A new construction of the Margulis measure for Anosov flows[†]

BORIS HASSELBLATT

Department of Mathematics, Tufts University, Medford, MA 02155 USA

(Received 10 February 1988 and revised 25 April 1988)

Abstract. The Margulis measure for Anosov flows arises from a Hausdorff measure for a natural distance on unstable leaves. This generalizes work of Ursula Hamenstädt for the case of geodesic flows.

Introduction. Let M be a compact Riemannian manifold and $\varphi': M \to M$ a C^2 Anosov flow. On $W^u(z)$ we define a distance and a spherical measure σ which expand uniformly under the flow. σ is equivalent to the conditional Margulis measure [H, M, S] and for a Lyapunov metric σ equals the conditional Margulis measure on every leaf $W^u(z)$.

DEFINITION 1. [A]. A flow $\varphi^t: M \to M$ is called an Anosov flow if $\dot{\varphi} \neq 0$ and the tangent bundle is a Whitney sum $TM = E^u \oplus E^s \oplus E^o$, where E^o is generated by $\dot{\varphi}$ and there are a > 0, $b \ge 1$ so that

$$|D\varphi'u|| \le b \cdot ||u|| \cdot e^{at} \quad \text{for } t \le 0, u \in E^u$$
(*)

and

$$\|D\varphi^{t}v\| \leq b \cdot \|v\| \cdot e^{-at} \text{ for } t \geq 0, v \in E^{s}.$$

Remark. E^{u} , E^{s} , $E^{ou} \coloneqq E^{u} \oplus E^{o}$ and $E^{os} \coloneqq E^{s} \oplus E^{o}$ are tangent to foliations W^{u} , W^{s} , W^{ou} and W^{os} respectively, which are continuous in the C^{1} -topology. Every unstable leaf $W^{u}(z)$ has a distance d_{z} (and thus notions of openness and compactness) induced by Riemannian lengths of curves in $W^{u}(z)$.

DEFINITION 2. [M]. $S \subset W^u(z)$ and $S' \subset W^u(z')$ are called ε -equivalent if there is a continuous $\phi: S \times [0, 1] \rightarrow M$ so that $\phi(\cdot, 0) = \mathrm{id}, \psi \coloneqq \phi(\cdot, 1): S \rightarrow S'$ is a homeomorphism, $\phi(x, [0, 1])$ is contained in $W^{os}(x)$ and is a curve of length less than ε for all $x \in S$.

Remark. [A]. After possibly changing a there exists a Riemannian metric on M, equivalent to the given metric and called a *Lyapunov adapted metric*, such that (*) holds with b = 1.

DEFINITION 3. Fix $R \in \mathbb{R}$. For $x, y \in W^u(z)$ let $\eta(x, y) \coloneqq \eta_{z,R}(x, y) \coloneqq \exp(-\sup\{t \in \mathbb{R}: d_{\varphi t_z}(\varphi^t(x), \varphi^t(y)) \le R\}).$

Remark. $\eta \circ \varphi' = e' \cdot \eta$, $\eta_{z',R} = \eta_{z,R}$ for $z' \in W^u(z)$, $\eta \ge 0$, $\eta(x, y) = \eta(y, x)$ and $\eta(x, y) = 0$ iff x = y.

† I thank Anatoly Katok for raising this issue and Livio Flaminio for interesting discussions.

LEMMA 1. For $x_1, x_2, y \in W^u(z)$ and a, b as in (*) we have $(\eta(x_1, x_2))^a/b \le (\eta(x_1, y))^a + (\eta(x_2, y))^a$.

Remark. In particular η^a is a distance if M is equipped with a Lyapunov metric. *Proof.* Let $t = -\log \eta(x_1, x_2)$, $r_i = d_{\varphi'_2}(\varphi' x_i, \varphi' y)$. If any $r_i > Rb$, $\eta^a(x_i, y) > \eta^a(x_1, x_2)$, so we are done.

If $r_i < Rb$ then $\eta^a(x_i, y) \ge e^{-at}r_i/Rb$ since

$$d_{\varphi^{i+\tau_z}}(\varphi^{i+\tau_x},\varphi^{i+\tau_y}) > R \quad \text{for } \tau > \frac{1}{a} \cdot \log \frac{Rb}{r_i} > 0$$

(Join $\varphi^{t+\tau}x_i$ and $\varphi^{t+\tau}y$ by a curve $\gamma \subset W^u(\varphi^{t+\tau}z)$ so that $l(\gamma) = d_{\varphi^{t+\tau}z}(\varphi^{t+\tau}x_i, \varphi^{t+\tau}y)$. By (*)

$$r_i \leq l(\varphi^{-\tau} \circ \gamma) \leq b \cdot e^{-a\tau} \cdot l(\gamma) = b \cdot e^{-a\tau} \cdot d_{\varphi^{1+\tau}z}(\varphi^{1+\tau}x_i, \varphi^{1+\tau}y).)$$

Since $r_1 + r_2 \ge d_{\varphi'z}(\varphi' x_1, \varphi' x_2) = R$ we obtain $\eta^a(x_1, x_2)/b \le e^{-at}(r_1 + r_2)/Rb \le \eta^a(x_1, y) + \eta^a(x_2, y)$.

LEMMA 2. Omitting z in the subscript, we have $\eta_R \leq \eta_r \leq (Rb/r)^{1/a} \cdot \eta_R$ for $0 < r \leq R$. Proof. Clearly $\eta_R \leq \eta_r$. $d_{\varphi'z}(\varphi'x, \varphi'y) = r$ for $t = -\log \eta_r(x, y)$, so $\eta_R(x, y) \geq (r/Rb)^{1/a} \eta_r(x, y)$ as in the proof of Lemma 1.

DEFINITION 4. [H]. For $S \subseteq W^{\mu}(z)$ let

$$\sigma_{\varepsilon}(S) \coloneqq \inf \left\{ \sum_{j=1}^{\infty} \varepsilon_{j}^{h} \colon S \subset \bigcup_{j=1}^{\infty} B_{\eta_{z}}(x_{j}, \varepsilon_{j}) \quad \text{with } x_{j} \in W^{u}(z) \quad \text{and } \varepsilon_{j} \leq \varepsilon \right\}$$

and

$$\sigma(S) \coloneqq \sigma_z(S) \coloneqq \sup_{\varepsilon > 0} \sigma_\varepsilon(S)$$

Here h is topological entropy and $B_{\eta}(x_j, \varepsilon_j)$ are ε_j -balls for η around x_j .

Remark. σ is the h/a-dimensional spherical measure [F] on $W^u(z)$ arising from the distance η^a . $\sigma_{\varphi'z} \circ \varphi' = e^{ht} \cdot \sigma_z$ and σ is Borel regular, i.e. $\sigma(S) = \sup \{\sigma(C): C \subset S \text{ compact}\}$ (see [F]).

LEMMA 3. [M, S]. For a C^2 Anosov flow φ' with dense leaves W^u and W^s we can construct the Margulis measure μ . Its restriction μ_z^u to $W^u(z)$ is positive on open and finite on compact sets. $\mu_{\varphi'z}^u \circ \varphi' = e^{ht} \cdot \mu_z^u$ and for $\delta > 0$ there exists $\varepsilon > 0$ such that if $S \subset W^u(z)$ and $S' \subset W^u(z')$ are ε -equivalent then $(1-\delta) \cdot \mu^u(S) < \mu^u(S') < (1+\delta) \cdot \mu^u(S)$. Furthermore μ^u is Borel regular.

LEMMA 4. There exist $0 < \alpha_1 < \alpha_2 < \infty$ such that $\alpha_1 \cdot \varepsilon^h < \mu^u(B_\eta(x, \varepsilon)) < \alpha_2 \cdot \varepsilon^h$ for all $x \in M$.

Proof. Suppose $\mu^{u}(B_{\eta}(x_{i}, 1)) \rightarrow 0$ for some $\{x_{i}\}_{i=1}^{\infty} \subset M$. By compactness of M assume $x_{i} \rightarrow x$. For i large $S = \overline{B}_{\eta}(x, \frac{1}{2})$ is ε -equivalent to some $S' \subset B_{\eta}(x_{i}, 1)$ and $\mu^{u}(B_{\eta}(x_{i}, 1)) \ge \mu^{u}(S') \ge \frac{1}{2} \cdot \mu^{u}(S) > 0$ by Lemma 3, a contradiction. So $0 < \alpha_{1} < \mu^{u}(B_{\eta}(x, 1))$ and similarly $\mu^{u}(B_{\eta}(x, 1)) < \alpha_{2} < \infty$. The claim follows, since

$$\mu^{u}(B_{\eta}(x,\varepsilon)) = \mu^{u}(\varphi^{\log\varepsilon}(B_{\eta}(\varphi^{-\log\varepsilon}x,1))) = \varepsilon^{h} \cdot \mu^{u}(B_{\eta}(\varphi^{-\log\varepsilon}x,1)). \qquad \Box$$

Lemma 5.

$$\alpha_2^{-1} \cdot \mu^{u} \leq \sigma \leq (2b)^{h/a} \cdot \alpha_1^{-1} \cdot \mu^{u}.$$

Proof. (1) Let $S \subset W^u(z)$. By definition of σ_{ε} there is a covering

$$S \subset \bigcup_{j=1}^{\infty} B_{\eta}(x_j, \varepsilon_j), \quad \varepsilon_j \leq \varepsilon, \, x_j \in W^u(z),$$

so that

$$\sigma_{\varepsilon}(S) + \delta \geq \sum_{j=1}^{\infty} \varepsilon_j^h \geq \alpha_2^{-1} \cdot \sum_{j=1}^{\infty} \mu^u(B_{\eta}(x_j, \varepsilon_j)) \geq \alpha_2^{-1} \cdot \mu^u(S).$$

Let $\delta \rightarrow 0$ and $\varepsilon \rightarrow 0$.

(2) Let $S \subset W^{u}(z)$ be compact, $\varepsilon > 0$, $S_{\varepsilon} = \{x \in W^{u}(z): \exists y \in S: \eta(x, y) < \varepsilon/(2b)^{1/a}\}$ and $\{x_{j}\}_{j=1}^{m} \subset S$ a maximal subset so that the $B_{\eta}(x_{j}, \varepsilon/(2b)^{1/a})$ are pairwise disjoint. Since $S \subset \bigcup_{j=1}^{m} B_{\eta}(x_{j}, \varepsilon)$ by Lemma 1,

$$\sigma_{\varepsilon}(S) \leq \sum_{j=1}^{m} \varepsilon^{h} \leq (2b)^{h/a} \cdot \alpha_{1}^{-1} \cdot \sum_{j=1}^{m} \mu^{u}(B_{\eta}(x_{j}, \varepsilon/(2b)^{1/a})) \leq (2b)^{h/a} \cdot \alpha_{1}^{-1} \cdot \mu_{u}(S_{\varepsilon})$$

by Lemma 4 and disjointness of $B_{\eta}(x_j, \varepsilon/(2b)^{1/a}) \subset S_{\varepsilon}$. Letting $\varepsilon \to 0$ gives $\sigma(S) \leq (2b)^{h/a} \cdot \alpha_1^{-1} \cdot \mu^u(S)$ and Borel-regularity of σ and μ^u yields the second inequality.

LEMMA 6. If σ is constructed from a Lyapunov metric then for $\delta > 0$ there is an $\varepsilon > 0$ so that if $S \subset W^u(z)$ and $S' \subset W^u(z')$ are ε -equivalent then $(1-\delta) \cdot \sigma(S) < \sigma(S') < (1+\delta) \cdot \sigma(S)$.

Proof. We will use that if $\{x\}$, $\{x'\}$ are ε -equivalent and $\{x''\} \coloneqq W^{ou}(x') \cap W^{s}(x)$ then $x'' = \varphi^{\tau}x'$ for some $\tau \in \mathbb{R}$, so there is a $C \in \mathbb{R}$ such that $\varphi'x$, $\varphi'x'$ are $C \cdot \varepsilon$ -equivalent for t > 0. For $\delta_j < \delta < 1$ cover $S \subset \bigcup_{j=1}^{\infty} B_{\eta_z}(x_j, \delta_j)$ so that $\sum_{j=1}^{\infty} \delta_j^h \le \sigma(S) + \delta$.

Claim. $S' \subset \bigcup_{j=1}^{\infty} B_{\eta_{\psi(\varepsilon)}}(\psi(x_j), \iota(\varepsilon) \cdot \delta_j)$ with $\lim_{\varepsilon \to 0} \iota(\varepsilon) = 1$.

Proof of Claim. If $y \in S \cap B_{\eta_z}(x, \delta)$ then $d_{\varphi^{-\log\delta}z}(\varphi^{-\log\delta}x, \varphi^{-\log\delta}y) < R$.

$$d_{\psi(\varphi^{-\log d}z)}(\psi(\varphi^{-\log\delta}x),\psi(\varphi^{-\log\delta}y)) < R + \theta(C\varepsilon)$$

with $\lim_{\epsilon \to 0} \theta(\epsilon) = 0$ by uniform continuity of E^{u} . By Lemma 2

$$\eta_{\psi(z)}(\psi(x),\psi(y)) < \iota(\varepsilon) \cdot \delta \coloneqq \left(\frac{R+\theta(C\varepsilon)}{R}\right)^{1/a} \cdot \delta.$$

Therefore $\psi(S \cap B_{\eta z}(x_j, \delta_j)) \subset S' \cap B_{\eta_{\psi(z)}}(\psi(x_j), \iota(\varepsilon)\delta_j)$ and the claim follows. \Box

Thus $\sigma(S') \leq \iota(\varepsilon)^h \cdot \sigma(S)$. The other inequality follows similarly.

THEOREM. Let M be a compact C^2 -manifold and φ^t as in Lemma 3. Equip M with a Lyapunov metric. Then after normalization the measures σ of Definition 4 agree with the conditionals of the Margulis measure on every leaf.

Proof. The μ^{μ} are defined up to a global constant (not just up to a constant on each leaf [M]). σ has measurable densities $f_z: W^u(z) \to \mathbb{R}$ with respect to μ^u . Since μ is

ergodic and $f: M \to \mathbb{R}$, $z \mapsto f_z(z) \varphi^t$ -invariant $(\mu^u \circ \varphi^t = e^{ht} \cdot \mu^u$ and $\sigma \circ \varphi^t = e^{ht} \cdot \sigma!)$ and measurable by Lemmata 3 and 6, $f \equiv \text{constant } \mu$ —a.e. By Lemmata 3 and 6, after normalizing, $f_z \equiv 1 \mu^u$ —a.e. on each leaf $W^u(z)$.

Remarks. (1) If M carries an arbitrary Riemannian metric then after normalization the measure σ agrees with the conditionals of the Margulis measure on μ -almost every leaf. (The above proof goes through: f is measurable since $(x, y, z, R) \mapsto \eta_{z,R}(x, y)$ is lower semicontinuous.)

(2) The above results are also true for the h-dimensional Hausdorff measure [F].

(3) It is interesting to compare this construction with the one in [B].

REFERENCES

- [A] D. V. Anosov. Geodesic flows on closed Riemann Manifolds with negative curvature. Proc. of the Steklov Institute of Mathematics 90 (1967), Amer. Math. Soc., Providence, Rhode Island, 1969.
- [B] R. Bowen. Topological entropy for noncompact sets. Trans. Amer. Math. Society. 184 (1973), 125-136.
- [F] H. Federer. Geometric Measure Theory Springer: Grundlehren, 1969, chapter 2, section 10, § 1-2.
- [H] U. Hamenstädt. A new description of the Bowen-Margulis measure Erg. Th. & Dynam. Sys. 9 (1989), 455-464.
- [M] G. A. Margulis. Certain measures associated with U-flows on compact manifolds. Functional Anal. Appl. 4 (1970), 55-67.
- [S] Ya. G. Sinai. Gibbs measures in Ergodic Theory. Russian Math. Surveys 4 (166) (1972), 21-69.