M,¢}. The fact implies that T, is a
K-system by virtue of Theorem 2. In this section several lemmas for
those sections will be prepared.

Let {b,(x;t);n=0,+1,+2, ...} be the sequence of functions on
M X (—oco,00) defined (4.5) and (4.6). Let y be a curve of C'-class in
M® defined by r = u(p). Put

A(x;r)z_klcos¢+k’cos¢l+k,k'rl{du +h}— k.t _1

5.1 CoS ¢ do oS ¢,
) M5 = k, cos o + K cos o, + kk'r, bl(x; du)_ k', _1,
cos ¢ do cos ¢

with = (¢, u(p), ¢) and x; = (¢, w,(py, @) = T3'2.

LEMMA b5.1. Let y,4 and A* be as in above.
(i) dp/dp= Ax;p) =1/4*@; 7).
(ii) If y is K-increasing, then

—Ax;7)=1+79 and cosopdx;y) =79 .
(iii) If T3'y is K-decreasing, then
—A*@x; ) >1+7 and cosed*(@;7) >7.

Proof. 'The assertions come from Lemma 3.2 and Lemma 3.3, evi-
dently. Q.E.D.

Let 7 be an either K-increasing or K-decreasing curve of C’-class in
M® which is defined by the equation r = u(p), and let a(c, u(g), @) = alyp)
be a function defined on 7.

LEMMA 5.2. For suitable positive constants Cy, Cy, and y,, the follow-
ing holds.
(i) If a <0, then
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1 1

< —b_(x; < R
max - l(x a(so)) - Kmln
d -1 d§0
log (—b_,(x, )| < ¢ + €y + A+ p)7t | =Flog (—alp)| .
D1 ©1 d%
(i) If a>1/K, (), then
1 1
— = < b(x; < R
Kmax({—l) - l(x al(sp)) - Kmm
d dSO -1
log by(z, @)| < ¢y + €y + @+ 75) log a(yp)|.
©O_1 dSD—l

-1

Remark. The equalities in Lemma 5.1 hold with the constant », =

(Kpin/ Ke)( + 7). However it is convenient to define 7, by 7 = min {y,
Kmln(l + ”) /Kma.x}'

Proof. The first inequality is obviously true by Lemma 4.3 (ii).
Evidently, (d/0k) log (—b,), (3/0k’)log (—b,), (3/d(cos ¢))log (—b) and
(@/9(cos ¢,)) log (—b,) are bounded. Moreover, dk,/dp,, dcos¢,/dp,, dk’|de
and (dcos¢)/dy are bounded. The expression

dr;, 0

log (—b_
dov r, og (—b_y)

— cos p(k,b_; — 1)?|sin (p + ¢,) + sin ok, — do,/du)z|
[éa — cos ¢ — K/t ][éha + (cos ¢, + Ekiz)a — (cosg + K'r)h—1]

is bounded, where & = k, cos ¢ + k' cos ¢, + kk'z,. Further

ilog(—b_l(x;oc))
o

$0S ¢ COS ¢,
[a — cos ¢ — K'7,][ER + cos ¢, + iz, — {(cos ¢ + K'z)h + 7,}1/al|a|
COS ¢ COS @
[1—&a/(cos o+ K'z)][{(cos o+ k't )h+ 7, {E—(cos o+ K/z,) /a} +cos p cos o] [a]
k ] -
< 1 ‘'min 1 2 1 .
<[t foe @+ p7]lal

max

Therefore (i) is true. The proof of (ii) is similar. Q.E.D.
LEMMA 5.3. For a function a(p) on 7, defined a, by

a0 (p) = b, ulp), ¢; alyp)) .
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Then for n> 0, the following holds with a constant c,.
Case 1. If a >0 and y is K-increasing, then

d

d < 021+(1+771)—n d

do,
Case 2. If a >0 and y is K-decreasing, then

log a,

loga| .

Dn

<@+ 771)—n021 + (1 + 771)—n

d d '
—loga, —logal.
ldga g do £

Case 3. If a <0 and y is K-increasing, then

L tog (—a)| < @+ ) "eu + (4 + 707" | L logal.
de do
Case 4. If a <0 and y is K-decreasing, then
d ] d
log (—a,)| < ey + L+ 7) logal.
dga—n d —n

Proof. By using Lemma 5.1 repeatedly, one can obtain the results
With 021 = 019/771(1 + 01) + 020/”1' Q.E.D.

A

Let 7 and # be two connected K-decreasing curves in M such that
?; =T3¢ and 7, = T3%% are also connected K-decreasing curves which are
defined by the equations r; = 4,(p,) and r; = #,(p;) respectively, 7 = 0,1,
2,.--,m. Letyand y be K-increasing curves which intersect with both
# and ? and given by the equations r = u(p) and » = w'(p) respectively.
Suppose that T;™ is continuous on y and 7. Put &, = (7 ¢) =
TGN, 8= Cpfp$) = THGOD, &= (") =THE NP, 75=
Tyl and ¢, =Tz%, 1=10,1,2,...,m. .

Fig. 5-1
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LEMMA 5.4. The following estimates hold with a constant c,,.

i A*(:ﬁ 953 )
(i) 'log_ﬁj_f_
A*( Ly 79
C(1 + 7)™y m) - ‘ Ay, / diiy, l

<-Z : + (1 4 )77 ™ |log
min cos (TJ' U Tj+1) ” Am dﬂbm
for 0<ji<m—1

i [or o)
S TR L Yy
for 0<j<m— 1.
50 75
(iii) |log j—&i—%
< mineas,Un T 400 G /Gy

for 0 <j<m— 1.
Proof. By Lemma 3.2, the following estimates are obtained:

llog k(£,)/k(£;)] < max

dk(e, 1) ‘ A+, 0< i<
d?" kminKmin (77") - ‘7 - " ’

llog ¥/ (8,)/}/(%,)| < max l d’“g; ) ] 2L+ p0)  0<ji<m,

kminKmln B
log (%) < 2+ Ko A+ 9)7 " 0(rm) 1<ji<m.
(@)= 7 min cos 0(r;_) T
log 898 &) | o A+ ) ™0Gm) 0<j<m.
coso(#,) | = mincosd(y,) T

For example the estimate for ¢ is shown by the inequality

9 tog (— (s 1l )
doy,
1 du; do, \( . . { COoS @y
= |— 2 _~7J |sin + sing,;_;——~
vy do; don b P cos g5,
)
COS @;_, du;,
<@ty Tl Kl
rmin kmin CoS Soj -1
< 2+ K (g 4 py-mes
7 |cos ¢;_4|
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Applying Lemma 5.3 Case 3 to a(p) defined by

dii — ¢ di
a(p) = —exp [9"”‘—9?”‘— log( m ) o °m_log (— m )] ,
? Pm — Pm ddm ém — Pm dg@

the following estimate is obtained

l dZm log (~aj_m)j

<A+ p)™e + A+ )

1 l i dil
- log m m ' .
lém — Om| d‘?’m dom
Since a’j-m(‘m: ﬁm(ﬁbm)y Sz’m) = daj/d¢j and a'j-m(‘m, am(é’m)’ ém) = d’a/j/déj hOId
by Lemma 4.3,

llog iy iy l < (L + )" m+j{6210(7’m) + |log i, / diy }} :

dgoj d¢m
Therefore the assertion (i) is true. Similarly, (ii) is true by Lemma
5.3 Case 1 and (iii) is true by Lemma 5.3 Case 2. Q.E.D.

Call a set G in M o quadrilateral, if the boundary of G congists of
a pair of opposite increasing curves and a pair of opposite decreasing
curves (see Fig. 5-2).

Qn
(]

Te Ta

Fig. 5-3

Denote the side curves of G by 714 = 7.(G), 15 = 75(G), 7. = 1.(@ and
7e = 14(@) respectively as in Fig. 5-2. If some of sides shrink to points,
then call such a G a trilateral or a dilateral as the case may be, and
use the corresponding notations for the remaining sides. If a quadrilateral
is surrounded by K-increasing curves and K-decreasing curves, then
call G o K-quadrilateral.

If T3 is continuous on a quadrilateral G and if T3;'G is also a
quadrilateral, then

Ti7(@ = 7(T3'® and Ti'r(G) = r(T3'G) ,

Tir(@ = 1.(T¢'@ and Ti7.(G) = 1,(T5'G)
hold. Of course, generally T;'G is not necessarily a quadrilateral. It is
convenient to denote by 7,(T3'G) (resp. 7.(T3'®) the part of boundary
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of T3'G which joins the upper (resp. lower) ends of T3'7,(G) and T3'7.(®),
and to denote 7,(T3'® = T3 (@) and 7,(T3'G) = T3'(7.(@). Now intro-
duce the following notations for a quadrilateral G;

Gl = 6Gs(@) + 0@ (@) = 0(r. (@) + 0(ra(@) ,
max 6,,(G) = sup {0(y); r runs over all increasing curves in G},

max 0,,(G) = sup {#(y); r runs over all decreasing curves in G},

. . . 7 runs over all K-increasing curves in G
min 6,,(G) = int {0(7) > which join 7,(G) and 7.(G) } ’

. _ s . 7 runs over all K-decreasing curves in G
min 6a(6) = inf {6); [ i OO 56 and (@ ’

LEMMA 5.5. The following estimates hold.
(1) max 0,(G) < |G| and max 0,(G) < |G,

(ii) min (@) > (@) — 6(7.(@) ,
min 0,(G) = 0(7.(G@) — 0(r:(3)) .

Especiolly if G is a K-quadrilateral, then
Gl < @ + e (@) + 0G(G)))/2
with C, = Kmax/Kmin'

The proof is easily seen by definition. Now introduce a condition
on a quadrilateral G.

CoNDITION (L). There exist a positive constant L and a partition
which satisfy the following: Every element of the partition is a K-in-
creasing curve which joins 7,(G) and 7,(G). Denote by 7#(x) the element
containing #. For any K-decreasing curves 7 and # in G which join 7,(G)
and 74(G), define a mapping ¥ = ¥, ; from 7 onto 7 by

7

e >

3T
V]
r—>

@ N7.
Then for every segment 7 of #, the following inequality holds

e—L S 0(¢;7j/) S eL .
6"

The following lemma is easily seen (see Appendix 6 in [6]).
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LEMMA 5.6. Let G be a K-quadrilateral such that 6(r.,(®) >
c(1 + ¢)70(,(@). Then G satisfies the condition (L) with L =c¢; =
log 16C%.

LEMMA 5.7. Let G be a K-quadrilateral which satisfies the condition
(L). Let 6 be a sub-K-quadrilateral such that é C G, ;—,,(é) - 7—,,((7?) and
Td(é) C 74G). Assume that Tz™ is continuous on G and that G, = TG
and ém = T"G are also K-quadrilaterals. Then the following estimate
of the ratio u(é) /v(@) holds with some constants c, and c,;

p(@ ”(G"‘) nax 0‘“((?"‘) exp [L + ¢+ ¢, Z a + g)~"* HGmH ]
(@) v(Gm) min 6,,(G) 7=0 min cos (G 7

Proof. Since dv = —vy,cos pdpdrd:, the estimates
2v, :

min

2v,

max

y(sz) < max cos (ém) max 0ln(é) max ﬁde(ém) ,

v(Gm) > min cos (Gm) min Hln(G‘m) min 0de(ém)

hold. Easily, the estimate

max cos (Gu) ~ _Iax cos (G < ex Gl
min cos (G,) ~ min cos G ~ min cos (G,)

is obtained. Now in order to estimate the ratio max 0de(§m) /min 0de(C~¥m),
let ?m and 7, be K-decreasing curves in G.. which join Tb(ém) and n(ém).
The inequality

m-—1 A
0Gn) = Z (—A%(ey, 0y@), 5 T'7)d

0a(Gw) + log c,}
< exp [L + A + p)i-m {c,, max 6, 2 ]
Z n min cos (G,UG,,,)

m—1
X , ]_I0 (= Ay y(P), ¢ TP dp
i-

is obtained by Lemma 5.4 and the condition (L). Therefore

0(Fm) < O0(Fn) €Xp [L + ot o Zo ¢ ;;Z?;:Zellc);m” ]
Jj= J

with some constants c¢;, and cj;. Hence the assertion was proved.
Q.E.D.
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§6. The Main Lemma

The Main Lemma which will be proved in this section is the key for
ergodicity, K-property and Bernoullian property. The proof of the lemma
is essentially identical with that of the corresponding lemma for Sinai
billiard systems. Hence one can refer to [6], in which more precise in-
terpretations are given.

Let 7 and y’ be any pair of K-increasing (resp. K-decreasing) curves.
Define the canonical mapping T¥, (resp. '®) by

T
Tox=r2@2) Ny (resp. ¥Px = r9@) Ny,

for « in the subset {xey;79@) Ny %= @B (resp. {xey; @@ Ny -0
(see Fig. 6-1).

’ T @)

r(c)(x)

Fig. 6-1

Let ¢ = o, be the measure on y induced by 6, that is,
©.1) o) = | do
T

for any Borel subset 7 of y. The measure ¢, on 7’ is defined by the same
way. Define a measure ¥.g, (resp. ¥“.0s,) by

HLror

(6‘2) w;f;’ar’(f) = o'r'(w;{)rf) (resp. W(e),gr,(f) = or’(w;f,)rf)) .

757
The canonical mapping 7%, (resp. %) is said to be absolutely continuous
on a set A, if the restrictions of ¢, and ¥%g, (resp. ¥%s,) to A are
mutually absolutely continuous. Set
Vald) ={,r,0) e M; [cos | < a(l 4 5) ™%} .

Now the main lemma can be stated:

LEMMA 6.1 (Main Lemma). For given ¢« 0 <a<1), 2@ >1) and
0 (0<w<1), there exists an even natural number 4, = L(a, 2,0) for

which the following property holds: Let G be a K-quadrilateral satisfy-
ing the assumptions
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(A-1) minecos (@) > o,
(A-2)  0(ra(@) < 20:(R))  (resp. 0(r(@) < 20(r(@)))
(A-3) T GNV,6) =0
0<i<é, with 8, = 0(1,(G)) (resp. 8, = 0(r.(@))) ,
(A-4) Tz is continuous on G and T3»G is also a K-quadrilateral.

Then there exists a measurable subset G of G such that

(C-1) for any z in G, r©(x) N G® is a connected segment of
7)) which joins 1,(@ and 1,(Q),

C-2) »(G“) >0 — (B,

(C-3) for any pair y,y’ of K-increasing curves in G which join
7.(G) and 1.(G), the canonical mapping ¥, is absolutely continuous on
r N G*®, Moreover there exists a constant B(£2) independent of a,w and
G such that for x in y N G©2

1 av, .o,
0) < i < B@) .

T

Proof. One may assume that 2 > ¢ without loss of generality.
First, the proof will be given for the case

6.3 Cy < 0(r.(@) <0
©3 1+ec ~ 0G,(G) —

Let 4, be a sufficiently large even number, whose actual value will be
given laler.

Congider a K-quadrilateral G which satisfies the assumptions (A-1),
(A-2),(A-3),(A-4) and the inequality (6.3). A sequence of partitions
QP ={GR, HS, )}, m > ¢, of G which has the following properties will

be constructed:

(z-1) {z®} is an increasing sequence of partitions.
(m-2) Set PP = U, GY, and PO = (5, PY, then PP is monotone
decreasing and the relations

I
(0 — ©) — 0

\/ 77"1n.) IP&‘P - C IP&Q) ’ Tm+1G-P®» — T |G-pP®

m=4£g

hold.

@-3) A point 2 is in PP if y“(x) N G is a connected segment of
7“(x) which joins y,(G) and 7,(G).

(x4 GP, and G, =T "GP, are K-quadrilaterals.
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(z-5) A point z is in PQ if and only if y®(x) N G is a connected
segment of y(x) which joins 7,(G) and 7,(G).
(=—6) The sum of the measures v(Gn,) over all G, ’s which satisfy

Sl + D™ < O0Gro(Gm ) < 56,1 + )™

is greater than (1 — a)v(@).
By Lemma 3.2 and Lemma 5.5, the inequality

(6.4) 0Go(T3™G) > A + ™3, — ¢, 21 + ) ™24,

holds for m, 0 < m < ¢, The quadrilateral Tz*G can be divided into
several K-quadrilaterals {G,,,} in such a way that

TG = Goes (L4 1), < 0G4(Geod) < 5L + 1)~

and that 7,(G, ) (resp. 7.(G,,) coincides with 7,(T3*G) (resp. 7.(T:*G))
or a segment of (Jp_,T™S with some »>0. Put z,={G,}, P, =
Us Gaer G2 = T8G, 5 50 = GRy = Ty, PR = U Gy = T4P,. Assume
that a set P,_, = J;Gn_.,; and a partition zn_, = {Gn_; s Hp_,,} Which
satisfy (z—1) ~ (z-4) have been constructed. Every component of the
restriction a|g,, of a® to G, is expressed in the form G,_,, N X{P.
Obviously, G,_,, N X{ is a K-quadrilateral (or a trilateral or a dilateral).
If it is a K-quadrilateral, denote it by O,_,; ;. If there exist two tri-or
dilaterals which have a common side of them, then joint them together.
After that, if there still exist tri-or dilaterals which have a common
side, then joint them again. Continue such a procedure repeatedly.
Denote such a maximal jointed set by Qn_,,, (see Fig. 6-2). Then it is
easily seen that

(6.5) 0G5 Q15,0 < 0Ga(Grorys,)) -
T;lam-l,x,l,a
\ Q‘m»l,s,l’ Da(x)
Omososr v
D.(¥)
Om-m,!'
T;l(_)m-l,l,l,a
Om-—l,l.!
Fig. 6-2
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Let D,(x) (resp. D.(x)) be the set of all points which lie over (resp.
below) the two lines passing through x with inclinations —K_,. and
—K ., respectively. Set

Om—l,s,j,a, = Om-l,s,j n U T*Dc(x) ’

T€Te(Tx 0m—1,8,7)

m-1,8,j,6 = Om—l,s,j N U T*Da(x)

2€T4(T5 0m—1,s,7)

<

and O;n—l,.?,j = Om—1,s,j - Om—l,s,j,a - am—l,s,j,c- Then (_)m—l,s,j,a. and Dm—l,a,j,c
are K-trilaterals (or K-dilateral). Thesets O;,_,,; and Fy_,,; = T30 ;5
are K-quadrilaterals. If

0Gs(Fm_s,s,)) < 831 + p)~™*,
then put Gu_y 5,510 = Fr_s,;. If

0Go(Fm_1,6,9)) = 50,1 + n)~™"*,

then F,_,,; can be divided into K-quadrilaterals {Gn_,,;4; ¢=1,2, -}
such that Tb(Gm—l,s,j,q) c Tb(G)9 Td(Gm—l,s,j,q) c Td(G),

(6.6) 01 + ™" < 0(rs(Gmosys,s,0)) < 50,1 + )~

and that 7,(Gn_.s ¢ coincides with either 7,(Gn_,,) or a segment of

7., TS for n > 1. Now change the numbering of {Gn_, ;45 S,7,q} and
denote them by {G..}. Moreover, denote {T3'Qu_1s0 T3 Om_1s .4
T:0uw-15.5.00 T Hm 14} by {Hpn .} Put

Tm = {Gnsy Hn i} s 0 = Ty

P,=Gn, and P® = TP, .

Then {r,} satisfies (z-1) ~ (z—5) as desired; in fact the proofs for (z-1),
(z-2) and (z—4) are obvious, while (z—3) and (z—5) can be shown as follows.
Since T3™r®(x) is K-decreasing for any m >0, if y®(x) N G joins 7,(G)
and 7,(®@), then Ty;™(;“(x) N G) is included in an element G, for any
m > 0. Therefore (z-3) is true. Conversely, if z is in P9, then there
exists a K-decreasing curve y{™ passing through 7';™x such that y is in-
cluded in a certain element G, , and that y{ joins y,(Gns) and y,(Gn.).
Since T'7 is continuous on G, 7™ = T is a connected K-decreasing
curve which joins 7,(@) and y4(G). Further, it is easily seen by the same
way as the proof of Theorem 1 that y{™ converges to a curve which joins
7.(@ and r,(G) and that the limitting curve is identical with y(z) N G.
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Now the measure of the rejected sets
R, (1) = U (am—l,s,j,a U 6m—1,s,j,c) ’
8,7
R,_2) = U Qm-l,s,j
8,7

will be evaluated. In order to evaluate them, it is convenient to classify
{Gn s} as follows.

DEFINITION. A piece Oy, ; is said to be docile, if either 1o(T5'On_, . 4)
or 7:(T3'On._,;,;) intersects with S.

DEFINITION. A piece G, is said to be narrow if
0Gro(Gn,s)) < 661 + )~ .
A piece G, is said to be wide if
0(ro(Gn,s)) = 3L + =™/ .
Put

Ru(3) = {Gnys; Gn,s N Vi(By) + 0},
R,4) = {Gn,s; Gn, is narrow} .

It is convenient to denote by the same notation R,(7) the union of the
sets contained in the family R,.(j) (f = 1,2,3,4).
(1°) Estimation for R*¥(3) = R,.(8) U {T;l(_)m,s,j,.; T;‘(—)m,s,j,. C Va(8y)}
It is easily seen by (6.6), Lemma 5.5 and Lemma 3.3 that

|Gl < 53,1 + p)~™" 4 ¢, 25,1 + n)~™
with ¢, =1 + K,,./K,,. Hence if
(4-1) B+ A + e <1,

then every G, , in R}(3) is included in V,(26). Therefore, R}(3) is in-
cluded in V,(25,). Hence

(6.7 v(RE3)) < v(Vin(28y) < 2(1 + 5)~™ .

(2°) Estimation for R%*(4) = R,(4d) — U, T-™*R(3).
By Lemma 3.4 (iv), if

(4-2) 10z(1 + =2 < ¢y,

then for any component of {On_,s, ;3 71 =1,2,---}, the case where
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sign (74(Om-1,s,,50) = (=) and sign (7:(Om_y,,5)) = (+) at the same time
does not happen. Therefore one can see the following properties (G-1) ~
(G-4) for a given triple-

Gm—l,sl ) Om-l,sl,jl ) T*Gm,s:

(G-1) Gp_;,, contains at most one component which is not docile.
(G-2) If Gn, is not contained in R,(3) and if On_,,,; is docile,
then the inequality

0(Tb(Gm,s)) 2 50(1 + 77)—m/8

holds, namely, G, is wide.

(G-3) T5%'Gn_,; contains at most one component G, , which is not
wide and not contained in R, (3).

(G-4) For each wide G, ,, there exists at most one series {Gn,.s,,,;
0 <7 < p} such that

. -1 P
Gn,sn > T*G’n+l,é‘n+1 o o Ti G7'»+17—1,3n+p—1 o T*G’ﬂ+1’,3n+p ’

where Gn,i,,,, is not wide, not contained in R, ,;(3), 1 <i < p, and G,y 4,,,
is narrow. ‘

The properties (G-1) ~ (G-4) can be proved easily. For each fixed
wide G,;, there exists at most one series as in (G-4). Let G,,,,,,, be
the first narrow K-quadrilaterals in the series. Then

0(Tb(Gn+p,s,.+p)) < 50(1 + 77)—(7;+p)/4
0(Te(Gn+p,s,,+,,)) < C4~Q50(1 + 77)_(7”1’)

hold. Hence by Lemma 5.5 and (4~1)
max 0y,(T5(Grips,, ) < 20,1 + p)~mA=oet

Put G = TGy, anq é = T%*Gpyps,.,» Then one can apply Lemma 5.7
to the pair G and G. Since the inequalities

min cos (T3‘G) > 8(1 + p)™*  for 4, <4< n,
TGl < 531 4+ )™ + eyl + 7)™ < 6,(1 + )=,
min 6,,(T5"G) > 0(1,(T3"G)) — 0 o(T5G))

> 51 4+ ) P —ede(1 + )" > 16,1 + )8

hold by Lemma 5.5, the estimate
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y((i) <41 + ﬂ)_mls-ﬁpﬂ exp [c; + €3 + 3l
v(G)

is obtained by Lemma 5.7. Hence

68 (U TERI®) < dexple, + o + el 33 L+ )G .

(3°) Estimation for R%(2) = {Qmns,.; Gm,s is not in RE(4) U Up,, T-™**
R.3)}.

Let G’ be a K-quadrilateral. Then one can define a family of sets
{Q:;¢=1,2,---} by the same way as Qmn_,, in the construction of z.
Let U(7) be a sufficiently small neighbourhood of z() where {2(?); ¢ =1,
2, -, 1I,} = M5--« T4S. Then the branching points of T',.S outside (71, U(3)
are discrete. Hence there exists a constant ¢; such that for G’ with
1G'|| < ¢5 G’ contains at most one branching point outside (Jix, U@). If
G’ is included in U(7), then G’ includes at most two components {Q], Q:}
as is seen in Fig. 6-3. Therefore there exists a constant ¢, such that
for every G’ with [|G’|| € ¢;, G includes at most two components {Q1, Qi}.

2(7)
Fig. 6-3

Since G, is not narrow, by definition it holds that
0(r5(Gn,s)) > 31 + )™ .
From the inequality (6.5), the inequality
max 0;,(Qm s,) < 6,621 + )™
follows. Therefore, applying Lemma 5.7, the estimate

v(Qm,s,)

WGy < dexple, + ey + eypl(l 4 p)~ims

is obtained. If the inequality
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4-3) (1 + )~ ¢,
is fulfilled, the estimate
(6.9) v(R%(2) < 4exple; + ¢y + cil(1 + 9 7*u(G)

is obtained.
(4°) Estimation for R,(1).
Divide R,(1) into three classes;

R}(5) = {

Om,s,55 Om,s,y is not docile and Gn, is not in}
2

C) T5m+R48) U RAA)

t=2y

RX(6 m
#(6) is not in U T3™"R/(3) U R%(4)

£=4y

{ﬁm,s,j e T REB)URE®B) ; 0(15(0m s ) < 8L + 7)™ and}

{Om,s,j e RE(5); o(rb(om,s,j)) > 0,1 + n)—m/2 and Gm,s}

R(D)

G, is 1Ot in () T-"R,(3) U R*(4)

é=0o

Since by (4-2) G, contains at most one component which is not docile
and since G, is not narrow, the estimate

(6.10) v(R%(5)) < 8exple; + ¢y + cil(1 + p7*™u(G)
is obtained by Lemma 5.7. By applying Lemma 5.7 again, the estimate
(6.11) v(R%(6)) < 8exp le; + ¢y + exl(1 + 7)) ™(G)
is obtained. Lastly, one must estimate the measur? of R¥(7). Except
for a finite number of X{’s, say X¥, 7 =1,2,...,I, X coincides with

X/, with some ¢ and j/ (see §3). There are two cases depending on the
sign of X},. Only the case of (+) will be explained here, the case of

(—) goes the same way. Since O, ; is docile, T5On ;. is included
in Va(d,) and hence in R¥(8). In order to estimate the measure v(On, ;. 4)

= (T5'Om,s,;,0), note that the inequality
13772 < 0(15(Om s, ) < 0(1 4 p)~™7

which is obtained by Lemma 3.5, implies that j > j, where 7, is the
minimum natural number greater than ¢35 '*(1 + p)™*. Puty= ﬁ((—)m,s, 7.0)
and y, = T3y, Then 4() < ¢ 26,1 + »)~™. By Lemma 3.5 for = in 7

—o(T3x) > ¢j and —cosp(x) < ¢~
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hold. Therefore, by Lemma 3.2 the estimate

0Gr) = L

do, 1dgo < cS20,(1 + 77)_:2
ng 1 + kminclﬁcu] /

is obtained. Hence the rejected sets are included in the domain indicated
by the hatching in Fig. 6-4.

(&) — -1
X9 = TyX9

docile
not docile

oG~

@ + 970G

Fig. 6-4
The measure of the domain is less than

20,C,€1,0(1 + 77)—m el
K i Fmin€CiiCis

On the other hand, by the same reason as in the estimation (3°) for j7,
1<i< I, at most two components Ons;’s belong to Ri(7). Since
Gn s is not narrow and max 01,1(Cm,s,j,a) < ¢025,1 + »~™, by Lemma 5.7
the estimate

”((—)m,s,j,a) < 4 exp [Gs + €y + czs](]- + 77)—3m/4y(Gm’s)
holds. Therefore the estimate

2 20CiCi0(1 + 7™
R;I:L 7 < 0~4~12Y0 2
v(RE(D) < j;.m K o KminCiiCos ’

+ 8 exp [03 + Cy + 025](1 + 77)_37"'/4”((})

9 y,C,C, 820 _
< “ 0412 13 (1 + ) 13m/859/4
=3 R konen ’

min

+ 8exple; + ¢y + cl(1 + i —3miy(@G) .

(6.12)

is obtained.
This completes the estimations of all rejected sets. Since the estimate

vo¢, Min €08 (@) 5o ) < 2L+ R 1or oo ()32
T AT L o "

is true for any K-quadrilateral G, by (6.7) ~ (6.12)
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(O YT RE®) < eu( L+ 1) + (@)
m=48y k=2 (0]

holds with some constant ¢, for a sufficiently large ¢, which satisfies
(4-1), (4~2) and (4~3). Hence if an additional condition

(64 cm(l + 1) A+ g < o
@
is fulfilled, then the set

G =G — U U T3RikR)

m=48p k=2

is greater than (1 — @)»(G). Furthermore, G©“* satisfies the conditions
(C-1),(C-2) and (C-3). The conditions (C-1) and (C-2) were already
seen. Now to show (C-3), define partitions &(m) of y(resp. &(m) of 1), m > 4,,
by

Em) =al|,  (resp.&(m) =z2|,) .

Put 20 = \Vnald, &(c0) =z, and &'(c0) = z¥|.. Then &(m) increases
to &(co0) and &'(m) increases to &'(co) as m — co. Further &(co) |p@ (resp.
&(c0)|pw) is the partition of y N PY (resp. ¢y’ N PY) into the individual
points. Conventionally, put ¥ =¥%. For z in P, there exists a K-
quadrilateral G, in =) which contains x. Denote by G (x) the G,
and put G,(@) = Ty"GP(x). For z in y, denote by Cn(x) (resp. C,(z))
the element of &(m) (resp. &(m)) which contains x (resp. «’). Then for
x in PO Ny

Cn@=GP@) Ny and C,Tx)=GP Ny .
In particular, if z is in G2,

01 + ™" < 0(ry(Gu(@)) < (B + (1 + p~™",

610 {max0,(Ga@) < o281 + 7",
min cos (G4(®)) > 6L + p~*, 0<j<m.
For z in y N PY with &’ = ¥x, it holds that
m=1
0Cn@) = [T 1A walg, 03 TPl dm
(6.15) R
0CuaN = [T 1A i, i3 TN

where 7, = u;(¢;) and r; = ui(p,) are equations of T3’ and T3’ respec-
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tively. By Lemma 5.4 for any pair ¢,y in C,(2),

=0 A5, T
< exp [022 ;Vn‘_, i a+ %)_"m”ﬁ(T;mC,,‘L(x))
721 min cos (T3'Cp(®) U T377C(2)

(6.16) (1 + ——) \log duy @) / d, €)] l]

< exp [( ; + 1)2{622(1 o)™ \log f;;" ) / ‘ZZ" (@)I}]

< exp [(—1— + 1)2(022 + log Cz)] = eXp Cy
Uit

is obtained by (¢,~1). Therefore

_ 0Cn(@) ™5 7=
(6.17) exp (—¢y) < HT=-Co () ZF_I | 4@:, T3'p)| < exp ey

is obtained. Alternatively, the estimate

6(Cr(x))

OO T s, Tr) <
B(T;"‘C'( /)) H I (x *T)I eXp c27

(617), exp (’—627) S

is obtained for 2’ = ¥z. On the other hand,

o(T™C(x)

m/16
S arCa@y = TR

(6.18) 1—-2A 4 p ™ <L

holds by (6.14). By Lemma 5.4, the estimate

tog _A@h T57)
A(x,, T3
(6.19) y (1*:) ) "Ho@) — o) d d
c Ho(x x’ i u’ U
< Y s [ (4 1 - ’
- 01 + p)~4* + )T Ay / dp

for ¢ > 0 is obtained, since for m > ¢, T-™x and T ™z’ are in the same
G, which does not intersect with V,(,), further for 4, >i>0 TG
does not intersect with V,(6,). By using (6.19) and

, < logc,

it is proved that the infinite product
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— A A(xiy T;ir)
9@ = I 4w, Tty

k2

converges absolutely and uniformly in y(cc). Moreover by the assump-
tion (A-2), g(x) is bounded as

1
(6.20) 0 < g9(@) < Bi(D)

with B(w) = exp [A + 77D 2c,c,2 + logc,). By (6.16) ~ (6.18),

1 6(Cr(x)
©.21) 107)) = 0(C () <F9
holds with B(2) = 2e*p,(2).

Let A be a Borel subset of y N G with ¢,(A) = 0. Then, for any
¢ > 0 there exists a covering {C;} of A, such that C; = C, (y(?)) with some
y@) in G2 Ny, AC Y, C;and >2,0(C) <e. Since A C U, C,, (T (y())),
it is shown that

o, (FA) < 2, 6(C, T WMD) < flo) 25 0(Cn,y@)) < plade .

Hence ¢,(FA) = 0. In the same way, one can show the converse asser-
tion. Hence the canonical mapping ¥ =¥, , is absolutely continuous.
Also

1 dw‘a('f;’ar'

10 < da, < p)
can be shown by the above discussions. Thus the proof is completed
for the case 6(y,(@) > (c;/(1 + ¢))0(r5(G)). In case 6(r,(G)) < (c;/(1 + ¢))
-0(7,(@), one can divide G into small K-quadrilaterals F';’s each of which
satisfies the assumptions (A-1), (A-2), (A-3), (A-4) and the inequality
0(ro(Fp) > (c,/(A + ¢))0(y,(F;). Then there exists a subset F{»® which
satisfies (C-1),(C-2) and (C-3). Put G“? =J, F{»9. Then G“* satis-
fies the conditions (C-1), (C-2) and (C-3), obviously. Q.E.D.

In a similar manner the following lemma can be shown.

LEMMA 6.1’. For given 0« (0<a<1), 2 (2>1) and 0o (0 <o <1),
there exists an even natural number £, = £(a, 2,w) for which the follow-
ing holds: Let G be a K-quadrilateral satisfying

(A-1) mincos (G) > o,
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(A-2) 0(ry(@) < 20(r.(G) (resp. 0(ro(@) < 20(r(@))),
A3y TiGNV,G)=8 0<i<é
with 3, = 0(r,(G)) (resp. 6(r(@)),

(A-4)y T% is continuous on G and T4G is also a K-quadrilateral.
Then there exists a measurable subset G of G such that

(C-1Y for any z in G*2, ¢ (x) N G% 4s a connected segment of
79(@) which joins 7,(@) and y.(G),

(C-2) w(G*”) > A — ap(G),

(C-3) let y and ¢’ be any pair of K-decreasing curves in G which
join 1,(@ and 1,(G). Then the canonical mapping V¥, is absolutely

[akYs
continuous on y N G, Moreover for x in y N G®=, it holds that

1 dr@.q..
< Prvor < p0) |
W S dy P9

7

§7. Canonical mapping

In order to apply Lemma 6.1, it is useful to note the following
lemma.

LEMMA 7.1. Fiz a(0<a<l), 2(2>1) 0(0<w<1). Let 4,= bya, 2, w/4)
be the number which was given in Lemma 6.1 and Lemma 6.1’. Then
there exist positive functions e, = efx,, a, 2, w) and ¢ = ¢,(x,, @, 2, ) such
that; for x, not in \Ji, TS (resp. UL, T3'S) with —cos o(x) > o

(i) T3% (resp. TY is continuous on the erneighbourhood U, (x,) of
xz, and for 0 <7 < ¥4,

Ty U() NV,2e) =0  (resp. TLU(x) NV ,(2¢) = 0) ,

min cos (U,,(2y) > % ,
(ii) for any positive 2,(<L 2) and for any K-increasing (resp. K-
decreasing) curve in U,(x,), there ewxists a K-quadrilateral G in U, (x)

such that T3%G (resp. T2GR) is also a K-quadrilateral with y,(G) = y and
0(r(@) = 2:0(r) (resp. with 7,(@ =y and 0, (G) = 2,6(p).

Proof. Put

0(2y, 4) = min %|cos (T3, .
0<j<¢bo

Denote by Y the element of \/%3' T%a® which contains x,, By (5°) in
§3 and by Lemma 4.1
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Y =Y — U ToV.6(@ £)
=0

is a connected open set which contains z,, Hence one can choose
& (< 8(xy, £,)/4) in such a way that U, (z,) is included in Y’. Then T3
is continuous on U, (x,) and it is proved that min cos (U, (x,) > (0/4)
and for 0 < 7 < ¥4,

T3U () NV (0(x, £)) = 0 .
If ¢, is taken to be so small that
U, (x) C TQU (T3i%x) and U,,(T3%x) C T3%U,,(x,)

with a suitable ¢, and a = 4(¢, + 1/K,,;,), then (ii) is true. Q.E.D.

Let y and ¢ be two K-increasing curves of C'-class and let ¥ = ¥,
be the canonical mapping with domain @ and range @’. Then there
exists a K-quadrilateral G such that

oc®Cr, OCr@cy,
and that both y,(@ and 7.(®@) intersect with no-elements of {. Put
(7.1) ={xecG;7°@Nyr+¢ and 7@ Ny +* ¢}.
Then 6 =G Ny and & =GNy

LEMMA 7.2. Let y and ¢’ be K-increasing curves. Let G and G° be

as in above. Then G° is measurable and there exists a measurable sub-
set G of G° with v(G) = v(G°) such that

G Ny c G for xe G©®

holds and that for any K-increasing curves 7 and 7 of C' class in G
which join 1,(G) and 7.(G), the canonical mapping ¥, is absolutely con-
tinuous on ¥ N G,

Proof. Fix «, (0 <o, <1) and put a = ap*(G%/4, where v*(G% is
the outer measure of the set G°. Then Lemma 6.1 gives a natural
number 4, = 4y(a,1 + ¢,,w/4). Now construct a sequence of families of
K-quadrilaterals {F', ;} like {Gn } in the proof of Lemma 6.1 as follows.
Put Fy= G and suppose that {F,_,} is suitablly constructed. Then put

Om-l,s,j = Fm—1,s n X§C) ’
Fm—l,s,j = Tilom—l,s,j - U Da.(x) - U Dc(x) .

ZE€T (T 10m—1,8,7) 2ET(T 20m—1,s,5)
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After a suitable renumbering {F',,_,,;}, denote them by {F, ,}. It
is obvious that

oo

G =N UT::Fm,sCUT::Fm,sCG-

n=mop § s

Hence G° is measurable and »*(G°) = v(G"). A piece F,, , is said to be
docile if F, , touches to S. A piece F, , is said to be wide or narrow
according as

0Grs(Fm,9) > w1 + p)~™"
or
0Go(Fps) < o1 + p)~™" .
Define 4(x) = inf {(1 + »)~“*d""(T3‘®)/c,; © > 0}, then one can choose v and

m, so that v(G* — E)<a for E ={reG; —coso(®) > 4w, A(T3:*x) >
Az(1 + ™ H@A + p~* for k> m,}. Put

Wale) = {2, d=(x) < a(l + 7)~™"9}

Now let m, be a sufficiently large natural number whose actual value
will be determined later. Fix m (> m,) and suppose that F, , is not
narrow, then one can find a family of K-quadrilaterals {G,, ;} such that
T3% is continuous on G, ; T5%Gn s ; are also K-quadrilaterals, and the
following relations hold;

Fm,s - Uj Gm,s,j C WA + ¢)n) ,
Gm,s,j n Wm((l + 02)271') = g ’
0(Tb(Gm,s,j)) < 0(Ta(Gm,s,j)) < (1 + cz)ﬁ(Tb(Gm,s,j))

(see §7 in [6]). If
min cos (G s.;) > 0/4

holds, then one can apply Lemma 6.1 to each Gp,; to prove that
there exist measurable subsets G2, which satisfy the conditions (C-1),
(C-2) and (C-3) in Lemma 6.1. Since T7 is a C*-diffeomorphism from
Gns; into G, the canonical mapping ¥, is absolutely continuous on
T3GE9, Ny, Put

Gn = U{Gnss; Fn, is not narrow and min cos (Gn,s ;) > w/4} .
8,7

Note that the measure of the set N = {x € Gn,;,; T*> is contained in not-
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wide and not-docile F; ,, for any k > m,} is equal to zero by Lemma 5.5
(cf. §6). In other words, for almost every x e E° = E — (Us_,., T" W21
+ ¢)) with T"xeF,,,,, m =0,1,2, ..., there exist infinitely many wide
F,..'s. Note the estimate 6(7,(Fy 41 5,,,)) > 1+ 9)(min {Gro(F ' s,), 4P (T~™2)
/e} — 2max 0;(F'm ). If Fr,, is wide, then for n > m > m, the esti-
mate 0(7,(F,;,)) > 2z(1 + »)~™* holds; that is, F,, is not narrow. By
Poincaré’s recurrent theorem, for almost every x ¢ E° there exist infinitely
many {m,} with T™z e G,,. Thus one has the estimate

oo

v(G" - U T’;Gn) < const. (1 + p) m@ns 4 (G — E),

=m

where const. is an absolute constant. Let m, be a natural number for
which the right hand side of the above inequality is less than 2¢. Put
Gﬁrf’a) = Us,j {G;/clr::’)]’ Gm,s,j C Gm} and G(ao) = U::L=mo TZ:G?(:"‘)' Then

u(Go—G(ao»su(GO— O T:::Gm) + 35 UGy — GED)

m=mo m=mo Gm,s,j"Gm

< 3a < ap(Gy) .

Put G = Uy_; GA/n). Then G satisfies the desired conditions.
Q.E.D.

In general, denote by dy = dy(x) the gradient of a curve y at # and
put oy = 1/8y. Further put

(7.2) dky(@) = A(T3*y)(Ti*x) and dxy(w) = o(T*r)(Ti*x) .
Then by Lemma 4.3 (i),
(7.3) dxy(x) = byl ; or(x))

holds.
Let y and ¢’ be increasing curves of C'-class as in Lemma 7.2. Sup-
pose that they are given by the equations

r=ulp and r=u(p,

respectively. Hereafter assume that the domain and the range of the
canonical mapping 79, to be ), = y N G and 0%, = 7’ N G respectively,
where G is the set given in Lemma 7.2.
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LEMMA 7.3. Let y and ;' be K-increasing curves of C'-class as in
Lemma 7.2, and let g, r,¢) be the Radon-Nikodym density:

(7.4) 99U, 7, ) = dg;r Nadd on P, .

Oy

Then g,, can be represented by the infinite products;

g;fg)»’(!y 7" §0)
Foi1, €08 it i COS gust Rusaitesy {07 + R(esy i)} + k“m“ +1
— ﬁ i COS 9441 08 @441
=0 K;,,CO8 901,+k/ COos ¢i+1+ki+1k iCi+1 {a 7 +h(51:,90t)}+ ki+17:i+1 +1
(7.5) COS (44 COS Py 49
4+ ki”-'in +{(1+ kful )h(‘i Soi)+ Ti+1 }37’
_ Or cosp & coS ¢; coS ¢; S ¢;
ar COSgD 1=0 14 felien k,;Z'Hl +{(1+ kfzn )h(lu%)'{‘ £i41 }ar
cos ¢; COS ¢; 08 ¢,
where (¢;, 1, 0) = T3, 7, 0) and (¢, 7, ¢)) = T (e, 7, 9).  Moreover, the
estimate
-1 —_— Aol
g, < exp [og 33— CADTNo =Bl g flog T ]
i=0 min {—cos ¢;, —cos ¢} or

holds with a suitable constant c,.

Proof. First recall the estimate (6.16). Since 6(C,(x)) and 6(C’,(x"))
converge to 0 as m — oo,

max
9,56 Cm@

log U.(g) / Lo )| and max_|log L4.(g) /D )
de de dfech@ do do

converge to 0 as well. Hence

0(Cr(x)) ™=
lim mr/ Alz;, T3] =1,
nee OT="Cr(@)) ¢ H e T3

6(Cr(x))
lim w22
m—eo G(T™Cl(2)) ¢

From (6.18) and (6.19),

"’n 1A, T3) =1

i OO _ 7 A, T _
oG @ B A, Ty Y

holds. Since
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de; 1 — dp;, dry dry,
dSD,,; dr,; +1 dgo, d?”i

by Lemma 3.3, the two expressions in (7.5) are obtained. By (6.19) and
(6.19), the inequality in the lemma is obtained. Q.E.D.

§ 8. Measure theoretical properties of 7© and 7®

The purpose of this section is to show that ¢ and 7 play a role
of a coordinate system in the sense of measure theory. Let y be a curve.
Put

Alyl = A9y = ;,;Lé) 7 ()
8.1) '
(resp. A©L] = IE”(B)(”)> .

If y is continuous, then the expression

o0

Alyl =N U c

k=0 gnysd,cevE_ Tia©

is true. Therefore Afy] is a Borel set.

LEMMA 8.1. Let y be a K-increasing curve, then

WAl >0 .

Proof. Since Up,TiS consists of a countable number of K-decreas-
ing curves, y N (U TiS) is a denumerable set. Hence there exists a
point ;, in y — U, TiS. Let ¢ = ¢(x, 1/4, 1, ®) be the constant given in
Lemma 7.2 with w = —cos¢(z,). Put =y N U, (x). Then there exists
a K-quadrilateral G such that 7 joins 7,(@) and 7.(®, 0G:(@) = 6(r,(@))
holds and T3%G is also a K-quadrilateral with ¢, = ¢,(1/4,1,0/4). Ob-
viously, v(AlyD > v(G“*) > (83/4)v(G) > 0. Q.E.D.

Let y be a K-decreasing curve with 6(y) = =, and let r = u,(¢) be the
equation of y. Put 7, ={C,r + £, 0); (¢ 7,¢0) e7}, that is, 7, be the curve
given by the equation r = u,(¢) with u,(p) = up) + t. Denote by G,
the quadrilateral surrounded by S,7; and y,. Put

G, = {reG,,; 1) intersects with both 7, and ¢} .

Then Lemma 7.2 gives a set G{% on which the canonical mapping () =
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o, i absolutely continuous. Introduce, for convenience, simplified
tyls
notations:
v = U, 00 =0, and g9 = g9,

Suppose that the curve 7(,u,(¢), p) is represented by r = i, ,(y). Then
for a given Borel set B

v(BN GE) = —y, r drj cos gdo;, (¢)
’ ¢ BnG{ent,
= v [ ar| €08 6,94, 1), )i (o)
¢ Oe,sNT (BN )

gt(% )i

de
.L;,. BN (¢, u1(p),9) NG

holds, where (¢, %,(¢,), ¢,) = TO,(t, u,(p), ) and

(8.3 9:(p, ¥) = —y, cos ‘!’g:,m,g,w)—uo(w)(" 'uz,,a(‘l/‘), W (e, ac,q,(\]f), )]t

Put N;" = U Gf(fz)-«,(nn)z-a’ N* = Ue N;‘ and A*[T] = Uq,n (G&?zz—q — Géf)(n+1)2—q)
= A[y] N N*, If 4%(x) > 0 and «x) = ¢, there exist ¢ and n such that z is
in Ghy-q,(mens-o» because 6(r©(x)) > 0. Hence »(M* — N*) = 0. Therefore

v(Aly1 N B) = w(A*[y1 N B)

(8.4)
= f dar(§0) I 90(50, 11/‘)(10',«:) (1[f) .
rNA*r] 1@ (e,u0(9),9)NB

LEMMA 8.2. Let y be a K-decreasing curve in M. Then o,7) =0
if and only if v(Al7]) = 0 for any Borel subset 7 in 7.

Proof. Assume that ¢,(7) = 0. Then by (8.4)
v(Al7D = v(AlF1 N A*[yD
= da,(p) ) 9@, ¥)do, ()

7nAa*r] 790 (e, u0(p), ¢

=0.

Conversely, assume that ¢,(7) > 0. Since y N Ui, TS is a denumerable
set, there exists a point z, in 7 — Uy, T*S which is a density point of
7. Then there exists a segment y, of y such that z, is in y,, where 7,
is in U,,(x,) with ¢ = (2, 1/4,1, w) with ® = —cos ¢(x,) and that ¢,(, N 7)
> (1 —1/648,c)o(r). Let G be a K-quadrilateral with ¢, in G such that
70 Joins 7,(@ and 7,(G), and that T-%G is also a K-quadrilateral with
4, = ¢,1/4,1,0/4). Then there exists a subset G = GV which satisfies
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(C-1), (C-2) and (C-3) in Lemma 6.1. Since by Lemma 6.1 and Lemma 7.1

v ¢08 o(xy) 4y, cos o(x,)
K p) = 0en s - TR

and since max 0,,(G) < (1 + ¢)0(r), the following estimate is given

W@ < — 4y, cos p(x)B(1) I . do(9)a, @ (¢, Uy(9), 9))

min

<_ @ + ¢y, cos ¢(xo),8(1) gr(@ N 70)0(7’0) .
4Km1n

On the other hand,

W& > %D(G) > — 3y, cos p(x)(1 + ¢,) 0(ry)? .

16K ,.C*

Therefore
3
GNyr)>—2>__6
(G N7y > e (7o)
and hence
i 1
a(GNyr,NP > Wﬁ(ro) .

This proves
v(A[7D > v(Aly, N 7N GD

—y, cos (x,) =
> m 0(7’0)0'(7’0 n 7 n G)

>0.

Q.E.D.

Let y be a K-decreasing (resp. K-increasing) curve of C'-class in M.
Let y* be an extension of y which is a K-decreasing (resp. K-increasing)
curve of C'-class with 6(y*) = =. Suppose that y* is defined by the equation
7 = Uup). Denote 7@, ulp), ) simply by 7@ (resp. r(, uyp), p) by 1)
and suppose that y© (resp. y©) is defined by the equation 7 = u“(y)
(resp. r = u(y)). Define the functions g{(p,v) and g§?(p, ) by

Yo COS Y = COS gy,
XLy i=0 COS @y,

9°(p, ¥) =
(8.5)

{Ki.1 €08 @i+ ki €08 0441+ K1 Fois 41}0s + K 1Ti 40+ €OS 044

{141 €08 Y+ K] COS Yy 1+ Koy Kt 14 1}0s + Ky yafey1 4+ COS Yy
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Yvith Aﬁi = (05 P ¥ = T3, uOW), ¥, & = k(&), k= K@), # =&y,
b, = b,(e, u@(W), ¥ ; dutg/dyy) and b; = by((¢, uy@), @) 5 du,/de),

—Y, COS Y TT COS Yy

19 (&) ==1 cos g
{fciu cos ¢; + lf: COS @541+ kjﬂ@ﬁu}lﬂin— Iﬁgti-&-l—cos Py
{ki+1 o8 Yy + k7 €08 g+ ki+1k§%i+l}bi+1_—k2%i+l_COS Py

9(p, ) =
(8.6)

with %, = (4, 7 ¥) = T3, uOW), ), k, = k&), k, = K@), # = (&),
b, = b, u@ W), V3 du,/dy) and b; = b,(e, u)(@), 5 duy/de), of course (¢;, 74, ¢;)
= T3, ul), ), ks = ke, 1), ki = K (e, 1)), i = (e, 74, ). Then the follow-
ing lemma holds.

LEMMA 8.3. Let y be a K-decreasing (resp. K-increasing) curve of
C*-class in M. Then

WBNACGD = [ o) [ | 0o, 1dow()
(8.7) 7 r e NB
(’resp. (B NA®[]) = f do (o) f o «;r)da,m(«p)) :

Proof. Put 7 =7 —yNA*[y] and assume that o,7) > 0. Then by
Lemma 8.2, v(A*[f]) > 0. Since 7 C 7, the inclusion A*[7] C A*[y] holds.
On the other hand, A*[f] N A[y] = 0 since A*[y1N7=@. This is a con-
tradiction. Hence ¢(7) = 0 and hence Lemma 8.2 is true for the first

case by the use of (8.4). The second case can be shown similarly.
Q.E.D.

LEMMA 8.4. (i) Foach conditional measure with respect to {© (resp.
£®) are equivalent to o, (resp. g,w) for almost every y@ (resp. ).
(i) Let o be a measure on a curve r'® (resp. r*®) defined by

a9 (P = v A7), 7 C 1@,
(resp. o(7) = v(A°[FD, 7 C 7).

Then for almost every ¢© in © (resp. r© in {©) ¢© and ¢,« (resp. ¢©
and g,w) are equivalent.

Proof. The proof is clear by Lemma 8.2 and 8.3.

§9. A perturbed billiard transformation is a K-system
The idea of the proof of the K-property is the same as in the case of
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the Sinai billiard system [6],[10]. The idea due originally to E. Hopf
was generalized by Ya. G. Sinai [9].

LEMMA 9.1. 9 A9 is the trivial partition.

Proof. Let f(x) be a (9 Af¥-measurable function. Then there
exist functions f,(x) and f,(x) such that

fi@) = fily)  for any y in I'“(x)
9.1 JAx) = fi(2) for any z in I'®(x)
f@) = fi(x) = fix) for almost every o in M .

Further there exists a measurable set N(f) such that

v(N()) =1
9.2 yIN(H) |79@) = v(N(f)|r@ ) =1  for z in N(f)
(@) = filx) = fi(x) for = in N(f) .

Put « = (128¢,(1 4 ¢))™' and ¢, = 4, 2,0/4). Denote by {Y{} the all
elements of the partition \/%_,_, Tia N {x; —cos p(x) > w}. Let z be
an inner point of Y and let ¢, = ¢,(2, @, 2, 0) be as in Lemma 7.1. Let V
be a rectangle in U, ,(x) such that a pair of sides is parallel with ¢-axis,
the length of the horizontal side is 4/K,;, times of the length of the vertical
side and « is the center of V. Let V be the rectangle with the same
center x, the same horizontal size as V and twice vertical size of V.
Then V separates V into three rectangles. Denote by V, the top rec-
tangle and by V, the bottom rectangle (see Fig. 9-1). Since V C U, (%),
there exists a K-quadrilateral G such that y,(G) and 7,(G) join the top side
and the bottom side of V and that T3;%G is also a K-quadrilateral. By
Lemma 6.1, there exists a subset G** of G, which satisfies (C-1), (C-2)
and (C-3). Since the estimate

= (@)

> 2a0(@)
is obtained, the inequality
(G NV, NN()) > av(@) >0

holds. Hence there exists a point z in G N N(f) N V,. Obviously, the
curve y©(z) intersects with the bottom side and the top side of V.

Let x, be an arbitrary point in V N N(f). Let V, be a rectangle in
V such that the vertical sides of V, are included in the vertical sides of
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V and the line ¢ = ¢(x,) is the center line of V,. Divide V, into three
rectangles V,,V, and V,, where V, is the upper quarter of V,, V, is the
central half of V, and V; is the lower quarter of V,. Denote by 7., 72 7s
and 7, the top side of V,, the top side of V,, the top side of V, and the
bottom side of V,, respectively (see Fig. 9-2).

the left hand side of y“(%).

Suppose that x, lies in
Then there exists a K-quadrilateral G, such

that 7,(G) = 7°@) NV, 0G.(G)) = 0(r5(G)) and Ti*G, is also a K-
Then

quadrilateral.

(GO NV, NAN)) > a(G) >0

holds. By Lemma 8.3 and Lemma 8.4,

because x is in N(f).

Then ¢ (x,) intersects with 7, and 7,.

0,(GED NV, NN N 7@ (w) > 0

Hence there exists a point x, in

©O NV, NN Ny .

Therefore by Lemma 6.1/, there

exists a K-quadrilateral G, such that 7.(G) = 7“@) N (V,U VY, 7.B
Then similarly in

joins 7, and 7,, and T%G, is also a K-quadrilateral.

the above, one can see that
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Or0 @GP NV AN Ny9xy)) > 0,

and that there exists a point x, in G&® NV, N N(f) N y“(x,). Perform-
ing such a procedure repeatedly, one can obtain a chain {z,,x,, -- -, ®,,}
such that z; is in N(f), @ is in 7O@y_y), @y, is in 79(xy) and 7@ (x,,)
intersects with (). Since the canonical mapping ¥%,,_, @@ 1S
absolutely continuous, there exists a point z;, in “(x,,_.) N N(f) such
that «,,, = 79}, N @) is in N(f). By (9.1) and (9.2), it is obtained
that

f(xo) = fz(xo) = fz(xl) = fl(xl) = fl(xz) = fz(xz) =
cor = [l @m0 = [l @omop) = [1(@sn_) = Ji(®ha) = fo(®hn)
= fz(xgnu) = fl(x;nn) = fl(fﬁ) = f(i’) .

Similarly, one can see that f(x) = f(Z) when «, lies in the right hand
side of y(x). Since z, in N(f) NV is arbitrary, f(x) is equal to a
constant for almost every z, in V,. Since x is an arbitrary inner point in
Y{, f(x) is equal to a constant for almost every z in Y{. Assume
that the intersection of the boundaries of Y and Y{” includes a curve
7. Then by Lemma 4.1, one may assume that y is either K-increasing
or K-decreasing. Suppose that y is K-increasing. Since y N (Ui T%S)
is a denumerable set, there exists a point x, in y which is not in U, T%S.
Then there exists a K-quadrilateral G in U, (x,) with ¢, = ¢,(xy, 1/4, 1, w) sSuch
that 6(7,(@) = 6(7,(®) holds, T3*G is also a K-quadrilateral and y inter-
sects with 7,(G) and 7,(G). Then u(Y{ N G N N(f)) > 0 and »(Y{ N
G N N(f) > 0. By (9.1), for almost every  in Y{ U Y{ is equal
to a constant. When y is decreasing, one can show the same result.
Since w > 0 is arbitrary, it is proved that for almost every x in M®“ f(x)
is equal to a constant a®.

Observe a triple of boundaries 90Q,,0Q,,0Q,. such that there exists a
point 2z in M“> NS with Ty'2 in M — S and T,z in M“” — S. Let 7
be the branch of T;'S which contains T3'2. Suppose that y is the com-
mon part of the boundaries of X¥ and X{®. Since y is K-increasing,

VACGINXP) >0 and w(A9[]NXP) > 0.

Since one of X{¥ and X% is mapped into M“?, and the other is mapped
into M“", and since f,(x) is constant on T,y(y) for ¥ in y, one can see
that a,, = a,.. Performing this argument repeatedly, it is concluded that
for almost every 2 in M f(x) is equal to a constant. Q.E.D.
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THEOREM 3. Under the assumptions (H-1), (H-2) and (H-3),
(i) T, is a K-system,
(ii) ¢ and ¢ are K-partitions,

k.,

(i) W(T,) = f log (1 + o

+ kicosg + K cos o + kik'r { 1 + ke, go)})dv

COS ¢, 190, 7, )
= Ilog (1 + k't + k, cos ¢ + k(’ cos ¢, + ki'r, ) v .
cos ¢ €08 ¢y (&1, 71, 1)

Proof. By Theorem 2 and Lemma 9.1,
o(Ty) = n(Ty) =% =9 =9 N LY

is the trivial partition. Therefore (i) and (ii) are proved. The third as-
sertion (iii) follows from a theorem of Ya. G. Sinai [10] together with
Lemma 3.3 (see §11 of [6], [5]).

§10. The motion of a particle in a compound central field

Appealing to Theorem 3, the ergodicity of the motion of a particle
in a compound central field will be shown under some assumptions.
Suppose that there exist several fixed kernels g(1), ---,d(I) in a torus T
and that these kernels have central potentials; U,(q — ), ¢ = 1,2, .-,
I, where |q¢ — q(c)| means the Euclidean distance between q and g(¢). The
potential field governed by

10.1) Ug) = z Udq — 20D

is called & compound central field. If the potential ranges of U,(jg — g(0)])’s
do not overlap, the dynamical system of a particle in the potential field
satisfies assumptions (H-1) and (H-2). Therefore Theorem 8 is applicable
to the dynamical system. In order to check the assumption (H-3), it is
necessary to calculate the path of the motion of a particle in a central
field. A central potential function V is said to be bell-shaped, if

(V=1) V(s) is continuous for s > 0 and V(s) = 0 for s > R with some R,

(V-2) V(s) belongs to C%*class in (0,R) and there exist left deriva-
tives V/(R-0) and V'(R-0),

(V=3) —sV’(s) is monotone decreasing and V'(R-0) < 0.
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Now discuss the motion of a particle with mass m and energy E in the
potential field governed by a bell-shaped potential function V. Then the
Hamiltonian is given by

(10.2) H(s, p) = 3m(§* + $B)V(s)

using the polar coordinates (s,f8). It is well known that the angular
momentum of the particle

(10.3) A = ms*p

is a first integral and that the equation of the motion is given by
(10.4) ms — st = —V'(s) .

Hence the equation of a path is expressed in the form

g = J‘ +As™?
@CmE — V(s)) — A%.s~HY2

10.5) ds + const .

Observe a path whose minimum value of the radial coordinate is
equal to u. Suppose that the path passes (u#,0). Let (R,a(w)) be the
point at which the path goes out from the potential range, and let +-(u)
be the angle between the velocity and the radius vector at (R, a(x)). Then
the formula

(10.6) H(g) = 2Ra(y~"(z — ¢]) sign (p — )

is obtained.

Fig. 10-1

The angular momentum A is expressed in the form
A = 2mE — VW) u
by (10.2) and (10.3). By (10.5)

https://doi.org/10.1017/5S0027763000017281 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017281

PERTURBED BILLIARD SYSTEMS 55

_(® w(E — V() e
(10.7 «) = [ =iy —w =) *

Since the velocity at (s, p) is given by ($cos § — sfsin B, § sin 8 + spcos p),
one can see

s

(10.8) cos Y(u) = T E Y e

By (10.2)

(10.9) grep| =2@®—_veE) =2E.
s=R m s=R m

Since by (10.3), (10.4), (10.8) and (10.9)

§ — 2E —sp = 28 A* _ 2E 20—V

m m ms? m ms?

is seen, and the expression

(10.10) V(W) = cos™! {RZE — w(E — V(w) }1/2

RE
is obtained.
LEMMA 10.1.
H(p) = 2Ra(y"'(|z — ¢|)) sign (p — ) ,

where a(u) and (u) are given by (10.7) and (10.8) respectively. Further
H(p) belongs to C*-class and

dH(p) _ —4R(E — V(W) + 2R{R’E — w(E — V(u)}"9(u)
dy 208 — VW) — uV'(w)

with u = " (|x — ¢|), where

gy = [ Lo E — VeV ) + e E — V)V (e
B 2[E — V@I e“E — V(ew) — E + Va)l”

Proof. The first equality was shown. Noting the expression

_ (log B/ E — V) 1/2
au) = I . {e“(E’ “View) — (E — V(u))} ds

hy) = dH(p)/dp can be calculated and it can be shown that h(p) is con-
tinuously differentiable. Q.E.D.
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Denote by R, the range of the potential U, and denote by L., the
minimum distance between the domains @, = {q;|q — 7()| < R}, ¢t =1,2,

oo 1
THEOREM 4. If every U, is bell-shaped and if energy E satisfies the
condition
1 . R.L
10.11 o<eE<l {~~'—m_U:R—0},
R TR L, E T

then {S;} is ergodic. Moreover the transformation T, is a K-system, of
course T, is ergodic.

Proof. Since the curvature of 9Q, is equal to 1/R, and |z|n, = Ly,
the assumption (H-3) is equivalent to

min () 4 (14 1Y) >0,
¢ min

If U, is bell-shaped,
min dH(e, ¢) > 4F

dp — UR,—0)
holds by Lemma 10.1. Therefore if E satisfies the inequality (10.11),
then the assumption (H-3) is fulfilled. Q.E.D.

ExAMPLE. The following central potentials are bell-shaped.

@ Ves) as* — aR* 0<s<R,
a “(8) =
0 R<s,
for o <0,
log R 0<s<R,
) Vi(s) = {“ e /s °
0 R<s.
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