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ON CERTAIN SUBLATTICES OF THE LATTICE 
OF SUBGROUPS GENERATED BY THE PREFRATTINI 

SUBGROUPS, THE INJECTORS AND 
THE FORMATION SUBGROUPS 

A. R. MAKAN 

1. Introduction. Various characteristic conjugacy classes of subgroups 
having covering/avoidance properties with respect to chief factors have recent­
ly played a major role in the study of finite soluble groups. Apart from the 
subgroups which are now called Hall subgroups, P. Hall [7] also considered 
the system normalizers of a finite soluble group and showed that these form 
a characteristic conjugacy class, cover the central chief factors and avoid the 
rest. The system normalizers were later shown by Carter and Hawkes [1] to be 
the simplest example of a wealth of characteristic conjugacy classes of sub­
groups of finite soluble groups which arise naturally as a consequence of the 
theory of formations. They show that a finite soluble group has, corresponding 
to each saturated formation X containing the class 31 of all finite nilpotent 
groups, a characteristic conjugacy class of subgroups called the X-normalizers 
which have properties closely analogous to the system normalizers of P. Hall 
and coincide with the latter when X = -K. This part of the theory of formations 
has been extended by Wright [12] for the case when a saturated formation 
does not necessarily contain 31. 

Dual to the concept of formations is the concept of Fitting classes introduced 
by Fischer [3]. As Fischer, Gaschiitz and Hartley [4] have shown, a finite 
soluble group has, corresponding to each Fitting class §), a characteristic 
conjugacy class of subgroups called the ^-injectors. These either cover or 
avoid a chief factor of the group (see Hartley [8]). 

On the other hand, Gaschiitz [5] also considered what he called the Pre-
frattini subgroups of finite soluble groups. In particular, these cover the Frattini 
chief factors and avoid the complemented ones. Working in this direction, 
Hawkes [9], in turn, obtained further characteristic conjugacy classes, one 
class in each group corresponding to each saturated formation, of subgroups 
of finite soluble groups which have properties closely analogous to the Pre-
frattini subgroups and which coincide with the latter in the case when the 
saturated formation under consideration is the trivial one. Hawkes' subgroups 
corresponding to a saturated formation % are called the ï-Prefrattini subgroups. 
Besides possessing an interesting covering/avoidance property, an 36-Prefrattini 
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subgroup of a finite soluble group can be expressed as a product of a Prefratt ini 
subgroup and an ï -normalizer of the group. 

This la t ter fact suggested the s tudy in a finite soluble group of the lattice of 
subgroups generated by the Prefrattini subgroups of the group, the g-normal-
izers of the group corresponding to a sa turated formation g and the ^- injectors 
of the group corresponding to a Fi t t ing class § . T h e idea is to find within this 
lattice further characteristic conjugacy classes of subgroups with covering/ 
avoidance properties. 

The work in the present paper derives from our a t t e m p t to s tudy this latt ice. 
We had to restrict ourselves to § being a Fischer class since in this case more 
is known about the behaviour of the Sylow subgroups of the ^- injectors (see 
Har t ley [8]), and this information is vital in our investigation. T h e results of our 
investigation may be summarized as follows. With a Sylow system 2 (see 
P . Hall [6], for the definition) in a finite soluble group G, one can natural ly asso­
ciate a Prefrattini subgroup W of G (see Hawkes [9]), an g-normalizer D of G 
(see Wright [12]) and an ^- injector F of G, namely the one into which 2 reduces 
(see the proof of Lemma 3.2 in [10]). Let 8 (D, W, V) be the lattice of subgroups 
of G generated by D, W and V (in the full subgroup lattice of the group) . 
Then , we have 

1.1 T H E O R E M , (i) The lattice 2(D, W, V) is distributive. 
(ii) Any two subgroups of G in %(D, W, V) are permutable in G. 
(iii) Each subgroup of G in 2(D, W, V) has a covering/avoidance property 

with respect to the chief factors of G. 
(iv) 2 reduces into each subgroup of G in 2(D, W, V). 
(v) / / A is a subgroup of G in 2(D, W, F ) , then the family {Aa\a is an 

automorphism of G} of subgroups constitutes a characteristic conjugacy class of 
subgroups of G. 

T h e above theorem is proved in Section 3, where we give an example of G 
in which S CD, W, V) is a free distr ibutive lattice on the three generators and 
includes neither G nor {1}. 

All groups considered in this paper are assumed to be finite and soluble. 

Acknowledgement. T h e main result of this paper is par t of my P h . D . thesis a t 
the Australian National University in Canberra, which was wri t ten under the 
direction of Dr. L. G. Kovâcs and Dr. H. Lausch. I am indebted to Dr. Kovâcs 
and Dr. Lausch for their invaluable guidance and constant encouragement. I am 
also indebted to Dr. B. Har t ley for his many invaluable suggestions in­
corporated here. 

2. Pre l iminar i e s . In this section we collect some of the known results about 
certain subgroups of the lattice 2(D, W, V). 

T h e following three results concern the subgroups D, W and DW in the 

lattice 8 ( A W, V). 
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2.1 THEOREM (Carter and Hawkes [1], Wright [12]). 
(i) An %-normalizer of G covers the ^-central chief factors of G and avoids 

the rest. 
(ii) A Sylow system of G reduces into the corresponding %-normalizer of G. 

2.2. THEOREM (Gaschutz [5]). A Prefrattini subgroup of G covers the Frattini 
chief factors of G and avoids the complemented ones. 

2.3. THEOREM (Hawkes [9]). (i) An %-Prefrattini subgroup of G avoids the 
^-eccentric, complemented chief factors of G and covers the rest. 

(ii) If U is the %-Prefrattini subgroup of G corresponding to the Sylow system 
2 o / G , then U = DW. 

In [10], the author studied the sublattice of 8(2), W, V) generated by the 
subgroups V and W. In order to present here the relevant results of [10], we 
need to make the following définition. 

2.4. Definition, (i) A chief factor of a group G is said to be partially § -
complemented if it is complemented in G and at least one of its complements in 
G contains an ^-injector of G. 

(ii) A ^-chief factor H/K of G is said to be §-Frattini in G if it is ^-covered 
and H C\ UP

G/K C\ UP
G is Frattini in G, where UP

G is the normal closure in G 
of a Sylow ^-subgroup Up of an ^-injector U of G. 

2.5. THEOREM [10]. (i) V and W are permutable subgroups of G and, moreover, 
their product VW avoids the partially § -complemented chief factors of G and 
covers the rest. 

(ii) W C\V covers the § - Frattini chief factors of G and avoids the rest. 

The permutability of D and V and that of DW and V, and also the covering/ 
avoidance properties of D V and DWV have been established independently by 
Graham Chambers [2] and the author [11]. Chambers obtains these results as 
special cases of his more general results, namely, Theorems 3 and 4 of [2]. 

2.6. THEOREM (Chambers [2], and the author [11]). (i) D and V are permutable 
subgroups of G, and moreover, their product DV avoids the %-eccentric, ^-avoided 
chief factors of G and covers the rest. 

(ii) D and WV are permutable subgroups of G, and moreover, their product 
D{WV) avoids the ^-eccentric, partially ^-complemented chief factors of G and 
covers the rest. 

3. The lattice 8(2), W, V). In this section, we will prove Theorem 1.1. 
Apart from part (iii) of the theorem, we will obtain the rest of the theorem from 
a more general consideration. We begin with the following lemma. 

3.1 LEMMA. Let A be a chief series of a group G, let p be a prime and let A, B 
be subgroups of G each of which either covers or avoids each p-chief factor of G 
in A. Then the following are equivalent: 
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(i) (A, B) avoids each p-chief factor in A which is avoided by both A and B; 
(ii) \{A,B)\P = 1-45^ and A C\ B covers each p-chief factor of A which is 

covered simultaneously by A and B. 

Proof, (i) => (ii). Let a be the product of the orders of the ^-chief factors in A 
which are covered by A, /3 the product of the orders of the ^-chief factors in A 
which are covered by B and y the product of the orders of the ^-chief factors 
in A which are covered simultaneously by A and B. Then, by (i), \(A, B)\v = 
<*$/y ^ \AB\P. Since \AB\P ^ \(A, B)\p, clearly the equality must hold, and so, 
also \A P\ B\P = 7. Thus, A C\B covers each ^-chief factor of A which is 
covered by both A and B. 

(ii) =» (i). This is proved similarly. 

Before we can state the next lemma, we need to make the following definition. 

3.2. Definition. Let A be a chief series of a group G, let p be a prime and let 
A, B be subgroups of G. Then, A, B are said to be p-compatible at A if each of 
A and B either covers or avoids each ^-chief factor of A, and, moreover, the 
equivalent conditions (i) and (ii) of Lemma 3.1 hold. 

3.3. LEMMA. Let2£ be a set of subgroups of a group G, and, for each prime p, 
let Ap be a chief series of G. Suppose that the members of S^ are pairwise p-compat­
ible at Apfor each p. Then, for X, Y, Z £ 2£~, we have 

(i) XY = YX; 
(ii) XY and X C\ Y are p-compatible with Z at Ap for each p; 

(iii) XY C\Z = (XC\Z)(Y C\Z) and(XC\Y)Z = XZC\ YZ. 

Proof, (i) Since X and Y are ^-compatible at Ap for each p, this is immediate 
from Lemma 3.1 (ii). 

(ii) and (iii). Since X and Y are ^-compatible at Ap, any ^-chief factor in 
Ap covered simultaneously by X Y and Z is covered either by X or by Y and 
by Z, and so, since also X, Z and Y, Z are ^-compatible at Apy it is covered 
either by I H Z or by Y C\ Z. Thus, such a ^-chief factor is covered by 
XY C\Z ^ (X C\Z, YT\Z). Now, by (i), XY permutes with Z, and so, 
by Lemma 3.1, XY, Z are ^-compatible at Ap. Furthermore, XY C\ Z and 
(X Hi Z){Y r\ Z) cover the same ^-chief factors in Ap. Thus, 

\XYC\Z\P = \(XC\Z)(YC\Z)\P. 
Since p was an arbitrary prime under consideration, we have shown that 

XY r\z = {xr\z)(Yr\z). 
Similarly, any £-chief factor in Av which is avoided by X C\ Y and by Z is 

avoided either by X and Z or by Y and Z. Therefore, either XZ avoids such a 
£-chief factor or YZ avoids it. Hence, (X C\ Y, Z) ^ XZ C\ YZ avoids it, 
and so, by Lemma 3 . 1 , i n Y, Z are ^-compatible at Ap, and \{X C\ Y, Z)\p = 
I (X C\ Y)Z\P. Since p was an arbitrary prime, it follows now that (X C\ Y)Z = 
{X C\ Y, Z). Finally, since, for each p, any £-chief factor in Ap avoided by 
( i n Y)Z is also avoided by XZ C\ YZ, as seen above, we have (X C\ Y)Z = 

xz r\ YZ. 
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3.4. THEOREM. With the hypothesis of Lemma 3.3, the lattice 8 ($T) of subgroups 
generated by & is a distributive lattice of pairwise permutable subgroups. Any two 
members of 8($T) are p-compatible at Apfor each p. 

Proof. By repeated application of Lemma 3.3 (ii), any two members of 8($T) 
are ^-compatible at Ap for each p. 

The rest follows by applying Lemma 3.3 (i) and (iii) to 8(3T). 

In order to state an immediate corollary of Theorem 3.4 and also for later 
purposes we need the following definition. 

3.5. Definition. A pair of subgroups A, B of a group G is said to be compatible 
if each of A and B has the covering/avoidance property, and moreover, each 
chief factor of G avoided (covered) simultaneously by A and B is avoided 
(covered) by (A, B) {A C\ B). 

3.6. COROLLARY. Let 2£ be a set of pairwise compatible subgroups. Then the 
lattice they generate is a distributive lattice of pairwise permutable compatible 
subgroups. 

We are now in a position to prove Theorem 1.1. 

Proof of Theorem 1.1. For each prime p, let 2P be the unique Sylow ^-sub­
group of G contained in 2, let Vp = V C\ 2P and let Ap be any chief series of G 
through VP

G, the normal closure in G of Vp. By Theorem 2.3 (i) of Hawkes [9], 
D and W are ^-compatible at Ap (and indeed are compatible). Also, a ^>-chief 
factor of Ap avoided by both V and D is an g-eccentric chief factor of G above 
VP

G, and so, in view of Theorem 2.1 and the homomorphism-invariance of the 
g-normalizers of G, it is avoided by VP°D, and hence, also by VP

GD^LP> 
where 2P> is the unique Sylow ^-complement of G in 2. (Note that D permutes 
with 2 ^ since D2P> = NQ(2P> H G*<*>), where %(p) G {gfe)}, the family of 
full, integrated formations which define g locally.) The latter subgroup evi­
dently contains (V, D). Thus, V, D are ^-compatible at Ap. 

Similarly, a ^-chief factor of Ap avoided by both V and W is a complemented 
chief factor of G above VP

G, and so, it is avoided by (V, W) (see the proof of 
the main theorem in [10]). Hence, V, W are ^-compatible at APJ and therefore, 
V, W and D are pairwise ^-compatible at Ap for each p. Now, it follows, by 
Theorem 3.4, that 8(D, W, V) is a distributive lattice of pairwise permutable 
subgroups, and so, parts (i) and (ii) of Theorem 1.1 are proved. 

In order to show (iv), we observe that if a Hall 7r-subgroup P of G, where 
7T is a set of primes, reduces into a pair of permutable subgroups A and B 
then it reduces into AB and A C\ B. For, 

\(pr\A)(pr\B)\ ^ \pr\AB\ ^ \AB\T = 
\A\r • \B\J\A r\ B\r ^ \P n A\ \p n B\/\P C\AC\B\ = 

\{p C\A)(P r\B)\. 

Thus, \PC\AB\ = \AB\r and \A C\ B\T = \P C\ A C\ B\. Hence, since 2 
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reduces into each of D, W and V (see Theorem 2.1 (ii) and Lemma 3.5 in [10]) 
and since %(D, W, V) is a lattice of pairwise permutable subgroups, it follows 
that 2 reduces into each member of %(D, W, V), and so (iv) is proved. 

Also, since the stabilizer 38 of 2 in the group °tt of automorphisms of G also 
stabilizes each of D, W and V, 38 stabilizes every element in the lattice 8(D, 
W, V). Moreover, in view of the well-known result of P. Hall [6], 38 supple­
ments in % the group of inner automorphisms of G; hence the statement of 
part (v) of Theorem 1.1. 

Finally, we prove part (iii) of the theorem. The covering/avoidance proper­
ties of W C\ V, D, W, V, DW, DV, WV and DWV have been described in 
Section 2. It is clear from these that each of the pairs D, W; D, V; D, WV; 
VW, DW; and DV, VW is a compatible pair of subgroups. Therefore, by 
Corollary 3.6, each of them generates a lattice of covering and avoiding sub­
groups whose covering/avoidance properties can be deduced from those of 
the generators. Thus, in particular, D C\ W, D C\ F, D C\ WV, VW C\DW 
and DV C\ VW are covering and avoiding subgroups. 

Similarly, in view of the following lemma and the covering/avoidance 
properties of W C\ D, W C\ V and D, each of the pairs W C\D, W C\ V and 
D, W C\ F is a compatible pair of subgroups, and so, the covering/avoidance 
properties of (WC\D)(Wr\ V) = ^ H D F a n d D(W C\ V) = DWC\DV 
can be deduced from those of W C\ D, W C\ V and D. 

3.7. LEMMA. V C\ W C\ D covers the %-central, §-Frattini chief factors of G 
and avoids the rest. 

Proof. First of all we observe that, for each prime p, 2 P P \ (V C\ W C\ D) is 
a Sylow ^-subgroup of VP

G H W C\ D as well as that of V C\ W Pi D. Here 
Vv = V C\ Sp. That it is a Sylow ^-subgroup of V C\ W C\ D is a consequence 
of part (iv) of the theorem. Also, for the same reason, 2P reduces into W C\ D. 
Since it clearly reduces into VV

G too, it follows that Xp H Vv° C\ W C\ D is a 
Sylow ^-subgroup of VV

G C\W C\D. But, by the Corollary to Lemma 3 of 
Hartley [8], Sp C\ VP

G = Sp P\ V; hence our assertion. 
Now, in view of Theorem 2.1 (i) and Theorem 2.2, V C\ W C\ D clearly 

avoids the complemented, the ^-avoided and the ^-eccentric chief factors of G. 
Let H/K be a Frattini, ^-covered and g-central ^-chief factor of G for some p 
dividing \G\, and assume first that H/K is ^-Frattini in G. Then, by Definition 
2.4 (ii), H r\ VV

G/KC\ VV
G is a non-trivial Frattini £-chief factor of G. 

Moreover, H C\ VV
G/K C\ VV

G is ^-central in G, being G-isomorphic to H/K. 
Thus, W C\ D, which covers each g-central, Frattini chief factor of G, covers 
H C\ VV

G/K C\ VP
G. But then 

(Hr\ vp
Gn wr\D)K = (HC\ vp

Gr\ wr\D)(Kn VP
G)K = 
(HC\ VV

G)K = H 
since H/K is ^-covered in G so that, by the Corollary to Lemma 3 of Hartley 
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[8], it is covered by VV
G. Hence VV

G C\Wr\D covers H/K. From our initial 
observation it follows now that V C\ W C\ D, too, covers H/K. 

Assume next that H/K is not §-Frattini in G. Then, by Definition 2.4 (ii), 
H C\ VP

G/K r\ VP
G is complemented in G. Thus, by Theorem 2.2, W, and 

hence WC\D, avoids H C\VV
G/K C\VV

G. In particular, VV
GC\WC\D 

avoids H/K. Hence, once again from initial observation it follows that 
V C\ W C\ D, too, avoids H/K. The proof of the lemma is complete. 

Finally, in view of the covering/avoidance properties of D C\ W C\ V, 
V C\W, D C\V and D C\ WV, we have that each of the pairs V Pi W, 
D P\ VW and V C\ D, V C\ W is a compatible pair of subgroups, and hence, 
as before, the covering/avoidance properties of DV C\ DW C\ VW and 
(VC\D)(Vr\W) = VC\DW can be deduced from those of V n W, 
D C\ V and D C\ VW. The proof of the theorem is complete. 

We now give an example of a group G in which 2(D, W} V) has eighteen 
distinct elements and includes neither {1} nor G. 

Example. Let H be the semidirect product of a cyclic group (a) of order 25 
by a cyclic group (b) of order 4, with the action of (b) on (a) being given by 
ab = a7. Let K = H wr (c) (according to the regular representation), where 
(c) is a cyclic group of order 5, and let G = (d) X K, the direct product of K 
and a cyclic group (d) of order 4. 

It is easy to verify that for % = 9Î = § , where 31 is the class of all finite 
nilpotent groups, the lattice 2(D, W, V) corresponding to G has eighteen 
distinct elements and so is a free distributive lattice on the three generators. 

We conclude this paper with a remark that Theorem 1.1 is indeed capable 
of generalization. For instance, Vin 2(D, W, V) could have been any subgroup 
of G which is ^-normally embedded in G for each prime p. 
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