SECOND-ORDER TIME DISCRETIZATION WITH FINITE-ELEMENT METHOD FOR PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS WITH A WEAKLY SINGULAR KERNEL

CHANG HO KIM ${ }^{1}$ and U JIN CHOI^{2}

(Received 8 July 1996; revised 23 June 1997)

Abstract

We propose the second-order time discretization scheme with the finite-element approximation for the partial integro-differential equations with a weakly singular kernel. The space discretization is based on the finite element method and the time discretization is based on the Crank-Nicolson scheme with a graded mesh. We show the stability of the scheme and obtain the second-order convergence result for the fully discretized scheme.

1. Introduction

We consider the time discretization method for the following partial integro-differential equation with a weakly singular kernel:

$$
\begin{align*}
u_{t}-\mathscr{A} u(t) & =\int_{0}^{t} K(t-s) \mathscr{B} u(s) d s+f(x, t), \quad x \in \Omega, \quad \text { for } \quad t>0 \\
u & =0, \quad \text { on } \quad \partial \Omega, t>0 \tag{1.1}\\
u(x, 0) & =u_{0}(x), \quad \text { in } \Omega
\end{align*}
$$

where \mathscr{A} is a linear positive self-adjoint elliptic operator, \mathscr{B} is a general partial differential operator of second order with smooth and time-independent coefficients and K is a weakly singular kernel satisfying

$$
\left|K^{i}(t)\right| \leq C_{K} t^{-i-\alpha} \quad \text { with } \quad 0 \leq \alpha<1, \quad \text { for } \quad t>0, \quad i=0,1
$$

[^0]Furthermore, throughout this paper, Ω is a sufficiently smooth domain in $\mathbb{R}^{d}, d \geq 1$ and we assume that f is sufficiently smooth. Problems of this nature arise in several areas, such as the theory of linear viscoelasticity and heat conduction in material with memory; see, for example, [8].

The numerical method considered in this paper is obtained by discretizing in space by the finite-element method, followed by a finite difference and quadrature scheme for the time discretization. For the numerical solutions we assume that we are given a family $\left\{S_{h}\right\}$ of finite-dimensional subspaces of $H_{0}^{1}=H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\inf _{x \in S_{h}}\left\{\|v-\chi\|+h\|v-\chi\|_{1}\right\} \leq C h^{2}\|v\|_{2}, \quad \forall v \in H^{2} \cap H_{0}^{1} \tag{1.2}
\end{equation*}
$$

where $\|\cdot\|$ is the norm in $L_{2}=L_{2}(\Omega)$ and $\|\cdot\|_{s}$ is that in $H^{s}=H^{s}(\Omega)$.
As a starting point for the discretization of (1.1), we define the semi-discrete solution of (1.1) as the function $u_{h}:(0, T] \rightarrow S_{h}$ such that

$$
\begin{align*}
\left(u_{h, t}, \chi\right)+A\left(u_{h}, \chi\right) & =\int_{0}^{t} K(t-s) B\left(u_{h}(s), \chi\right) d s+(f(t), \chi), \forall \chi \in S_{h}, t>0 \\
u_{h}(0) & =u_{0 h} \tag{1.3}
\end{align*}
$$

where (\cdot, \cdot) is the inner product in $L_{2}, A(\cdot, \cdot)$ and $B(\cdot, \cdot)$ are the bilinear forms on H_{0}^{1} associated with the differential operators \mathscr{A} and \mathscr{B} and where $u_{0 h}$ is an appropriate approximation in S_{h} of initial data in (1.1). In [2], we can find that for each $T>0$, the error estimate of (1.3) is

$$
\left\|u_{h}(t)-u(t)\right\| \leq C_{T} h^{2}\left\{\left\|u_{0}\right\|_{2}+\int_{0}^{t}\left\|u_{t}\right\| d s\right\} \quad \text { for } \quad t \leq T
$$

The time-discretization of (1.1) is very interesting because of the nature of "memory effect". The time discretization methods are derived essentially by replacing the derivatives in (1.3) by a difference quotient and using a quadrature rule for the integral terms. The difficulties involved in such time discretization are that all the values of $u(t)$ have to be retained, causing great demands for data storage. To overcome this difficulty, higher-order quadrature formulae or quadrature based on the use of sparser sets of time levels were proposed in literature such as [6,7] and [9] for partial integrodifferential equations with smooth kernels. In the case of weakly singular kernels, the regularity of the solution with respect to time is limited, which makes higher-order quadrature formulae useless, as well as quadratures based on the use of a sparser set of time levels. In fact, for sufficiently smooth data u_{0} and f, there exists a unique solution of (1.1) satisfying the following regularities (see [2]):

$$
\begin{gathered}
u \in C\left([0, T] ; H^{2} \cap H_{0}^{1}\right), \quad u_{t} \in C\left([0, T] ; L_{2}\right) \cap L_{1}\left(0, T ; H^{2} \cap H_{0}^{1}\right), \\
u_{t t} \in L_{1}\left(0, T ; L_{2}\right)
\end{gathered}
$$

Formally the solution of (1.1) satisfies

$$
u_{n}=\mathscr{A} u_{1}+K(t) \mathscr{B} u(0)+\int_{0}^{t} K(t-s) \mathscr{B} u_{s} d s+f_{t}
$$

or

$$
\left|u_{t}\right| \leq C_{K} t^{-\alpha}|\mathscr{B} u(0)|+\text { more regular terms with respect to } t .
$$

In advance, we assume that the solution of (1.1) satisfies

$$
\begin{equation*}
\left\|u_{t \prime \prime}\right\| \leq R_{0} t^{-\alpha} \text { and }\left\|u_{t \prime}\right\|_{2} \leq R_{0} t^{-\alpha} \text { for some } R_{0}>0 . \tag{1.4}
\end{equation*}
$$

Furthermore, it is an easy consequence of (1.4) that

$$
\begin{equation*}
\left\|u_{t \prime}\right\| \leq C t^{-1-\alpha} \quad \text { for some } \quad C>0 . \tag{1.5}
\end{equation*}
$$

In this paper, we consider the graded mesh for the discretization of (1.3) (see also [1] and [3]). Given $M \in \mathbb{N}$, let $\Pi_{M}:=\left\{t_{0}, \ldots, t_{M}\right\},\left(0=t_{0}<t_{1}<\cdots<t_{M}=T\right)$, denote a partition of the interval $[0, T]$. With a given partition Π_{M} of $[0, T]$ we associate the quantities

$$
\bar{k}:=\max _{n \leq M} k_{n},
$$

where $k_{n}:=t_{n}-t_{n-1}(n=1, \ldots, M)$. If the mesh points $\left\{t_{n}\right\}_{n=0}^{M}$ are given by

$$
\begin{equation*}
t_{n}:=\left(\frac{n}{M}\right)^{r} T \quad(n=0, \ldots, M) \tag{1.6}
\end{equation*}
$$

then Π_{M} is called a graded mesh; in the present context, the so-called grading exponent $r \in \mathbb{R}$ will always satisfy $r \geq 1$. Let $U^{n} \in S_{h}$ be the approximation of the exact solution of (1.3) at time t_{n}. The time discretization considered here is based on the backward-difference quotient $\bar{\partial}_{t} U_{n}=\left(U^{n}-U^{n-1}\right) / k_{n}$. The integral term then has to be evaluated by numerical quadrature from the values of the $U^{j} \mathrm{~s}$, but since the integrand is singular, we use product integration. We approximate ϕ in $J_{n}(\phi)=$ $\int_{0}^{t_{0}^{n}} K\left(t_{n}-s\right) \phi(s) d s$ by piecewise functions

$$
\tilde{\phi}(s)=\left\{\begin{array}{lll}
\phi^{0} & s \in\left(0, t_{1}\right], & \tag{1.7}\\
\phi^{j+1 / 2} & s \in\left(t_{j}, t_{j+1}\right], & 1 \leq j \leq n-2, \\
\frac{t_{n-1 / 2-s}-s}{k_{n-1 / 2}} \phi^{n-3 / 2}+\frac{s-t_{n-3 / 2}}{k_{n-1 / 2}} \phi^{n-1 / 2} & s \in\left(t_{n-1}, t_{n}\right], & n \geq 2,
\end{array}\right.
$$

where we denote that $t_{j-1 / 2}:=\left(t_{j}+t_{j-1}\right) / 2, \phi^{j-1 / 2}:=\left(\phi^{j}+\phi^{j-1}\right) / 2$ and $k_{j-1 / 2}:=$ $\left(k_{j}+k_{j-1}\right) / 2$. Thus we write the quadrature for $J_{n}(\phi)$ as

$$
\begin{aligned}
q^{n}(\phi) & =\sum_{j=0}^{n-1} \int_{t_{j}}^{t_{j+1}} K\left(t_{n}-s\right) \tilde{\phi}(s) d s \\
& =\tau_{n 0} \phi^{0}+\sum_{j=1}^{n-2} \tau_{n j} \phi^{j+1 / 2}+\tau_{n n-1} \phi^{n-3 / 2}+\tau_{n n} \phi^{n-1 / 2} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

and

$$
q^{1}(\phi)=\tau_{10} \phi^{0}=\int_{0}^{t_{1}} K\left(t_{1}-s\right) d s \phi^{0}
$$

where

$$
\tau_{n j}= \begin{cases}\int_{t_{j}}^{t_{j+1}} K\left(t_{n}-s\right) d s & \text { if } j \leq n-2 \\ \int_{t_{n-1}}^{t_{n}} K\left(t_{n}-s\right) \frac{t_{n-1 / 2}-s}{k_{n-1 / 2}} d s & \text { if } j=n-1 \\ \int_{t_{n-1}}^{t_{n}} K\left(t_{n}-s\right) \frac{s-t_{n-3 / 2}}{k_{n-1 / 2}} d s & \text { if } j=n .\end{cases}
$$

Our fully discretized scheme based on the Crank-Nicolson scheme is now defined by

$$
\begin{array}{rlr}
\left(\bar{\partial}_{t} U^{n}, \chi\right)+A\left(U^{n-1 / 2}, \chi\right) & =q^{n-1 / 2}(B(U, \chi))+\left(f^{n-1 / 2}, \chi\right), \quad n \geq 2 \\
\left(\bar{\partial}_{t} U^{1}, \chi\right)+A\left(U^{1}, \chi\right) & =q^{1}(B(U, \chi))+\left(f^{1}, \chi\right) \tag{1.8}
\end{array}
$$

where

$$
q^{n-1 / 2}(B(U, \chi))=\frac{1}{2}\left\{q^{n}(B(U, \chi))+q^{n-1}(B(U, \chi))\right\}
$$

The purpose of this paper is to show stability and to obtain error estimates for the scheme (1.8).

2. Stability and convergence

We show stability and obtain the error estimates for the fully discretized scheme (1.8). The following three lemmas from Kim and Choi [5] are required for our analysis.

LEMMA 1. If the grading exponent $r>1$, then we have the following estimates. There is a positive constant C dependent on T and r such that
(i) $\left|\tau_{n j}\right| \leq C(n-j)^{-\alpha} k_{j+1}^{1-\alpha}$,
(ii) $\sum_{n=2}^{M} \sum_{j=1}^{n}\left|\tau_{n j}-\tau_{n-1 j-1}\right| \leq C$.

Lemma 2. For each $\epsilon>0$, there is a constant C_{ϵ} such that

$$
\left|\sum_{l=1}^{n} k_{l} \sum_{j=0}^{l-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} f_{j} f_{l}\right| \leq \epsilon \sum_{l=1}^{n} k_{l} f_{l}^{2}+C_{\epsilon} \sum_{l=0}^{n-1}(n-l)^{-\alpha} k_{l+1}^{1-\alpha} \sum_{j=0}^{l} k_{j+1} f_{j}^{2}
$$

Also we need the following discrete version of the Gronwall lemma.

LEMMA 3. Let $\left\{w_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
w_{n} \leq \beta_{n}+\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} w_{j}
$$

where $\beta_{n} \geq 0$. Then there is a positive constant C such that

$$
w_{n} \leq \beta_{n}+C \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} \beta_{j}, \quad n \geq 0
$$

We recall that the bilinear form $A(\cdot, \cdot)$ is coercive and bounded if there are positive constants c_{0} and c_{1} satisfying

$$
\begin{equation*}
c_{0}\|u\|_{1}^{2} \leq A(u, u) \leq c_{1}\|u\|_{1}^{2} \quad \forall u \in H^{2} \cap H_{0}^{1} \tag{2.1}
\end{equation*}
$$

The following theorem is our conditional stability result for the fully discretized scheme (1.8).

THEOREM 1. Suppose that $\bar{k}:=\max _{n \leq M} k_{n}$ is so small that

$$
\lambda:=\int_{0}^{\bar{k}}|K(s)| d s<\frac{c_{0}}{2\|B\|} \quad \text { for all } \quad n \geq 2
$$

Then scheme (1.8) is stable, that is, there is a positive constant $C_{T}:=C(T, r, \gamma)$ such that

$$
\left\|U^{n}\right\| \leq C_{T}\left(\left\|U^{0}\right\|+\sum_{j=1}^{n} k_{j}\left\|f^{j}\right\|\right) \quad \text { for } \quad n \geq 1
$$

Proof. Letting $\tilde{U}^{n}=U^{n-1 / 2}$ for $n \geq 2, \tilde{U}^{0}=U^{0}$ and $\tilde{U}^{1}=U^{1}$, (i) of Lemma 1 implies that

$$
\begin{align*}
& \left|q^{1}(B(U, \phi))\right| \leq C k_{1}^{1-\alpha}\left\|U^{0}\right\|_{1}\|\phi\|_{1} \tag{2.2}\\
& \left|q^{n}(B(U, \phi))\right| \leq C\left(\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\tilde{U}_{j}\right\|_{1}\|\phi\|_{1}\right)+\lambda\|B\|\left\|\tilde{U}^{n}\right\|_{1}\|\phi\|_{1}, \quad n \geq 2
\end{align*}
$$

Taking $\phi=\tilde{U}^{n}$ for $n \geq 1$ in (1.8), we have

$$
\begin{align*}
& \frac{1}{2}\left(\left\|U^{n}\right\|^{2}-\left\|U^{n-1}\right\|^{2}\right)+k_{n}\left(c_{0}-\lambda\|B\|\right)\left\|\tilde{U}^{n}\right\|_{1}^{2} \tag{2.3}\\
& \quad \leq C k_{n}\left\|\tilde{U}^{n}\right\|_{1}\left\{\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\tilde{U}^{j}\right\|_{1}\right\}+k_{n}\left\|f^{n-1 / 2}\right\|\left\|\tilde{U}^{n}\right\| \quad \text { for } \quad n \geq 2
\end{align*}
$$

Summing (2.3) from $n=1$ to N and applying Lemma 2 with a suitable ϵ, we obtain

$$
\begin{aligned}
\left\|U^{N}\right\|^{2}+\sum_{n=1}^{N} k_{n}\left\|\tilde{U}^{n}\right\|_{1}^{2} \leq & \left\|U^{0}\right\|^{2}+C\left(k_{1}\left\|f^{1}\right\|\left\|U^{1}\right\|+\sum_{n=2}^{N} k_{n}\left\|f^{n-1 / 2}\right\|\left\|\tilde{U}^{n}\right\|\right) \\
& +C \sum_{n=1}^{N-1}(N-n)^{-\alpha} k_{n+1}^{1-\alpha} \sum_{j=0}^{n-1} k_{j+1}\left\|\tilde{U}^{j}\right\|_{1}^{2}
\end{aligned}
$$

It follows from Lemma 3 that

$$
\left\|U^{N}\right\|^{2}+\sum_{n=1}^{N} k_{n}\left\|\tilde{U}^{n}\right\|_{1}^{2} \leq C_{T}\left\{\left\|U^{0}\right\|+k_{1}\left\|f^{1}\right\|+\sum_{n=2}^{N} k_{n}\left\|f^{n-1 / 2}\right\|\right\} \max _{n \leq N}\left\|U^{n}\right\|
$$

Hence we have

$$
\left\|U^{N}\right\| \leq \max _{n \leq N}\left\|U^{n}\right\| \leq C_{T}\left(\left\|U^{0}\right\|+k_{1}\left\|f^{1}\right\|+\sum_{n=2}^{N} k_{n}\left\|f^{n-1 / 2}\right\|\right) \quad \text { for } 1 \leq N \leq M
$$

Next we derive the error estimate for the fully discretized scheme (1.8). For the analysis, we introduce the "discrete Ritz-Volterra projection" V_{h} defined for an appropriately smooth function u by

$$
\begin{equation*}
A\left(\left(V_{h} u-u\right)\left(t_{n}\right), \chi\right)=q^{n}\left(B\left(V_{h} u-u, \chi\right)\right), \quad \forall \chi \in S_{h} \quad \text { for } \quad n \geq 0 \tag{2.4}
\end{equation*}
$$

We have the following two lemmas which state the error estimate for the discrete Ritz-Volterra projection (2.4).

Lemma 4. Assume that $\bar{k}:=\max _{n \leq M} k_{n}$ is so small that

$$
\lambda:=\int_{0}^{\bar{k}}|K(s)| d s<\frac{c_{0}}{\|B\|} \quad \text { for all } \quad n \geq 2
$$

and that $u(t) \in H^{2} \cap H_{0}^{1}$ and $u(t) \in C^{2}(\Omega)$. Then we have for V_{h} that

$$
\begin{aligned}
\left\|\left(V_{h} u^{n}-u^{n}\right)\right\| & \leq C_{T} h^{2} \sup _{j \leq n}\left\|u^{j}\right\|_{2} \\
& \leq C_{T} h^{2}\left(\left\|u_{0}\right\|_{2}+\int_{0}^{t_{n}}\left\|u_{t}(s)\right\|_{2} d s\right) .
\end{aligned}
$$

Proof. Let $\rho=V_{h} u-u$ and let R_{h} be the Ritz projection defined by

$$
A\left(R_{h} u-u, \chi\right)=0, \quad \forall \chi \in S_{h}
$$

It is a well-known estimate for R_{h} that

$$
\left\|\left(R_{h} u-u\right)(t)\right\|+h\left\|\left(R_{h} u-u\right)(t)\right\|_{1} \leq C h^{2}\|u(t)\|_{2} .
$$

Letting $\theta^{n}=V_{h} u^{n}-R_{h} u^{n}$ under the definition of V_{h}, we have that with $c_{0}>0$,

$$
\begin{aligned}
c_{0}\left\|\theta^{n}\right\|_{1}^{2} & \leq A\left(\theta^{n}, \theta^{n}\right)=A\left(\rho^{n}, \theta^{n}\right)=q^{n}\left(B\left(\rho, \theta^{n}\right)\right) \\
& \leq C_{T}\left\|\theta^{n}\right\|_{1} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+i}\left\|\rho^{j}\right\|_{1}+\lambda\|B\|\left\|\rho^{n}\right\|_{1}\left\|\theta^{n}\right\|_{1}
\end{aligned}
$$

or

$$
\left(c_{0}-\lambda\|B\|\right)\left\|\rho^{n}\right\|_{1} \leq C\left\|R_{h} u^{n}-u^{n}\right\|_{1}+C_{T}\left(\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\rho^{j}\right\|_{1}\right) .
$$

Thus Lemma 3 implies that

$$
\left\|\rho^{n}\right\|_{1} \leq C_{T} \sup _{j \leq n}\left\|R_{h} u^{j}-u^{j}\right\|_{1} \leq C_{T} h \sup _{j \leq n}\left\|u^{j}\right\|_{2} .
$$

In order to obtain the L_{2}-estimate for ρ^{n}, we use a duality argument defined by

$$
\left\|\rho^{n}\right\|=\sup _{\|\phi\|=1}\left(\rho^{n}, \phi\right) .
$$

For each such ϕ, we let Ψ be the solution of

$$
\mathscr{A} \Psi=\emptyset \quad \text { in } \quad \Omega, \quad \Psi=0 \quad \text { on } \quad \partial \Omega .
$$

Then, for $\chi \in S_{h}$, we have from (2.2) that

$$
\begin{aligned}
\left(\rho^{n}, \phi\right)= & A\left(\rho^{n}, \Psi\right)=A\left(\rho^{n}, \Psi-\chi\right)+A\left(\rho^{n}, \chi\right) \\
= & A\left(\rho^{n}, \Psi-\chi\right)+q^{n}(B(\rho, \chi-\Psi))+q^{n}\left(\left(\rho, \mathscr{B}^{*} \Psi\right)\right) \\
\leq & C\left\|\rho^{n}\right\|_{1}\|\Psi-\chi\|_{1}+C \sup _{j \leq n}\left\|\rho^{j}\right\|_{1}\|\chi-\Psi\|_{1} \\
& +C_{T} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\rho^{j}\right\|+\lambda \| \mathscr{B ^ { * } \Psi \| \| \rho ^ { n } \|}
\end{aligned}
$$

Take $\chi=R_{h} \Psi$ and note that $c_{0}\left\|\mathscr{A}^{-1}\right\| \leq 1$ is an easy consequence of (2.1) and thus $1-\lambda\left\|\mathscr{B}^{*} \Psi\right\| \geq \frac{1}{2}$. Then we obtain that

$$
\left\|\rho^{n}\right\| \leq C h \sup _{j \leq n}\left\|\rho^{j}\right\|_{1}+C_{T} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\rho^{j}\right\|
$$

Thus Lemma 3 implies $\left\|\rho^{n}\right\| \leq C h \sup _{j \leq n}\left\|\rho^{j}\right\|_{1}$, which completes the proof.
LEMMA 5. Under the assumptions of Lemma 4, we have for $\rho=V_{h} u-u$,

$$
\sum_{j=1}^{n} k_{j}\left\|\bar{\partial}_{t} \rho^{j}\right\| \leq C h^{2}\left\{\left\|u_{0}\right\|_{2}+\int_{0}^{t_{n}}\left\|u_{t}(s)\right\|_{2} d s\right\}
$$

Proof. For the sake of convenience, we denote $\delta^{n}=k_{n} \bar{\partial}_{t} \rho^{n}, \delta^{0}=\rho^{0}, \omega_{n j}=$ $\tau_{n j}-\tau_{n-1 j-1}, W_{n}=\sum_{j=1}^{n}\left|\omega_{n j}\right|$ for $n \geq 2$, and $W_{1}=W_{0}=0$. Then we obtain directly from (2.4) that for all $\chi \in S_{h}$,

$$
\begin{align*}
A\left(\delta^{n}, \chi\right)= & k_{n} \bar{\partial}_{t} q^{n}(B(\rho, \chi)) \\
= & q^{n}(B(\delta, \chi))+\sum_{j=1}^{n-2} \omega_{n j} B\left(\rho^{j-1 / 2}, \chi\right) \\
& +\omega_{n n-1} B\left(\rho^{n-5 / 2}, \chi\right)+\omega_{n n} B\left(\rho^{n-3 / 2}, \chi\right) \tag{2.5}\\
\leq & C_{T} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+j}^{1-\alpha}\left|B\left(\delta^{j}, \chi\right)\right|+\lambda\left|B\left(\delta^{n}, \chi\right)\right|+C \max _{j \leq n}\left\|\rho^{j}\right\|_{1}\|\chi\|_{1} W_{n}
\end{align*}
$$

Taking $\theta^{n}=\bar{\partial}_{t}\left(V_{h} u^{n}-R_{h} u^{n}\right)$, we have with $c_{0}>0$,

$$
\begin{aligned}
c_{0} k_{n}\left\|\theta^{n}\right\|_{1}^{2} & =A\left(\delta^{n}, \theta^{n}\right) \\
& \leq C_{T}\left\|\theta^{n}\right\|_{1}\left\{\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\delta^{j}\right\|_{1}+\max _{j \leq n}\left\|\rho^{j}\right\|_{1} W_{n}\right\}+\lambda\|B\|\left\|\delta^{n}\right\|_{1}
\end{aligned}
$$

Hence we get

$$
\left\|\delta^{n}\right\|_{1} \leq C_{T} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\delta^{j}\right\|_{1}+C \max _{j \leq n}\left\|\rho^{j}\right\|_{1} W_{n}+C k_{n}\left\|\bar{\partial}_{t}\left(R_{h} u^{n}-u^{n}\right)\right\|_{1}
$$

It follows from Lemma 3 that

$$
\begin{align*}
k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\|_{1} \leq & C_{T} \max _{j \leq n}\left\|\rho^{j}\right\|_{1}\left(\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} W_{j}+W_{n}\right) \\
& +C_{T} h \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} \int_{t_{j}}^{t_{j+1}}\left\|u_{s}(s)\right\|_{2} d s \tag{2.6}
\end{align*}
$$

We can easily verify that for $\beta_{j} \geq 0$,

$$
\begin{equation*}
\sum_{n=1}^{N} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} \beta_{j}=\sum_{j=0}^{N-1} \beta_{j} \sum_{n=j+1}^{N}(n-j)^{-\alpha} k_{j+1}^{1-\alpha} \leq C \sum_{j=0}^{N-1} \beta_{j} \tag{2.7}
\end{equation*}
$$

Summing (2.6) from $n=1$ to N and applying the inequality (2.7) and (ii) of Lemma 1 , we have

$$
\sum_{n=1}^{N} k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\|_{1} \leq C h\left(\max _{n \leq N}\left\|u^{n}\right\|_{2}+\int_{0}^{t_{N}}\left\|u_{s}(s)\right\|_{2} d s\right)
$$

With the same argument of Lemma 4 , we can write with $\chi=R_{h} \Psi$,

$$
\begin{aligned}
k_{n}\left(\bar{\partial}_{t} \rho^{n}, \phi\right) & =k_{n} A\left(\bar{\partial}_{t} \rho^{n}, \Psi\right)=k_{n} A\left(\bar{\partial}_{t} \rho^{n}, \Psi-\chi\right)+k_{n} A\left(\bar{\partial}_{t} \rho^{n}, \chi\right) \\
& =k_{n} A\left(\bar{\partial}_{t} \rho^{n}, \Psi-\chi\right)+k_{n} \bar{\partial}_{t} q^{n}(B(\rho, \chi-\Psi))+k_{n} \bar{\partial}_{t} q^{n}\left(\left(\rho, \mathscr{B}^{*} \Psi\right)\right) \\
& \leq G_{n}+C_{T} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\delta^{j}\right\|+\lambda\left\|\mathscr{B}^{*} \Psi\right\|\left\|\rho^{n}\right\|
\end{aligned}
$$

where

$$
\begin{aligned}
G_{n}:= & C h\left(k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\|_{1}+\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\delta^{j}\right\|_{1}\right) \\
& +C_{T}\left(h \max _{j \leq n}\left\|\rho^{j}\right\|_{1}+\max _{j \leq n}\left\|\rho^{j}\right\|\right) W_{n} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\| \leq & C h\left(k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\|_{1}+\sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\delta^{j}\right\|_{1}\right) \\
& +C h^{2} \sup _{j \leq n}\left\|u^{j}\right\|_{2} W_{n}+C T \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}^{1-\alpha}\left\|\delta^{j}\right\| .
\end{aligned}
$$

Applying Lemma 4 again, summing from $n=1$ to N and using the inequality (2.7) and Lemma 1, we obtain that

$$
\begin{aligned}
\sum_{n=1}^{N}\left\|\bar{\partial}_{t} \rho^{n}\right\| & \leq C h \sum_{j=1}^{N} k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\|_{1}+\max _{n \leq N}\left\|u^{n}\right\|_{2} \sum_{n=1}^{N} W_{n} \\
& \leq C h^{2}\left(\left\|u^{0}\right\|_{2}+\int_{0}^{t_{N}}\left\|u_{s}(s)\right\|_{2} d s\right)
\end{aligned}
$$

which completes the proof.
We also need the following error estimate for our quadrature scheme (1.7).
LEMMA 6. Suppose that $f \in C^{2}(0, T], f^{\prime} \in C[0, T]$ and $\left|f^{\prime \prime}(t)\right| \leq C t^{-\alpha}$. If a grading exponent $r \geq 2 /(2-\alpha)$, then there is a constant C_{T} depending on f and T such that

$$
\left|\sum_{n=1}^{M} k_{n}\left(\int_{0}^{t_{k}} K\left(t_{k}-s\right) f(s) d s-q^{n}(f)\right)\right| \leq C_{T}(f) \bar{k}^{2}
$$

Proof. Refer to Kim and Choi [5].
Finally, we obtain the second-order convergence result for the fully discretized scheme (1.8).

THEOREM 2. Let u and $\left\{U^{n}\right\}$ be the solution of (1.1) and (1.8) respectively. We assume that for sufficiently smooth data u_{0} and f, u satisfies $u \in C\left([0, T] ; H^{2} \cap H_{0}^{1}\right) \cap$ $C^{3}\left((0, T] ; L^{2}(\Omega)\right), u_{t} \in L_{1}\left(0, T ; H^{2} \cap H_{0}^{1}\right)$ and $u_{t t} \in L_{1}\left(0, T ; H^{2}\right) \cap C^{1}\left((0, T] ; H^{2}\right)$. Furthermore, we assume that $\left\|u_{t t}\right\|_{2} \leq R_{0} t^{-\alpha}$ for some $R_{0}>0$. If a grading exponent r is greater than $2 /(2-\alpha)$, then there exists a constant C_{T} independent of h and k such that

$$
\left\|u^{n}-U^{n}\right\| \leq C_{T}(u)\left(h^{2}+\bar{k}^{2}\right)
$$

Proof. Let $\tilde{u}=V_{h} u$ for all $t_{k} \geq 0$ and $e^{n}=U^{n}-V_{h} u^{n}+V_{h} u^{n}-u^{n}=\theta^{n}+\rho^{n}$. Comparing (1.8) with the variational form of (1.1) and introducing (2.4) we have the following identity for $n \geq 2$:

$$
\begin{equation*}
\left(\bar{\partial}_{t} \theta^{n}, \phi\right)+A\left(\theta^{n-1 / 2}, \phi\right)=q^{n-1 / 2}(B(\theta, \phi))+I_{1}^{n}+I_{2}^{n} \tag{2.8}
\end{equation*}
$$

where we denote I_{1}^{n} and I_{2}^{n} as follows:

$$
\begin{aligned}
& I_{1}^{n}=\left(u_{t}^{n-1 / 2}, \phi\right)-\left(\bar{\partial}_{t} V_{h} u^{n}, \phi\right)=\left(u_{t}^{n-1 / 2}-\bar{\partial}_{t} u^{n}, \phi\right)-\left(\bar{\partial}_{t} \rho^{n}, \phi\right) \\
& I_{2}^{n}=q^{n-1 / 2}(B(u, \phi))-\frac{1}{2}\left(J_{n}(B(u, \phi))+J_{n-1}(B(u, \phi))\right)
\end{aligned}
$$

With the same argument as that used in Theorem 1 and taking $\phi=\tilde{\theta}^{n}$ in (2.8), we have

$$
\begin{align*}
& \frac{1}{2}\left(\left\|\theta^{n}\right\|^{2}-\left\|\theta^{n-1}\right\|^{2}\right)+k_{n}\left\|\tilde{\theta}^{n}\right\|_{1}^{2} \\
& \quad \leq C k_{n} \sum_{j=0}^{n-1}(n-j)^{-\alpha} k_{j+1}\left\|\tilde{\theta}^{j}\right\|_{1}\left\|\tilde{\theta}^{n}\right\|_{1}+C k_{n}\left|I_{1}^{n}+I_{2}^{n}\right| \tag{2.9}
\end{align*}
$$

Summing (2.9) from $n=1$ to N and applying Lemma 2, we immediately obtain

$$
\begin{align*}
& \left\|\theta^{N}\right\|^{2}+\sum_{n=1}^{N} k_{n}\left\|\tilde{\theta}^{n}\right\|_{1}^{2} \tag{2.10}\\
& \quad \leq\left\|\theta^{0}\right\|^{2}+C \sum_{n=1}^{N-1}(N-n)^{-\alpha} k_{n+1}^{1-\alpha} \sum_{j=0}^{n} k_{j+1}\left\|\tilde{\theta}^{j}\right\|_{1}^{2}+C \sum_{n=1}^{N} k_{n}\left(\left|I_{1}^{n}\right|+\left|I_{2}^{n}\right|\right) .
\end{align*}
$$

We now turn to the estimates for I_{1} and I_{2}. Since $u \in C^{2}\left(\left(0, t_{1}\right] ; L_{2}\right)$, the Taylor formula with the integral form of the remainder implies that

$$
\begin{equation*}
k_{1}\left|\left(u_{t}^{1}-\bar{\partial}_{t} u^{1}, \tilde{\theta}^{1}\right)\right| \leq k_{1}^{2}\left\|\theta^{1}\right\| \int_{0}^{t_{1}}\left\|u_{t t}\right\| d s \leq C(u) k_{1}^{2-\alpha}\left\|\tilde{\theta}^{1}\right\| . \tag{2.11}
\end{equation*}
$$

If $u \in C^{3}\left((0, T] ; L_{2}\right)$, then still by the Taylor formula, we get

$$
\begin{align*}
k_{n}\left|\left(u_{t}^{n-1 / 2}-\bar{\partial}_{t} u^{n}, \tilde{\theta}^{n}\right)\right| & \leq k_{n}^{2}\left\|\tilde{\theta}^{n}\right\| \int_{t_{n-1}}^{t_{n}}\left\|u_{t t}\right\| d s \\
& \leq C_{T}(u) k_{n}^{3} t_{k}^{-1-\alpha} \text { for } n \geq 2 . \tag{2.12}
\end{align*}
$$

We can easily verify that

$$
\begin{equation*}
k_{n} \leq r \frac{T}{M}\left(\frac{n}{M}\right)^{r-1} \quad \text { for } \quad n \leq M \quad \text { and } \quad \bar{k} \geq r\left(\frac{1}{2}\right)^{r-1} \frac{T}{M} . \tag{2.13}
\end{equation*}
$$

Denoting $r=2+p /(2-\alpha)$ for some $p>0$, we immediately have from (2.11)(2.13)

$$
\sum_{n=1}^{N} k_{n}\left|I_{1}^{n}\right| \leq \max _{n \leq N}\left\|\theta^{j}\right\|\left\{C_{T}(u)\left(\bar{k}^{2}+\bar{k}^{2} \sum_{n=2}^{N} \frac{1}{M}\left(\frac{n}{M}\right)^{-1+p}\right)+\sum_{n=1}^{N} k_{n}\left\|\bar{\partial}_{t} \rho^{n}\right\|\right\} .
$$

Also the estimate for I_{2}^{n} is directly obtained by Lemma 6:

$$
\sum_{n=1}^{N} k_{n}\left|I_{2}^{n}\right| \leq C_{T}(u) \bar{k}^{2} \max _{n \leq N}\left\|\theta^{n}\right\| .
$$

Thus, from Lemma 3 and Lemma 5, we obtain

$$
\left\|\theta^{n}\right\| \leq \max _{n \leq N}\left\|\theta^{n}\right\| \leq C h^{2}\left\{\left\|u_{0}\right\|_{2}+\int_{0}^{t_{n}}\left\|u_{t}\right\|_{2} d s\right\}+C_{T}(u) \bar{k}^{2} .
$$

Since the estimate for $\left\|\rho^{n}\right\|$ is given in Lemma 5, we complete the proof of the theorem.

Acknowledgement

This work has been partially supported by Kon-Kuk University.

References

[1] H. Brunner, "Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels", IMA J. Numer Anal. 6 (1986) 221~239.
[2] C. Chen, V. Thomée and B. Wahlbin, "Finite element approximation of parabolic integrodifferential equation with a weakly singular kernel", Math. Comp. 58 (1992) 587-602.
[3] H. Kaneko and Y. Xu, "Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind", Math. Comp. 62 (1994) 725-738.
[4] C. H. Kim and U. J. Choi, "Spectral collocation methods for a partial integro-differential equation with a weakly singular kernel", J. Aust. Math. Soc. B 39 (1998) 408-430.
[5] C. H. Kim and U. J. Choi, "Time discretization with collocation methods for the parabolic partial integro-differential equation with weakly singular kernel", IMA J. Numer. Anal., submitted for publication.
[6] A. K. Pani, S. K. Chung and R. S. Anderssen, "On convergence of finite difference scheme for a parabolic generalized solutions of parabolic and hyperbolic integro-differential equations", Centre for Mathematics and its Application, The Australian National University, 1991, CMA Report CMA-MR3-91.
[7] A. K. Pani, V. Thomée and L. B. Wahlbin, "Numerical methods for hyperbolic and parabolic integro-differential equations", Journal of Integral Equations and Applications 4 (1992) 533-583.
[8] M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics (Willey, New York, 1987).
[9] I. H. Sloan and V. Thomée, "Time discretization of an integro-differential equation of parabolic type", SIAM J. Numer. Anal. 23 (1986) 1052-1061.
[10] V. Thomée and N. Y. Zhang, "Error estimates for semidiscrete finite element methods for parabolic integro-differential equations", Math. Comp. 53 (1989) 121-139.
[11] E. G. Yanik and G. Fairweather, "Finite element methods for parabolic and hyperbolic partial integro-differential equation", Nonlinear Anal. 12 (1988) 785-809.

[^0]: ${ }^{1}$ Department of Applied Mathematics of Kon-Kuk University, Danwol 322, Chungju 380-701, Korea.
 ${ }^{2}$ Department of Mathematics of KAIST, Kusong-Dong 373-1, Yousong-Gu, Taejon 305-701, Korea.
 (C) Australian Mathematical Society 1999, Serial-fee code 0334-2700/99

