
BULL. AUSTRAL. MATH. SOC. 4 7B20

VOL. 21 (1980), 161-168.

PARANORMAL OPERATORS ON BANACH SPACES

N.N. CHOURASIA AND P.B. RAMANUJAN

In this note we show that a paranormal operator T on a Banach

space satisfies Weyl's theorem. This is accomplished by showing

that

(i) every isolated point of its spectrum is an eigenvalue and

the corresponding eigenspace has invariant complement,

(ii) for a f 0 , Ker(T-a) J_ Ker (T-&) (in the sense of

Birkhoff) whenever 6 * a .

1. Introduction and notations

X will denote a Banach space and B(X) the Banach algebra of bounded

linear operators on X . T € B(X) will be called paranormal if

||Er||2 £ ||T2z|||M| , Vx € X .

We note that an isometry is always paranormal. Also the restriction to an

invariant subspace, any scalar multiple and the inverse (if it exists) of

a paranormal operator are paranormal. Further, every paranormal operator

is normaloid. (By normaloid we mean those operators T for which

Hffll = r(T) , the spectral radius of T .) For proofs refer to [7], where

T is taken to be a paranormal operator in a Hilbert space.

Let M and N be linear subspaces of X . Then M is said to be

orthogonal to N (in the sense of Birkhoff) and we write M J_ N if

\\x+y\\ > ||x|| for all x € M and y € N . This is a nonsyimnetric relation

in a Banach space; but it is equivalent to the usual concept of
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orthogonality in a Hilbert space ([4], Theorem 2). Let a(T) denote the

spectrum of T , and R(T) and N{T) its range and null space,

respectively. The nullity of T is denoted by n{T) while a (T)

denotes the point spectrum of T and C,(T) the complement of a{T) .

Let Py{X} denote the algebraic eigenprojection associated with {X}

whenever X is an isolated point of o{T) . If 2" € B(X*) is the

conjugate of T € B(X) , then

{PT{\}) ' = PT,M .

The corresponding result for a Hilbert space operator T is

{PT{\})* =PT*(\} ,

where * denotes the adjoint and - is complex conjugate.

An operator T € B(X) is said to be isoloid if every isolated point

of o(T) is an eigenvalue of T . The numerical range of T € B{X) is

given by

V[B(X), T) = {F(T) : F € B(X)*, \\F\\ = F(l) = l}

and its numerical radius by

V{T) = Sup{|X| | X € V[B(X), T)) .

If r(T) denotes the spectral radius, then it is known that

p(T) < v(T) S DTK .

The operator T is said to satisfy the single valued extension property if

/(X) = 0 for any X-valued analytic function / defined on an open set of

the complex plane with (T-XJ)/(X) = 0 .

Denote by H (T) the set of isolated points X of a(T) for which

0 < n(T-XI) < co ? and by ^(I7) the set of isolated points X of a(T)

for which i?(Py{X}) is finite dimensional. Note that II^CD C noo(T) .

Denote by W(T) Weyl' s essential spectrum of T (as defined, for

example,in [9], p. 206); let

O^{T) = W(T) u {X | X is a limit point of a(T)} .

Note that
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a7(r) = o(r) ~ n (T)

C6] (here ~ denotes set difference). The operator T € B{X) is said to

satisfy Weyl's theorem if

(*) y{T) = O(T) ~ n AT) .

The famous result of Weyl,that self adjoint operators satisfy (*), has been

extended to several classes of operators (see [5] for an account). It is

noted in [5] that, among operators related to normal operators, Weyl's

theorem does not extend appreciably beyond the seminormal ones. Below we

show that for any paranormal operator T , T and 2" {T and T* in the

case of a Hilbert space operator T ) satisfy Weyl's theorem, thus

extending the theorem beyond the seminormal ones. Also we get a class of

operators on Banach space, including isometries, which satisfy Weyl's

theorem. In the process we get some results regarding eigenspaces of a

paranormal operator.

2. Main results

We start with the observation that if T is a paranormal operator on
X and 0(2") lies on the unit circle then T is an invertible isometry.

In fact, T being invertible, both T and T~ are normaloid, being

paranormal. Hence \\T\\ = WT^W = 1 and ||x|| = ||2'"12'x|| 2 ||2x|| 2 ||x|| , for
al l x € X . This shows that T is an invertible isometry.

THEOREM 2.1. If T is a paranormal operator in B(X) , then every
isolated point of a(T) is a pole of the resolvent RAT) of order 1

A

and the corresponding eigenspace has an invariant complement.

Proof. Suppose A, is an isolated point of o(T) . If X = 0 ,

consider the paranormal operator T/R[P {0}) . Since O[T/R[P_{0}) = {0} ,

21/i?(Py{0}) = 0 . Thus 0 is a pole of the resolvent RAT) of order 1

([//], p. 306). If Xx t 0 , consider 2^ = (l/Xj (r/^PyfA.^)) . Then

T is a paranormal operator with a[T) = {l} . Thus T and T'1 both

are isometries and 2^ = 1 for n = ±1, ±2, +3, ... . Also we have
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T = I + Q , where Q is some quasinilpotent operator. It follows from

([3], Section 5, Theorem 3) that T± = I . So again (r-A^flfPy^)) = 0

and A is a pole of the resolvent R, (T) of order 1 . Thus, using
1 A

[ I / ] , Theorem 5-8A, fl^-A.^ is closed and X = R^T-X^) © tf^-A-J . This

completes the proof of the theorem.

COROLLARY 2.2 . If T (. B{X) is paranormal, then T is isoloid.

COROLLARY 2 .3 . If T € B(X) is an isometry, then every isolated

point of a(T) is an eigenvalue of T and the corresponding eigenspace

has an invariant complement.

REMARK 2.4. The above resul t was proved in [S] for inver t ible

isometries on a normed l inear space.

COROLLARY 2 .5 . If T € B(X) is paranormal, then \Q(T) = H ^ I D

and II AT') = II (2") . In the case of a Hilbert space paranormal

operator T we have

II IT*) = II (T*)0 0 w ; 0AK ' *

Proof. If A is an isolated point of o(T) , then A is a pole of

the resolvent ^(T) of order 1 . Thus (l"-A )Py{A } = 0 , so that

H{PT{\}) E N{T-XX) » w n l c h implies that \AT) c 1^(20 . If X± is an

isolated point of a(T') , then A is a pole of the resolvent R->(T) of
1 A

order 1 . Thus (T-A ) P {A } = 0 . Taking conjugates,

(PT{A1}) ' (r-A1) ' = 0 . How (Py{A1f) ' = Py,{A1} and P y , ^ } commutes

with 3" . Hence [T'-X^Pf, (Aj = 0 , SO that ^Q0(T') c n M ( 5 " ) . The

corresponding r e su l t for T* can be similarly proved by taking adjoints .

THEOREM 2.6. If T is a paranormal operator, then N(T-a) ]_ N(T-&)

for distinct complex numbers a and g provided a # 0 .

Proof. Suppose | a | > | 8 | . Let Tx = ax and Ty = &y . We wi l l

show tha t ||a;|| 5 ||a;+i/|| . Let M be the subspace generated by x and y

and 2^ = T/M . Then a(2^) = (a, 3) and 2^ being normaloid,

H2-J = r[Tj = |a | . Hence, V[TJ = |a| . Thus, a € bd{v[B{M), TJ) .
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Now, by [70], Proposition 1, tf^-a) J_ R^-a) . As a and B are

poles of the resolvent R^[T ) of order 1 ,

R[Tx-a)- = R[l-PT {«}) = H{PT (Bl) = N^-B)

( [ H ] , Theorem 5.8 ( A ) ) . NOW, X e tf^-a) and y € ff^-B) • Hence

||x+j/|| 2 ||x|| . If | a | < |g | , 6 t 0 as a # 0 . So T± i s inver t ible

and o r " 1 = (a"1, B"1) and |a~ | > |B~ | . Being paranormal, T~ i s

also normaloid. As in the f i r s t case we see that ff T ^ - a " 1 J_ /I7 T^ -B" 1 .

As x 6 K f V 1 and y € i» r ^ - B ' 1 , the proof i s complete.

QUESTION 2.7. Is H{T) J_ N(T-a) ?

REMARK 2.8 . I t i s shown in [tf], Corollary 3, tha t , for an isometry

T on a normal l inear space, N(T-a) J_ N(T-&) for d i s t inc t scalars a and

B . This can be shown by completing the normal l inear space, extending the

isometry to the completed space and using Theorem 2.6.

COROLLARY 2.9. If T is a paranormal operator on a Hilbert space,

then N(T-a) J_ N(T-&) for all distinct complex numbers a and B .

COROLLARY 2.10. If X is a separable Banach space and T £ B(X) is

paranormal, then T has single valued extension property.

Proof. We wil l show that a (T) i s countable. Then, by [ / ] , p. 22,

T has single valued extension property. If a {T) i s not countable, we

would have an uncountable set of uni t vectors such that | |x.-x. | | 2 1 .
i 0

Since the space is separable, this is not possible.

In [5] it is pointed out that for an arbitrary Banach space, it is not

known whether an eigenspace of an isometry has an invariant complement. In

[2], it is shown that the answer is affirmative for an orthogonally

complemented isometry on a smooth reflexive Banach space. We improve this

result by using results in [70].

COROLLARY 2.11. If T is an isometry on a reflexive Banach space,

then every eigenspace of T has an invariant complement.
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Proof. If T is an isometry and A is an eigenvalue of T , then

|A| = 1 and ĤH = r(T) = v(T) = 1 . Thus

A € bd[v{B(X), T)) .

As X is reflexive, by Remark h of [70], X = N(T-X) ® R(T-X) . This

completes the proof.

THEOREM 2.12. If T is a paranormal operator on a Banaah space,

then T and T' (T and T* in the case of a Hilbert space operator T )

both satisfy Weyl's theorem.

Proof. In view of Theorem 3.3 of [6] and Corollary 2.5, it is enough

to show that W{T) = oAT) . This would prove the result for T . Since

W{T) = W(T') and oAT) = oAT') , the result would follow for T' and

the relations W{T) = W(T*) and oAT) = oAT*) would yield the result

for T* . We would show that every A in o{T) ~ W(T) satisfies the

eigenspace gap condition of [5]. Then by Theorem 1 (h±) of [5], we get

a{T) ~ W{T) c nQ0(r) . From this it follows easily that oAT) = W{T) .

Note that a(T) ~ W(T) = ̂ ( D u [aAT) - W(T)} . If A £ n^CD , then

we can find a sequence {A } such that A € C(2") for a l l n as A is

an isolated point of o(T) . Thus the gap condition is satisfied here.

Given A in O7(2") ~ W{T) , we can find a sequence {A } of nonzero
u n

eigenvalues of T converging to A . Now N{T-\ ) J_ N(T-X) for a l l n

by Theorem 2.6. So d[xx , N(T-l)) > 1 for a l l sr̂  in N(T~X ) such
nn n n

that ||xx || = 1 . Thus
n

6 (A A) E Sup{d(x , N(T-X) \ * x € ^{T-X^ and ||xA || = l}
n n n

> 1 .

This w i l l be t rue for a l l n . Hence

| A -A|/6(A , A) ->- 0 as n •*• «> .

This completes the proof.

PROPOSITION 2.13. If T is a paranormal operator with finite

spectrum, then there exists a basis of X consisting of eigenvectors of
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T ; that is, X is a direct sum of the eigenspaces of T .

Proof. Using Theorem 5.7 (A) of [ H ] , we see that

n

n
where o(T) = U, , . . . , X } , since o{T) = U {X.} and each {X.} is an

open closed subset of a(T) , with 0"(T) being f i n i t e . But

since each X. i s a pole of resolvent of order 1 by Theorem 2 .1 . Thus

X = © I NiT-Xj .

This completes the proof.

COROLLARY 2.14. If T is a paranormal operator on a Hilbert space

with finite spectrum, then T is normal.

n
Proof. X=@ £ N(T-X.) and N[T-\.) J_ N[T-\ .) for i t 3 give

the result.

COROLLARY 2.15 ([g], Corollary It). If T is an isometry on a

finite dimensional normed linear space X , then X has a basis consisting

of eigenvectors of T .

Proof. This follows directly from Proposition 2.12 because a finite

dimensional normed linear space is a Banach space.
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