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PARANORMAL OPERATORS ON BANACH SPACES

N.N. CHourasiA AND P.B. RamanuJan

In this note we show that a paranormal operator T on a Banach
space satisfies Weyl's theorem. This is accomplished by showing
that

(i) every isolated point of its spectrum is an eigenvalue and

the corresponding eigenspace has invariant complement,

(ii) for a #0 , Ker(T-a) | Ker (7-B) (in the sense of
Birkhoff) whenever B8 # o .

1. Introduction and notations

X will denote a Banach space and B(X) the Banach algebra of bounded

linear operators on X . T € B(X) will be called paranormal if

2 2
Izch® = I7% ] , Vo € X .

We note that an isometry is always paranormal. Also the restriction to an
invariant subspace, any scalar multiple and the inverse (if it exists) of

a paranormal operator are paranormal. Further, every paranormal operator

is normaloid. (By normaloid we mean those operators T for which

I7ll = »(T) , the spectral radius of T .) For proofs refer to [7], where

T 1is taken to be a paranormal operator in a Hilbert space.

Let M and N be linear subspaces of X . Then M is said to be
orthogonal to N (in the sense of Birkhoff) and we write M l.N if
letyll = llzll for all = € ¥ and y € N . This is a nonsymmetric relation
in a Banach space; but it is equivalent to the usual concept of
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orthogonality in a Hilbert space ([4], Theorem 2). Let o(T) denote the
spectrum of 7 , and R(T) and WN(T) its range and null space,
respectively. The nullity of T is denoted by n(T) while Gp(T)

denotes the point spectrum of T and Z(T) the complement of o(T)
Let PT{K} denote the algebraic eigenprojection associated with {A}

whenever A is an isolated point of o(T) . If T' € B(X*) is the
conjugate of T € B(X) , then

(PT{A}) "= P, A} .

The corresponding result for a Hilbert space operator 7T is

(P {)\})* = *{x} s
T r

where * denotes the adjoint and -~ is complex conjugate.

An operator T € B(X) is said to be isoloid if every isolated point
of 0(T) is an eigenvalue of T . The numerical range of T € B(X) is

given by

v(B(x), T)

{F(7) : F ¢ B(X)*, |IF| = F(1) = 1}
and its numerical radius by

v(T) = sup{|r] | X € ¥(B(X), T)}
If r(T) denotes the spectral radius, then it is known that
r(T) =v(T) = {7l .

The operator I is said to satisfy the single valued extension property if
f(A) = 0 for any X-valued analytic function f defined on an open set of
the complex plane with (T-AI)f(}) = 0 .

Denote by HOO(T) the set of isolated points A of o(T) for which
0 < n(T-M) < ® , and by HOA(T) the set of isolated points A of o(T)

for which R(PT{A}) is finite dimensional. Note that HOA(T) € Myo(T)

Denote by W(T) Weyl's essential spectrum of T (as defined, for
example, in [9], p. 206); 1let

UZ(T) =HW(T) u {A | A is a limit point of o(T)} .

Note that
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0,(T) = o(T) ~ Ty, (T)

[6] (nere ~ denotes set difference). The operator T € B(X) is said to
satisfy Weyl's theorem if

(*) W(T) = o(T) ~ HOO(T)

The famous result of Weyl,that self adjoint operators satisfy (*), has been
extended to several classes of operators (see [5] for an account). It is
noted in [5] that, among operators related to normal operators, Weyl's
theorem does not extend appreciably beyond the seminormal ones. Below we
show that for any paranormal operator T , T and T' (T and T* in the
case of a Hilbert space operator T ) satisfy Weyl's theorem, thus
extending the theorem beyond the seminormal ones. Also we get a class of
operators on Banach space, including isometries, which satisfy Weyl's
theorem. In the process we get some resulis regarding eigenspaces of a

paranormal operator.

2. Main results

We start with the observation that if T is a paranormal operator on

X and o{T) 1lies on the unit circle then T is an invertible isometry.
In fact, T ©being invertible, both 7T and T_1 are normaloid, being

paranormal. Hence ||T|} = ”T_l” =1 and |[xf] = ”T-liw” < 7|l = |z}l , for

all x € X . This shows that T 1is an invertible isometry.

THEOREM 2.1. If T <s a paranormal operator in B(X) , then every
isolated point of o(T) s a pole of the resolvent RA(T) of order 1
and the corresponding eigenspace has an invariant complement.

Proof. Suppose Al is an isolated point of o(7) . If Al =0,
consider the paranormal operator T/R(PT{O}] . Since O(T/R(PT{O}] = {0} ,
T/R(PT{O}] =0 . Thus O is a pole of the resolvent RA(T) of order 1
(L7713, p. 306). If A #0 , consider T, = (l/Al](T/R(PT{Al})) . Then

T, is a paranormal operator with G(Tl) = {1} . Thus T, and TIl both

I+

are isometries and ”TT” =1 for n = %1, £2, 43, ... . Also we have
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Tl =TI + @ , where @ 1is some quasinilpotent operator. It follows from

([3], Section 5, Theorem 3) that Tl =71 . So again (T—Al]R(PT(Al)) =0
and Al is a pole of the resolvent RA(T) of order 1 . Thus, using
[71], Theorem 5.84, R(7-},) is closed and X = R(7-A)) ®@ #(7-)}} . This
completes the proof of the theorem.

COROLLARY 2.2. If T € B(X) 1is paranormal, then T <is isoloid.

COROLLARY 2.3. If T € B(X) <is an isometry, then every isolated
point of o(T) is an etgenvalue of T and the corresponding eigenspace

has an imwariant complement.

REMARK 2.4. The above result was proved in [§] for invertible

isometries on a normed linear space.

COROLLARY 2.5. If T € B(X) is paranormal, then HOO(T) =n_(T)

04
and HOO(T’) = HOA(T') . In the case of a Hilbert space paranormal

operator T we have

Too(P*) = T, (7%)

Proof. If Al is an isolated point of O(T) , then Al is a pole of

the resolvent R,(T) of order 1 . Thus (T—Al)PT{Al} =0, so that

0A(T). If A is an

isolated point of o(T') , then Al is a pole of the resolvent RA(T) of

R(P{x,}) c #(1-1)) , vhich implies that I (7) ¢TI

order 1 . Thus (T—Al)PT{Xl} =0 . Taking conjugates,

(PT{AI})'(T-Xl)’ =0 . Now (F&Akl})' = PT,{Xl} and PT,{Al} commutes

with T' . Hence (T’—Al)PT,(Al) = 0, so that HOO(T') E_HOA(T') . The
corresponding result for T* can be similarly proved by taking adjoints.

THEOREM 2.6. If T <s a paranormal operator, then N(T-o) | N(T-B)
for distinet complex numbers o and B provided o # O .

Proof. Suppose |o| = |B] . Let Tx =ar and Ty =By . We will
show that |lz|l < llz+y]l . Let M be the subspace generated by z and y
and Tl = T/M . Then O(Tl] = (0, B) and Tl being normaloid,

Iz, = »(z,) = la] . Hence, v(r) = la] . Thus, o€ bd(v(B(M), Tl)) .
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Now, by [10], Proposition 1, N(Tl—a] l_R(Tl-a) . As o and B are

poles of the resolvent RX(Tl) of order 1 ,

R(r,-a)- = R(I-PTl{a}) = R[PTl{B}) = 0(r,-8)

({111, Theorem 5.8 (A)). Now, & € N(Tl-a) and y € N(Tl—B) . Hence

lesyll = llxll . If |a] < |8] , B#0 as a#0 . So T, is invertible

) = (a—l, B_l) and |a-l| > |B'l| . Being paranormal, Til is

-1

and O[Tl

also normaloid. As in the first case we see that N[T;l-a—l) l_N[Til-B_l).

As x € N[Til-a_l] and y € N[T;l-B-l) , the proof is complete.

QUESTION 2.7. Is WN(T) | M(T-a) 2

REMARK 2.8. It is shown in [&], Corollary 3, that, for an isometry
T on a normal linear space, N(T-a) l_N(T—B) for distinct scalars o and
B . This can be shown by completing the normal linear space, extending the

isometry to the completed space and using Theorem 2.6.

COROLLARY 2.9. If T <4s a paranormal operator on a Hilbert space,
then N(T-a) | N(T-B) for all distinct complex numbers o and B .

COROLLARY 2.10. If X is a separable Banach space and T € B(X) <is

paranormal, then T has single valued extension property.

Proof. We will show that Op(T) is countable. Then, by [I/], p. 22,
T has single valued extension property. If UP(T) is not countable, we
would have an uncountable set of unit vectors such that Hxi—xj” >1 .
Since the space is separable, this is not possible.

In [§] it is pointed out that for an arbitrary Banach space, it is not
known whether an eigenspace of an isometry has an invariant complement. 1In
[2], it is shown that the answer is affirmative for an orthogonally
complemented isometry on a smooth reflexive Banach space. We improve this

result by using results in [10].

COROLLARY 2.11. If T is an isometry on a reflexive Banach space,

then every eigenspace of T has an invariant complement.
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Proof. If T is an isometry and A is an eigenvalue of 7T , then

A} =1 ana (7 = »(7) = v(7) =1 . Thus

X € bd(v(B(X), 7))
As X is reflexive, by Remark 4 of [10], X = N(T-\) @ R(T-)) . This
completes the proof.

THEOREM 2.12., If T <s a paranormal operator on a Banach space,
then T and T' (T and T* 4in the case of a Hilbert space operator T )
both satisfy Weyl's theorem.

Proof. In view of Theorem 3.3 of [6] and Corollary 2.5, it is enough
to show that W(T) = OZ(T) . This would prove the result for T . Since
w(T) = Ww(T') and OZ(T) = UZ(T’) , the result would follow for T' and
the relations W(7) = W(T*) and OZ(TS = OZ(T*) would yield the result

for T* . We would show that every X in o(T) ~ W(T) satisfies the
eigenspace gap condition of [5]. Then by Theorem 1 (L4i) of [5], we get
o(1) ~ W(T) < ]'[OO(T) . From this it follows easily that OZ(T) = W(T)

Note that o(T) ~ W(T) = ]IoA(T) U {UZ(T) ~WT)} . If A€ ]'[OA(T) , then

we can find a sequence {An} such that A € ¢(7) for all n as A is

an isolated point of O(T) . Thus the gap condition is satisfied here.

Given A in UZ(T) ~ W(T) , we can find a sequence {)\n} of nonzero
eigenvalues of T converging to A . Now N(T—)\n) L #(7-2) for all =n

by Theorem 2.6. So d(:c IV(T-)\)) 21 for all =z,

n

)\n, in N(T—)\n) such

that le}\ =1 . fThus
n

(A, 1)

n Sup{d(x

MrA) | @, € N(r-\ ) and lexnll =1}

A
n n

v

1.
This will be true for all =n . Hence

]xn-u/s(xn, ) >0 as n e .

This completes the proof.

PROPOSITION 2.13. If T <s a paranormal operator with finite

spectrum, then there exists a basis of X consisting of eigenvectors of
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T ; that is, X 18 a direct sunm of the eigenspaces of T .

Proof. Using Theorem 5.7 (A) of [11], we see that

>
L}

n
o 3 alegli,N)
1=1
n
where o(T) = {Al’ cees An} , since o(T) = igl {Ai} and each {Ai} is an

open closed subset of O(T) , with o(7T) being finite. But

R, {N}) = w(r-)) (2=1, ..., n)

since each Ai is a pole of resolvent of order 1 by Theorem 2.1. Thus

n
x=0 Y #(r-)
=1

This completes the proof.

COROLLARY 2.14., If T <is a paranormal operator on a Hilbert space

with finite spectrum, then T <is normal.

n
Proof. X =@& ) N(T—Xi) and N[T-Xi) l_N(T-Aj) for 1 # j give
i=1

the result,
COROLLARY 2.15 ([81, corollary 4). If T 4is an isometry on a
finite dimensional normed linear space X , then X has a basis consisting

of eigenvectors of T .

Proof. This follows directly from Proposition 2.12 because a finite

dimensional normed linear space is a Banach space.

References

(7] lon Colojoara and Ciprian Foias, Theory of generalised spectral

operators (Gordon and Breach, New York, London, Paris, 1968).

(2] G.D. Faulkner and J.E. Huneycutt, Jr, "Orthogonal decomposition of
isometries in a Banach space", Proc. Amer. Math. Soe. 69 (1978),
125-128.

https://doi.org/10.1017/50004972700005980 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700005980

168 N.N. Chourasia and P.B. Ramanujan

[3] S.R. Foguel, "The relations between a spectral operator and its
scalar part", Pacific J. Math. 8 (1958), 51-65.

[4] J.R. Giles, "Classes of semi-inner-product spaces", Trans. Amer.
Math. Soc. 129 (1967), 436-hi6.

[5]1 Karl Gustafson, "Necessary and sufficient conditions for Weyl's
theorem”, Michigan Math. J. 19 (1972), T1-81.

[6] Karl Gustafson, "On algebraic multiplicity", IndiZana Univ. Math. J.
25 (1976), 769-781.

[7] Vvasile Isfrgfescu, Teishird Saité and Takashi Yoshino, "On a class of
operators", Tohoku Math. J. 18 (1966), 410-413.

[8] D. Koehler and Peter Rosenthal, "On isometries of normed linear
spaces", Studia Math. 36 (1970), 21.3-216.

[9] Martin Schechter, "On the essential spectrum of an arbitrary
operator. 1I", J. Math. Anal. Appl. 13 (1966), 205-215.

[10] Allan M. Sinclair, "Eigenvalues in the boundary of the numerical
range", Pacific J. Math. 35 (1970), 231-23k.

[11] Angus E. Taylor, Introduction to functional analysis (John Wiley &
Sons, New York, London, Sydney, 1958).

Department of Mathematics,
Sardar Patel University,

Val labh Vidyanagar - 388120,
Gujarat,

India;

Department of Mathematics,
Saurashtra University,
Rajkot - 360005,

Gujarat,

India.

https://doi.org/10.1017/50004972700005980 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700005980

