PARANORMAL OPERATORS ON BANACH SPACES

N.N. Chourasia and P.B. Ramanujan

In this note we show that a paranormal operator T on a Banach space satisfies Weyl's theorem. This is accomplished by showing that
(i) every isolated point of its spectrum is an eigenvalue and the corresponding eigenspace has invariant complement,
(ii) for $\alpha \neq 0, \operatorname{Ker}(T-\alpha) \perp \operatorname{Ker}(T-\beta)$ (in the sense of Birkhoff) whenever $\beta \neq \alpha$.

1. Introduction and notations

X will denote a Banach space and $B(X)$ the Banach algebra of bounded linear operators on $X . T \in B(X)$ will be called paranormal if

$$
\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|, \quad \forall x \in X
$$

We note that an isometry is always paranormal. Also the restriction to an invariant subspace, any scalar multiple and the inverse (if it exists) of a paranormal operator are paranormal. Further, every paranormal operator is normaloid. (By normaloid we mean those operators T for which $\|T\|=r(T)$, the spectral radius of T.) For proofs refer to [7], where T is taken to be a paranormal operator in a Hilbert space.

Let M and N be linear subspaces of X. Then M is said to be orthogonal to N (in the sense of Birkhoff) and we write $M \perp N$ if $\|x+y\| \geq\|x\|$ for all $x \in M$ and $y \in N$. This is a nonsymmetric relation in a Banach space; but it is equivalent to the usual concept of

Received 24 August 1979. The first author wishes to thank the University Grants Cormission, New Delhi, for financial support.
orthogonality in a Hilbert space ([4], Theorem 2). Let $\sigma(T)$ denote the spectrum of T, and $R(T)$ and $N(T)$ its range and null space, respectively. The nullity of T is denoted by $n(T)$ while $\sigma_{p}(T)$ denotes the point spectrum of T and $\zeta(T)$ the complement of $\sigma(T)$.

Let $P_{T}\{\lambda\}$ denote the algebraic eigenprojection associated with $\{\lambda\}$ whenever λ is an isolated point of $\sigma(T)$. If $T^{\prime} \in B\left(X^{*}\right)$ is the conjugate of $T \in B(X)$, then

$$
\left(P_{T}\{\lambda\}\right)^{\prime}=P_{T},\{\lambda\}
$$

The corresponding result for a Hilbert space operator T is

$$
\left(P_{T}\{\lambda\}\right)^{*}=P_{T^{*}}\{\bar{\lambda}\}
$$

where * denotes the adjoint and - is complex conjugate.
An operator $T \in B(X)$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. The numerical range of $T \in B(X)$ is given by

$$
V(B(X), T)=\left\{F(T): F \in B(X)^{*},\|F\|=F(1)=1\right\}
$$

and its numerical radius by

$$
v(T)=\operatorname{Sup}\{|\lambda| \mid \lambda \in V(B(X), T)\}
$$

If $r(T)$ denotes the spectral radius, then it is known that

$$
r(T) \leq v(T) \leq\|T\| .
$$

The operator T is said to satisfy the single valued extension property if $f(\lambda) \equiv 0$ for any X-valued analytic function f defined on an open set of the complex plane with $(T-\lambda I) f(\lambda) \equiv 0$.

Denote by $\Pi_{00}(T)$ the set of isolated points λ of $\sigma(T)$ for which $0<n(T-\lambda I)<\infty$, and by $\Pi_{O A}(T)$ the set of isolated points λ of $\sigma(T)$ for which $R\left(P_{T}\{\lambda\}\right)$ is finite dimensional. Note that $\Pi_{0 A}(T) \subseteq \Pi_{00}(T)$.

Denote by $W(T)$ Weyl's essential spectrum of T (as defined, for example, in [9], p. 206); let

$$
\sigma_{\imath}(T)=W(T) \cup\{\lambda \mid \lambda \text { is a limit point of } \sigma(T)\}
$$

Note that

$$
\sigma_{\eta}(T)=\sigma(T) \sim \Pi_{O A}(T)
$$

[6] (here \sim denotes set difference). The operator $T \in B(X)$ is said to satisfy Weyl's theorem if

$$
\begin{equation*}
W(T)=\sigma(T) \sim \Pi_{00}(T) \tag{*}
\end{equation*}
$$

The famous result of Weyl, that self adjoint operators satisfy (*), has been extended to several classes of operators (see [5] for an account). It is noted in [5] that, among operators related to normal operators, Weyl's theorem does not extend appreciably beyond the seminormal ones. Below we show that for any paranormal operator T, T and $T^{\prime}\left(T\right.$ and T^{*} in the case of a Hilbert space operator T) satisfy Weyl's theorem, thus extending the theorem beyond the seminormal ones. Also we get a class of operators on Banach space, including isometries, which satisfy Weyl's theorem. In the process we get some results regarding eigenspaces of a paranormal operator.

2. Main results

We start with the observation that if T is a paranormal operator on X and $\sigma(T)$ lies on the unit circle then T is an invertible isometry. In fact, T being invertible, both T and T^{-1} are normaloid, being paranormal. Hence $\|T\|=\left\|T^{-1}\right\|=1$ and $\|x\|=\left\|T^{-1} T x\right\| \leq\|T x\| \leq\|x\|$, for all $x \in X$. This shows that T is an invertible isometry.

THEOREM 2.1. If T is a paranormal operator in $B(X)$, then every isolated point of $\sigma(T)$ is a pole of the resolvent $R_{\lambda}(T)$ of order 1 and the corresponding eigenspace has an invariant complement.

Proof. Suppose λ_{1} is an isolated point of $\sigma(T)$. If $\lambda_{1}=0$, consider the paranormal operator $T / R\left(P_{T}\{0\}\right)$. Since $\sigma\left(T / R\left(P_{T}\{0\}\right)=\{0\}\right.$, $T / R\left(P_{T}\{0\}\right)=0$. Thus 0 is a pole of the resolvent $R_{\lambda}(T)$ of order 1 ([11], p. 306). If $\lambda_{1} \neq 0$, consider $T_{1}=\left(1 / \lambda_{1}\right)\left(T / R\left(P_{T}\left\{\lambda_{1}\right\}\right)\right)$. Then T_{1} is a paranormal operator with $\sigma\left(T_{1}\right)=\{1\}$. Thus T_{1} and T_{1}^{-1} both are isometries and $\left\|T_{1} n\right\|=1$ for $n= \pm 1, \pm 2, \pm 3, \ldots$ Also we have
$T_{1}=I+Q$, where Q is some quasinilpotent operator. It follows from ([3], Section 5, Theorem 3) that $T_{1}=I$. So again $\left(T-\lambda_{1}\right) R\left(P_{T}\left(\lambda_{1}\right)\right)=0$ and λ_{1} is a pole of the resolvent $R_{\lambda}(T)$ of order 1 . Thus, using [11], Theorem 5.8A, $R\left(T-\lambda_{1}\right)$ is closed and $X=R\left(T-\lambda_{1}\right) \oplus N\left(T-\lambda_{1}\right)$. This completes the proof of the theorem.

COROLLARY 2.2. If $T \in B(X)$ is paranormal, then T is isoloid.
COROLLARY 2.3. If $T \in B(X)$ is an isometry, then every isolated point of $\sigma(T)$ is an eigenvalue of T and the corresponding eigenspace has an invariant complement.

REMARK 2.4. The above result was proved in [8] for invertible isometries on a normed linear space.

COROLLARY 2.5. If $T \in B(X)$ is paranormal, then $\Pi_{O O}(T)=\Pi_{O A}(T)$ and $\Pi_{00}\left(T^{\prime}\right)=\Pi_{O A}\left(T^{\prime}\right)$. In the case of a Hilbert space paranormal operator T we have

$$
\Pi_{O O}\left(T^{*}\right)=\Pi_{O A}\left(T^{*}\right)
$$

Proof. If λ_{1} is an isolated point of $\sigma(T)$, then λ_{1} is a pole of the resolvent $R_{\lambda}(T)$ of order 1 . Thus $\left(T-\lambda_{1}\right) P_{T}\left\{\lambda_{1}\right\}=0$, so that $R\left(P_{T}\left\{\lambda_{1}\right\}\right) \subseteq N\left(T-\lambda_{1}\right)$, which implies that $\Pi_{O O}(T) \subseteq \Pi_{O A}(T)$. If λ_{1} is an isolated point of $\sigma\left(T^{\prime}\right)$, then λ_{1} is a pole of the resolvent $R_{\lambda}(T)$ of order 1. Thus $\left(T-\lambda_{1}\right) P_{T}\left\{\lambda_{1}\right\}=0$. Taking conjugates, $\left(P_{T}\left\{\lambda_{1}\right\}\right)^{\prime}\left(T-\lambda_{1}\right)^{\prime}=0$. Now $\left(P_{T}\left\{\lambda_{1}\right\}\right)^{\prime}=P_{T},\left\{\lambda_{1}\right\}$ and $P_{T},\left\{\lambda_{1}\right\}$ commutes with T^{\prime}. Hence $\left(T^{\prime}-\lambda_{I}\right) P_{T^{\prime}}\left(\lambda_{1}\right)=0$, so that $\Pi_{O O}\left(T^{\prime}\right) \subseteq \Pi_{O A}\left(T^{\prime}\right)$. The corresponding result for T^{*} can be similarly proved by taking adjoints.

THEOREM 2.6. If T is a paranormal operator, then $N(T-\alpha) \perp N(T-\beta)$ for distinct complex numbers α and B provided $\alpha \neq 0$.

Proof. Suppose $|\alpha| \geq|\beta|$. Let $T x=\alpha x$ and $T y=\beta y$. We will show that $\|x\| \leq\|x+y\|$. Let M be the subspace generated by x and y and $T_{1}=T / M$. Then $\sigma\left(T_{1}\right)=(\alpha, \beta)$ and T_{1} being normaloid, $\left\|T_{1}\right\|=r\left(T_{1}\right)=|\alpha|$. Hence, $v\left(T_{1}\right)=|\alpha|$. Thus, $\alpha \in \operatorname{bd}\left(V\left(B(M), T_{1}\right)\right)$.

Now, by [10], Proposition 1, $N\left(T_{1}-\alpha\right) \perp R\left(T_{1}-\alpha\right)$. As α and β are poles of the resolvent $R_{\lambda}\left(T_{1}\right)$ of order l,

$$
R\left(T_{1}-\alpha\right)=R\left(I-P_{T_{1}}\{\alpha\}\right)=R\left(P_{T_{1}}\{\beta\}\right)=N\left(T_{1}-\beta\right)
$$

([11], Theorem $5.8(\mathrm{~A})$). Now, $x \in N\left(T_{1}-\alpha\right)$ and $y \in N\left(T_{1}-\beta\right)$. Hence $\|x+y\| \geq\|x\|$. If $|\alpha|<|\beta|, \beta \neq 0$ as $\alpha \neq 0$. So T_{1} is invertible and $\sigma\left[T_{1}^{-1}\right)=\left(\alpha^{-1}, \beta^{-1}\right)$ and $\left|\alpha^{-1}\right|>\left|\beta^{-1}\right|$. Being paranormal, T_{1}^{-1} is also normaloid. As in the first case we see that $N\left(T_{1}^{-1}-\alpha^{-1}\right) \perp N\left(T_{1}^{-1}-\beta^{-1}\right)$. As $x \in N\left(T_{1}^{-1}-\alpha^{-1}\right)$ and $y \in N\left(T_{1}^{-1}-\beta^{-1}\right)$, the proof is complete.

QUESTION 2.7. Is $N(T) \perp N(T-\alpha)$?
REMARK 2.8. It is shown in [8], Corollary 3, that, for an isometry T on a normal linear space, $N(T-\alpha) \perp N(T-\beta)$ for distinct scalars α and β. This can be shown by completing the normal linear space, extending the isometry to the completed space and using Theorem 2.6.

COROLLARY 2.9. If T is a paranormal operator on a Hilbert space, then $N(T-\alpha) \perp N(T-\beta)$ for all distinct complex numbers α and β.

COROLLARY 2.10. If X is a separable Banach space and $T \in B(X)$ is paranormal, then T has single valued extension property.

Proof. We will show that $\sigma_{p}(T)$ is countable. Then, by [1], p. 22, T has single valued extension property. If $\sigma_{p}(T)$ is not countable, we would have an uncountable set of unit vectors such that $\left\|x_{i}-x_{j}\right\| \geq 1$. Since the space is separable, this is not possible.

In [8] it is pointed out that for an arbitrary Banach space, it is not known whether an eigenspace of an isometry has an invariant complement. In [2], it is shown that the answer is affirmative for an orthogonally complemented isometry on a smooth reflexive Banach space. We improve this result by using results in [10].

COROLLARY 2.11. If T is an isometry on a reflexive Bonach space, then every eigenspace of T has an invariant complement.

Proof. If T is an isometry and λ is an eigenvalue of T, then $|\lambda|=1$ and $\|T\|=r(T)=v(T)=1$. Thus

$$
\lambda \in b d(V(B(X), T))
$$

As X is reflexive, by Remark 4 of [10], $X=N(T-\lambda) \oplus R(T-\lambda)$. This completes the proof.

THEOREM 2.12. If T is a paranormal operator on a Banach space, then T and T^{\prime} (T and T^{*} in the case of a Hilbert space operator T) both satisfy Weyl's theorem.

Proof. In view of Theorem 3.3 of [6] and Corollary 2.5, it is enough to show that $W(T)=\sigma_{Z}(T)$. This would prove the result for T. Since $W(T)=W\left(T^{\prime}\right)$ and $\sigma_{\ell}(T)=\sigma_{\ell}\left(T^{\prime}\right)$, the result would follow for T^{\prime} and the relations $\overline{W(T)}=W\left(T^{*}\right)$ and $\overline{\sigma_{\eta}(T)}=\sigma_{\eta}\left(T^{*}\right)$ would yield the result for T^{*}. We would show that every λ in $\sigma(T) \sim W(T)$ satisfies the eigenspace gap condition of [5]. Then by Theorem 1 (4i) of [5], we get $\sigma(T) \sim W(T) \subseteq \Pi_{00}(T)$. From this it follows easily that $\sigma_{q}(T)=W(T)$. Note that $\sigma(T) \sim W(T)=\Pi_{O A}(T) \cup\left\{\sigma_{Z}(T) \sim W(T)\right\}$. If $\lambda \in \Pi_{O A}(T)$, then we can find a sequence $\left\{\lambda_{n}\right\}$ such that $\lambda_{n} \in \zeta(T)$ for all n as λ is an isolated point of $\sigma(T)$. Thus the gap condition is satisfied here. Given λ in $\sigma_{Z}(T) \sim W(T)$, we can find a sequence $\left\{\lambda_{n}\right\}$ of nonzero eigenvalues of T converging to λ. Now $N\left(T-\lambda_{n}\right) \perp N(T-\lambda)$ for all n by Theorem 2.6. So $d\left(x_{\lambda_{n}}, N(T-\lambda)\right) \geq 1$ for all $x_{\lambda_{n}}$ in $N\left(T-\lambda_{n}\right)$ such that $\left\|x_{\lambda_{n}}\right\|=1$. Thus

$$
\begin{aligned}
\delta\left(\lambda_{n}, \lambda\right) & \equiv \operatorname{Sup}\left\{d\left(x_{\lambda_{n}}, N(T-\lambda) \mid x_{\lambda_{n}} \in N\left(T-\lambda_{n}\right) \text { and }\left\|x_{\lambda_{n}}\right\|=1\right\}\right. \\
& \geq 1
\end{aligned}
$$

This will be true for all n. Hence

$$
\left|\lambda_{n}-\lambda\right| / \delta\left(\lambda_{n}, \lambda\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

This completes the proof.
PROPOSITION 2.13. If T is a paranormal operator with finite spectrm, then there exists a basis of X consisting of eigenvectors of
T; that is, X is a direct sum of the eigenspaces of T.
Proof. Using Theorem 5.7 (A) of [11], we see that

$$
X=\oplus \sum_{i=1}^{n} R\left(P_{T}\left(\left\{\lambda_{i}\right\}\right)\right)
$$

where $\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, since $\sigma(T)=\bigcup_{i=1}^{n}\left\{\lambda_{i}\right\}$ and each $\left\{\lambda_{i}\right\}$ is an open closed subset of $\sigma(T)$, with $\sigma(T)$ being finite. But

$$
R\left(P_{T}\left\{\lambda_{i}\right\}\right)=N\left(T-\lambda_{i}\right) \quad(i=1, \ldots, n)
$$

since each λ_{i} is a pole of resolvent of order 1 by Theorem 2.1. Thus

$$
X=\oplus \sum_{i=1}^{n} N\left(T-\lambda_{i}\right)
$$

This completes the proof.
COROLLARY 2.14. If T is a paranormal operator on a Hilbert space with finite spectrum, then T is normal.

Proof. $X=\oplus \sum_{i=1}^{n} N\left(T-\lambda_{i}\right)$ and $N\left(T-\lambda_{i}\right) \perp N\left(T-\lambda_{j}\right)$ for $i \neq j$ give the result.

COROLLARY 2.15 ([8], Corollary 4). If T is an isometry on a finite dimensional normed linear space X, then X has a basis consisting of eigenvectors of T.

Proof. This follows directly from Proposition 2.12 because a finite dimensional normed linear space is a Banach space.

References

[1] Ion Colojoară and Ciprian Foias, Theory of generalised spectral operators (Gordon and Breach, New York, London, Paris, 1968).
[2] G.D. Faulkner and J.E. Huneycutt, Jr, "Orthogonal decomposition of isometries in a Banach space", Proc. Amer. Math. Soc. 69 (1978), 125-128.
[3] S.R. Foguel, "The relations between a spectral operator and its scalar part", Pacific J. Math. 8 (1958), 51-65.
[4] J.R. Giles, "Classes of semi-inner-product spaces", Trans. Amer. Math. Soc. 129 (1967), 436-446.
[5] Karl Gustafson, "Necessary and sufficient conditions for Weyl's theorem", Michigan Math. J. 19 (1972), 71-81.
[6] Karl Gustafson, "On algebraic multiplicity", Indiana Univ. Math. J. 25 (1976), 769-781.
[7] Vasile Istrăfescu, Teishirô Saitô and Takashi Yoshino, "On a class of operators", Tôhoku Math. J. 18 (1966), 410-413.
[8] D. Koehler and Peter Rosenthal, "On isometries of normed linear spaces", Studia Math. 36 (1970), 213-216.
[9] Martin Schechter, "On the essential spectrum of an arbitrary operator. I', J. Math. Anal. AppI. 13 (1966), 205-215.
[10] Allan M. Sinclair, "Eigenvalues in the boundary of the numerical range", Pacific J. Math. 35 (1970), 231-234.
[11] Angus E. Taylor, Introduction to functional analysis (John Wiley \& Sons, New York, London, Sydney, 1958).

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat,

India;
Department of Mathematics, Saurashtra University,

Rajkot - 360005,
Gujarat,
India.

