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Abstract

Let (X,+) be an Abelian group and E be a Banach space. Suppose that f : X → E is a surjective map
satisfying the inequality

| ‖ f (x) − f (y)‖ − ‖ f (x − y)‖ | ≤ εmin{‖ f (x) − f (y)‖p, ‖ f (x − y)‖p}

for some ε > 0, p > 1 and for all x, y ∈ X. We prove that f is an additive map. However, this result does
not hold for 0 < p ≤ 1. As an application, we show that if f is a surjective map from a Banach space E
onto a Banach space F so that for some ε > 0 and p > 1

| ‖ f (x) − f (y)‖ − ‖ f (u) − f (v)‖ | ≤ ε min{‖ f (x) − f (y)‖p, ‖ f (u) − f (v)‖p}

whenever ‖x − y‖ = ‖u − v‖, then f preserves equality of distance. Moreover, if dim E ≥ 2, there exists a
constant K , 0 such that K f is an affine isometry. This improves a result of Vogt [‘Maps which preserve
equality of distance’, Studia Math. 45 (1973) 43–48].
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1. Introduction

The well-known Ulam stability problem for a functional equation asks whether, for a
map satisfying the functional equation approximately, there exists another map close to
the original one which satisfies the equation exactly. The first answer to this question
was given by Hyers [12], who proved the following celebrated result.

Theorem 1.1 (Hyers). Let f be a map from a Banach space E into a Banach space F,
and assume that there is an ε > 0 so that

‖ f (x + y) − f (x) − f (y)‖ ≤ ε

for all x, y ∈ E. Then there is a unique additive map g : E → F satisfying ‖ f (x) −
g(x)‖ ≤ ε for all x ∈ E.
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This result is now called the Hyers–Ulam stability theorem for the functional
equation f (x + y) = f (x) + f (y). Rassias [17] introduced a new notion by using a
function depending on ‖x‖ and ‖y‖ instead of the constant ε. Indeed, he showed that if
f : E → F satisfies

‖ f (x + y) − f (x) − f (y)‖ ≤ θ(‖x‖p + ‖y‖p)

for some θ > 0, 0 ≤ p < 1 and for all x, y ∈ E, then there is a unique additive map
g : E → F which satisfies

‖ f (x) − g(x)‖ ≤
2θ

2 − 2p ‖x‖
p

for all x ∈ E. This stability phenomenon is called Hyers–Ulam–Rassias stability for
functional equations. We refer to the survey [18] and the celebrated book [14] for more
details and some discussions.

The strong stability phenomenon, that each map satisfying a functional equation
approximately in some sense actually satisfies the functional equation, is called
hyperstability. It seems that the first hyperstability result appeared in [3], which was
about ring homomorphisms. Some of the latest developments in the hyperstability of
functional equations can be found in the papers [1, 4–6, 8, 16]. The term hyperstability
is often confused with superstability and we refer to the survey [7] for an explanation
of the difference.

The first aim of this paper is to establish a hyperstability result for the functional
equation

‖ f (x − y)‖ = ‖ f (x) − f (y)‖, (1.1)

where f is a map from an Abelian group X onto a Banach space E. The functional
equation (1.1) has been studied by several authors (see, for instance, [9, 10, 19, 20]).
In particular, Sikorska [19] proved the Hyers–Ulam stability of (1.1).

The second aim of this paper is to study the hyperstability of maps which preserve
the equality of distance. We say that a map f from a Banach space E into a Banach
space F preserves the equality of distance if ‖ f (x) − f (y)‖ = ‖ f (u) − f (v)‖ whenever
x, y, u, v ∈ E and ‖x − y‖ = ‖u − v‖. Such maps were first studied by Vogt [21], who
proved the following result.

Theorem 1.2 (Vogt [21]). Let f : E → F with f (0) = 0 be a surjective map which
preserves the equality of distance. If dim E ≥ 2, there exists a constant K , 0 such
that K f is a linear isometry.

Other results on such maps preserving the equality of distance can be found
in [11, 15, 19]. In this paper, using the hyperstability of (1.1), we also show an
analogous result for maps preserving the equality of distance.
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2. Main results

We start this section by recalling the following useful result of John [13] (see also
[2, Corollary 14.8]).

Lemma 2.1. Let f be a local homeomorphism from a connected open set Ω in a Banach
space E onto an open subset of a Banach space F satisfying

lim
y→x

‖ f (y) − f (x)‖
‖y − x‖

= 1

for all x ∈ Ω. Then f is the restriction of an affine isometry from E onto F.

Our first goal in this section is to show the hyperstability of (1.1).

Theorem 2.2. Let (X,+) be an Abelian group and E be a Banach space. Assume that
g : [0,+∞) × [0,+∞)→ [0,+∞) is a function with the following properties:

(1) g(s, 0) = g(0, t) = 0 for all s, t ∈ [0,+∞);
(2) for any ε > 0, there is a δ(ε) > 0 such that

g(s, t) ≤ sε for all 0 ≤ s < δ(ε)

and
g(s, t) ≤ tε for all 0 ≤ t < δ(ε).

If f : X → E is a surjective map satisfying the inequality

| ‖ f (x) − f (y)‖ − ‖ f (x − y)‖ | ≤ g(‖ f (x) − f (y)‖, ‖ f (x − y)‖) (2.1)

for all x, y ∈ X, then f is an additive map.

Proof. We may assume that f is injective. Indeed, we can put M = {x ∈ X : f (x) = 0}
and consider X/M. Clearly, it follows from (2.1) that

f (x) = f (y)⇔ f (x − y) = 0. (2.2)

Hence, M is a subgroup of X. If y ∈ x + M, then (2.2) implies that f (x) = f (y). Hence,
we may define a map f1 : X/M→ E by f1(x + M) = f (x). Now, (2.1) can be written as

| ‖ f1(x + M) − f1(y + M)‖ − ‖ f1(x − y + M)‖ |
≤ g(‖ f1(x + M) − f1(y + M)‖, ‖ f1(x − y + M)‖)

for all x, y ∈ X. It is clear that f1 is injective. We can consider f1 instead of f , since
additivity of f follows from that of f1.

We may thus assume that f is both injective and surjective. Fix x ∈ X and define a
map hx : E → E by hx(u) = f ( f −1(u) + x) − f (x) for all u ∈ E. Clearly, (2.1) implies
that f (0) = 0 and hence h0 = I (the identity on E) and hx(0) = 0.
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Assume that 0 < ε < 1. If ‖ f (x) − f (y)‖ < δ(ε)/2 < δ(ε), then

‖ f (x − y)‖ ≤ | ‖ f (x − y)‖ − ‖ f (x) − f (y)‖ | + ‖ f (x) − f (y)‖
≤ g(‖ f (x) − f (y)‖, ‖ f (x − y)‖) + ‖ f (x) − f (y)‖
≤ (ε + 1)‖ f (x) − f (y)‖ ≤ 2‖ f (x) − f (y)‖. (2.3)

If ‖u − v‖ < δ(ε)/2, (2.3) implies that

‖ f ( f −1(u) − f −1(v))‖ ≤ 2‖ f ( f −1(u)) − f ( f −1(v))‖ < δ(ε)

and hence

| ‖hx(u) − hx(v)‖ − ‖u − v‖ |
= | ‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖ − ‖ f ( f −1(u)) − f ( f −1(v))‖ |
≤ | ‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖ − ‖ f ( f −1(u) − f −1(v))‖ |

+ | ‖ f ( f −1(u) − f −1(v))‖ − ‖ f ( f −1(u)) − f ( f −1(v))‖ |
≤ g(‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖, ‖ f ( f −1(u) − f −1(v))‖)

+ g(‖ f ( f −1(u) − f −1(v))‖, ‖ f ( f −1(u)) − f ( f −1(v))‖)
≤ ε(‖ f ( f −1(u) − f −1(v))‖ + ‖ f ( f −1(u)) − f ( f −1(v))‖)
≤ 3ε‖ f ( f −1(u)) − f ( f −1(v))‖
= 3ε‖u − v‖. (2.4)

Then

‖hx(u) − hx(v)‖ ≤ (1 + 3ε)‖u − v‖. (2.5)

On the other hand, if ‖hx(u) − hx(v)‖ < δ(ε)/2, then (2.3) implies that

‖ f ( f −1(u) − f −1(v))‖ ≤ 2‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖ < δ(ε)

and, corresponding to (2.4),

| ‖hx(u) − hx(v)‖ − ‖u − v‖ |

≤ | ‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖ − ‖ f ( f −1(u) − f −1(v))‖ |

+ | ‖ f ( f −1(u) − f −1(v))‖ − ‖ f ( f −1(u)) − f ( f −1(v))‖ |

≤ ε(‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖ + ‖ f ( f −1(u) − f −1(v))‖)

≤ 3ε‖ f ( f −1(u) + x) − f ( f −1(v) + x)‖ = 3ε‖hx(u) − hx(v)‖.

Then

‖u − v‖ ≤ (1 + 3ε)‖hx(u) − hx(v)‖. (2.6)

Since f is injective and surjective, hx is also injective and surjective. Thus,
combining (2.5) with (2.6) implies that hx is a homeomorphism. Let 0 < ‖u − v‖ <
δ(ε)/2. Then (2.4) implies that∣∣∣∣∣‖hx(u) − hx(v)‖

‖u − v‖
− 1

∣∣∣∣∣ =
| ‖hx(u) − hx(v)‖ − ‖u − v‖ |

‖u − v‖
≤ 3ε.
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Hence,

lim
u→v

‖hx(u) − hx(v)‖
‖u − v‖

= 1.

Now, by applying Lemma 2.1 and noting that hx(0) = 0, we obtain that hx : E → E is
a linear isometry.

Now fix z ∈ X with ‖ f (z)‖ ≤ δ(1). By letting y = f −1(u) for any u ∈ E,

hz( f (y)) = f (z + y) − f (z) (2.7)

for all y ∈ X. Hence, (2.1) implies that

‖hz(u) − u‖ = ‖hz( f (y)) − f (y)‖

= ‖ f (z + y) − f (z) − f (y)‖

≤ ‖ f (z + y) − f (y)‖ + ‖ f (z)‖

≤ | ‖ f (z + y) − f (y)‖ − ‖ f (z + y − y)‖ | + 2‖ f (z)‖

≤ g(‖ f (z + y) − f (y)‖, ‖ f (z)‖) + 2‖ f (z)‖

≤ 3‖ f (z)‖.

It follows from the linearity of the isometry hz that hz(u) = u for all u ∈ E. Then (2.7)
can be written as f (z + y) = f (z) + f (y) for all y ∈ X. Hence,

f (nz) = n f (z) (2.8)

and
f (nz + y) = f (nz) + f (y) (2.9)

for all y ∈ X and n ∈ N.
For any x ∈ X, there exists an n0 ∈ N such that ‖ f (x)/n0‖ ≤ δ(1). Since f is

surjective, there exists a z ∈ X such that f (z) = f (x)/n0. Now (2.8) and injectivity
of f imply that x = n0z. Since x is arbitrary, the result follows from (2.9). �

Since the map g from [0,+∞) × [0,+∞) to [0,+∞) given by g(s, t) = εmin{sp, tp},
where p > 1 and ε > 0, satisfies the conditions in Theorem 2.2, we have the following
result.

Theorem 2.3. Let (X,+) be an Abelian group and E be a Banach space. Assume that
f : X → E is a surjective map. If there exist ε > 0 and p > 1 so that

| ‖ f (x) − f (y)‖ − ‖ f (x − y)‖ | ≤ εmin{‖ f (x) − f (y)‖p, ‖ f (x − y)‖p}

for all x, y ∈ X, then f is an additive map.

The following example shows that Theorem 2.3 fails for 0 < p ≤ 1.
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Example 2.4. Define a surjective map f : R→ R by

f (x) =


x if x ∈ (−∞, 0],
2x if x ∈ (0, 1/2),
x + 1/2 if x ∈ [1/2,+∞).

It is easy to prove that f satisfies

| ‖ f (x) − f (y)‖ − ‖ f (x − y)‖ | ≤ min{‖ f (x) − f (y)‖p, ‖ f (x − y)‖p}

for all x, y ∈ X and 0 < p ≤ 1. However, f is not an additive map.

We next prove a hyperstability result for maps preserving the equality of distance,
which is a consequence of Theorems 1.2 and 2.2.

Theorem 2.5. Let g be as in Theorem 2.2. If f is a surjective map from a Banach space
E onto a Banach space F so that

| ‖ f (x) − f (y)‖ − ‖ f (u) − f (v)‖ | ≤ g(‖ f (x) − f (y)‖, ‖ f (u) − f (v)‖)

whenever ‖x − y‖ = ‖u − v‖, then f preserves equality of distance. Moreover, if
dim E ≥ 2, there exists a constant K , 0 so that K f is an affine isometry.

Proof. Define h(x) = f (x) − f (0) for every x ∈ E. Then h : E → F is a surjective map
with h(0) = 0 and

| ‖h(x) − h(y)‖ − ‖h(u) − h(v)‖ | ≤ g(‖h(x) − h(y)‖, ‖h(u) − h(v)‖) (2.10)

whenever ‖x − y‖ = ‖u − v‖.
By substituting u = x − y and v = 0 in (2.10),

| ‖h(x) − h(y)‖ − ‖h(x − y)‖ | ≤ g(‖h(x) − h(y)‖, ‖h(x − y)‖)

for all x, y ∈ E. Hence, Theorem 2.2 implies that h is additive.
Choose arbitrary x, y, u, v ∈ E with ‖x − y‖ = ‖u − v‖. For any ε > 0, there is an

n ∈ N so that 2−n‖h(x) − h(y)‖ < δ(ε). Then the additivity of h and (2.10) give

| ‖h(x) − h(y)‖ − ‖h(u) − h(v)‖ | = 2n| ‖h(2−nx) − h(2−ny)‖ − ‖h(2−nu) − h(2−nv)‖ |
≤ 2ng(‖h(2−nx) − h(2−ny)‖, ‖h(2−nu) − h(2−nv)‖)
≤ 2ng(2−n‖h(x) − h(y)‖, 2−n‖h(u) − h(v)‖)
≤ 2nε(2−n‖h(x) − h(y)‖)
= ε‖h(x) − h(y)‖.

Since ε > 0 is arbitrary, we deduce that ‖h(x) − h(y)‖ = ‖h(u) − h(v)‖ and hence h
preserves equality of distance. Since f (x) = h(x) + f (0), f also preserves equality
of distance.

Assume now that dim E ≥ 2. Then the result follows from Theorem 1.2. �
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An immediate consequence is the following theorem, which improves the theorem
of Vogt mentioned in the Introduction.

Theorem 2.6. Let f be a surjective map from a Banach space E onto a Banach space
F. If there exist an ε > 0 and a p > 1 so that

| ‖ f (x) − f (y)‖ − ‖ f (u) − f (v)‖ | ≤ εmin{‖ f (x) − f (y)‖p, ‖ f (u) − f (v)‖p} (2.11)

whenever ‖x − y‖ = ‖u − v‖, then f preserves equality of distance. Moreover, if
dim E ≥ 2, there exists a constant K , 0 so that K f is an affine isometry.

Theorem 2.6 also fails for 0 < p ≤ 1. In fact, using Example 2.4, we give the
following counterexample between two-dimensional Banach spaces. Let f be as in
Example 2.4. Define a map g : `2

∞ → `2
∞ by g(x, y) = ( f (x), y) for all (x, y) ∈ `2

∞. It is
not hard to show that g satisfies (2.11) for ε = 1 and for all 0 < p ≤ 1, but g does not
preserve equality of distance.

Acknowledgement

The authors would like to express their gratitude to the referee for very helpful
suggestions and careful corrections to the previous version of this manuscript.

References
[1] A. Bahyrycz and M. Piszczek, ‘Hyperstability of the Jensen functional equation’, Acta Math.

Hungar. 142(2) (2014), 353–365.
[2] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloquium

Publications, 48 (American Mathematical Society, Providence, RI, 2000).
[3] D. G. Bourgin, ‘Approximately isometric and multiplicative transformations on continuous

function rings’, Duke Math. J. 16 (1949), 385–397.
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