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HANKEL OPERATORS 
ASSOCIATED WITH ANALYTIC CROSSED PRODUCTS 

YOSHIKIIMINA AND KICHI-SUKE SAITO 

ABSTRACT. We introduce the notion of Hankel operators associated with analytic 
crossed products and consider the Nehari problem in this setting. 

1. Introduction. The class of Hankel operators has attracted the attention of several 
mathematicians and plays an important part in operator theory and related fields. Here, we 
have a special interest in connection with the theory of shift operators, Hankel operators 
and Hardy spaces of vector valued functions. The notion of analytic crossed products 
(formally called nonselfadjoint crossed products) has been defined by McAsey, Muhly 
and the second author in [3,4]. Roughly speaking, the analytic crossed products we study 
stand in the same relation to the crossed products as the Hardy space H°° over the unit 
circle stands in relation to L°° over the unit circle. Therefore we believe that it is fruitful 
to study the theory of Toeplitz operators and Hankel operators associated with analytic 
crossed products in place of the Hardy space M2 over the unit circle. In [9] and [10], we 
introduced the notion of Toeplitz operators associated with analytic crossed products. 
In this note, we shall introduce the notion of Hankel operators associated with analytic 
crossed products. 

Our setting is the following. Suppose that M is a von Neumann algebra acting on the 
noncommutative L2-space L2(M) and a is a * -automorphism of M, that is, there exists 
a unitary operator u in B(L2(M)^j such that a{x) — uxu*. On the Hilbert space L2 (= 
£2(Z, L2(M)), we define the crossed product & defined by {Lx}xeM and Lè as in §2. Hence 
the subalgebra which we investigate and call an analytic crossed product is the a-weakly 
closed subalgebra i> + generated by {Lx}xeM

 a nd the positive powers of Lè. 
We put H2 = £2(Z+,L2(M)). If P is the orthogonal projection of I 2 onto M2 and if A 

is in y, then the left Hankel operator HA is defined by 

HAf = (I-PW, / ^ M 2 . 
Our aim in this note is to study the properties of Hankel operators. In §2, we define the 

notion of Hankel operators associated with analytic crossed products. In §3, we consider 
the Nehari problem in this setting. That is, if A is in 2, then \\HA\\ — d(A, &+), where 
d(A, i?+) is the distance of A from tt+ with respect to the operator norm. Furthermore, 
there exists an element B in y such that//^ = //# and \\HA\\ = \\B\\ (cf. Theorem 3.1). 
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2. Preliminaries and definitions. Let M be a von Neumann algebra and let a be a 
*-automorphism of M. We regard M as acting on the noncommutative L2-space L2(M) 
in the sense of Haagerup. We refer the reader to [2, 11] for discussions of this space 
including some of their elementary properties. We denote the operators in the left regular 
representation of M on L?(M) by lx, x G M, and those in the right regular representation 
by rx, x G M. Put £(M) = {tx : x G M} and r{M) = {rx : x G M}, respectively. Let J be 
the conjugate linear isometric involutions —-> a* of L2(M) and let L2(M)+ be the positive 
part of L2(M). Since {£(M),L2(M),/,L2(M)+} is a standard form of M in the sense of 
Haagerup [1], by [1, Theorem 3.2], there exists a unitary operator u in L?(M) such that 
â(.i) = utxu* and ra(v) = urxu*. To construct a crossed product, we consider the Hilbert 

space L2 defind by 

f:Z-^L2(M) ErWll2<«) 

where || • ||2 is the norm of L2(M). For x G M, we define operators LA, 7?v, L̂  and R^ on 
L2 by the formulae 

(L/X/2) = ^ ( / i ) , (Rxf)(n) = raHx]f(n\ 

(Ltf)(n) = uf(n - 1) and (/?^)(*) = / ( * - 1), 

where/ G L2 and n G Z. Put L(M) = {L, : x G M} and 7?(M) = {rv : x G M}. 
We set y = {L(Af),Z4" and 9î = {/?(Af),/^}". We also define the left (resp. right) 
analytic crossed product tt+ (resp. d\+) to be the cr-weakly closed subalgebra of i> (resp. 
d\) generated by L(M) (resp. R{M)) and Ẑ  (resp. /^) . 

The automorphism group {f3t}tm of i? dual to {aw}„ez is implemented by the unitary 
representation of R, {Wt}t^R, defined by the formula 

(Wtf)(n) = e2mn!f(n), f G I 2 ; 

that is, 
f3t(T) = WtTW;, 7 G i ! , 

by definition. It is elementary to check that the spectral resolution of { W^}^ is given by 
the formula 

W,= £ e2™'Ett, 
n ——oo 

where En is the projection on L2 defined by the formula 

(Elxf)(k) = Snkf(n). 

We also define the integral 

en(T)= j\-27Tintf3t(T)dt, r e i ! . 

Furthermore, we define the noncommutative Hardy space H2 by 

U2 = {fe L2 :f(n) = 0,n<0} 
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and put 
W2o = {feM2:f(0) = 0}, 

respectively. We refer the reader to [3,4] for discussions of these algebras including some 
of their elementary properties. At first, we have 

PROPOSITION 2.1 (cf [3, 4]). (1) I 2 = M2 0 JM2. 

(2) M2 = £ ^ o 0 £ „ l 2 and Ml = E ^ i - o o ® ^ 2 . 
(3) En = I»E0I4

n = R%E0R*n for every nEl. 

Let P be the orthogonal projection of L2 onto M2. For A in 2 (resp. 9Ï), the left (resp. 
right) Hankel operator HA is defined by 

HAf=(I-PW, for feM2. 

Then HA is a bounded operator from HI2 into JU^. Throughout this note, all results will be 
formulated in terms of left Hankel operators. We leave it to the reader to rephrase them 
to obtain the corresponding results for right Hankel operators. 

At first, we easily have the following proposition. 

PROPOSITION 2.2. Let A G 2. Then the matricial representation of HA with respect 
to M2 = E0L

2 0 Ex I 2 ® E2L
2 e --and JU2 = E-X I 2 0 £_2 l2 0 £~3L

2 0 • • • is the 
Hankel matrix 

llX]u-1 tXlu-2- ix ,u~3 •••! 
\lx_2u-2 ex_,u~3 lx„4u~4 . . . 
\ex_3u-3 ix_4u~4 iX5u~5 ... 

where xn G M for n — —\, —2, —3, 

3. The Nehari problem. Best approximation problems with respect to operator 
norms which are not Hilbert space norms can hardly ever be solved either easily or ex-
plicity. In this section, we consider the Nehari problem. That is, given A G 2, find an 
operator B in 2+ such that \\A — B\\ is minimized. That is, we have the following main 
theorem. 

THEOREM 3.1. Let A be in 2. Then \\HA\\ = d(A9£+), where d(A,fi+) = 
inf{||A — B\\ : B G 2+}. Furthermore, there exists an element B in 2 such that HA — H g 
and\\HA\\ = \\B\\. 

To prove this theorem, we need some lemmas. 

LEMMA 3.2. If A is in 2, then \\HA \\ < d(A, 2+). 

PROOF. Since 2 + i 2 c H2, we have (/ - P)Cf = 0 for any C G £+. Thus, for every 
/ E H 2 , 

HA-çf = (I-P)(A - C)f = (I-P)Af = Htf. 
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Hence we have HA-C — HA and SO \\HA\\ < \\A — C\\. Therefore, \\HA\\ < d(A, ^+).This 
completes the proof. 

For every k G Z, we define the closed subspace L2. of L2 by 

Ll = if £ L2 : f(n) = 0 for every n < k}. 

Then it is clear the l 2 = EkL
2 ® Ek+] I

2 0 Ek+2L
2 0 • • •. Then we have 

LEMMA 3.3. For any k G N, we set 

Sk 

«,y 
ixt y - 2 

^ 
^ 
^ 

y-1 

y-2 

y - 3 

A 
4 
^ 

y-2 

y-3 

y-4 

where Xj G M for every i < k. If Sk is a contraction on i?k, then there is an element 
xk+\ G M such that 

SL-+\ — 

r f i / + l 

^ « * 

yy-1 
-̂y 

^y-1 

yy-2 
y 
^ 
t« 

,« 
,M 

j« 

.A:— 1 

,k-2 

is a contraction on L2
+1. 

PROOF. Put 

uk-\ 
„k-2 

„*-3 

iXk_2u 
ç _ 

k~2 

tx, ,Uk~3 

„k-3 

txt .,«• ,A—5 fl = 

and C — f £ ̂  w 
X C 
A B 

,tk-\ 

Since [B A] = 

• 1, respectively. For some x G Z?(L2(M)), we put M^ = 

= Sk, by [5, Theorem 1], there exist sequences of real 

numbers {cn}™=] and {dn}^Lx such that the weak limit D of cnC(I — dnA*A)~xA*B exists 

and satisfies ||MD|| = max | II, || 5 A || < 1. Therefore, we have to prove that 

there exists an element xk+\ G M such that D = lXk+] u
k+l. To do this, it is sufficient to 

prove that C(I - dnA*Ay{A*Bu~M G r{M)' = E(M). We now put, for each x G M, 

V(x) 

'a '(.v) 

0 
0 

0 0 
ra 2 (A) ^ 

0 r„ 3, 

https://doi.org/10.4153/CMB-1994-011-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-011-6


HANKEL OPERATORS 79 

and 

W(x) 
^ rofk+i(x) 
0 0 

0 
0 

ra k+2{X) 

Since ra(x) = urxu*, it is clear that the following relations hold: for each x G M , 

(1) rxC = CW(x); 

(2) V(x)A = AW(x)\ and 

(3) V(x)B = Bra-k-Hx). 

From (3), we have W(x)A* = A*W(x). Thus W(x)A*A = A*AW(x). This implies that 

W(JC)(/ - dnA*AYx = (/ - ^ A ) - 1 ^ ) . From (l)-(3), we have, for every x G M, 

r,C(/-^7A*A)"1A*Jew~ CW(JC)(/ - ^AMJ-U*^"*" 1 

C(/ - ^A*A)- ' W(x)A*Bu k ' 

C(I - dnA*A)-]A*V(x)Bu-k] 

C(I-dnA*A)~lA*Bra «+.>u)iT* 

C(l-dnA*A)xA*Buk'~lrx. 

This implies that Z) G l(M)uk+l. This completes the proof. 

LEMMA 3.4. Let T be the infinite matrix T = [tij]fj=_0Qf where ty G B[L2(M))for 

every ij G Z. For every k, m G Z, fe/ 7 /̂H /?<? the submatrixofT, Tkm = [tjj]™k-=m. IfTkm 

defines a contraction on \}mfor every k, m G Z, f/ien 7 defines a contraction on L2. 

PROOF. We now put I2, = {f G L2 : /(w) = 0 for all but finitely many n}. For 

every / G LQ, we set g(k) — E j^_ 0 0 fy/0) f ° r every k G Z. Then we may write 7J = g. 

Suppose that \\f\\2 = 1. Further, we define fm(i) = 0 if / < m and = f(i) if / > m. Since 

ll^/n/mlb < 1, we have 

< 1. 

Letting m —> 00, we obtain Y%Lk \\g(J)\\\ < 1 • As k —> 00, we find that E^-oo ll^COlli < 

1. Thus we have g G L2 and so T is a contraction on LQ. Since L(
2 is dense in L2, T defines 

a contraction on L2. This completes the proof. 

PROOF OF THEOREM 3.1. By Lemma 3.2, we have \\HA\\ < d(A,tt+). To prove 

the opposite inequality, we may suppose that \\HA\\ — 1, replacing A by (1/||A||)A. By 

Proposition 2.2, HA has the Hankel matrix 

tx_lU~2 
tx ,U 2 Ix.-sU 

tx]u~3 tx\u 
tx-<U~4 tX5U-
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where xn G M for n = —1,-2, —3, We shall construct a sequence {xn}™={) of M 
inductively as follows. For k G N, let Hk be an operator 

Hk 

,.k-\ 

Va* 

K-,u 
L.y~ 

k-2 

„k-3 
Uk~3 

„k-4 

„k-5 

Note that Ho defines a contraction HQ = HA. We suppose that Hk is a contraction on 
h\_ j . The Hankel matrix pattern fixes all the new first column except it first entry. Let 

Hk(b) 
„k-\ 

^ - i l 

^ It, ,Uk-2 

„k-\ 

Xk-2
V 

„*-3 

Zx,?ul 

^ 4 l 

k-2 

b Q 
R S 

where Q9 R and S are suitable matrices of type 1 x oo, oo x 1 and ooxoo, respectively. 

Then we have [ R S] = Hk and Hk is a contraction on L? -£_P by the inductive 

hypothesis. By Lemma 3.3, there exists an operator^ in M such that Hk(lXku
k) defines 

a contraction on L .̂ By puttingHk+\ — Hk(lXku
k), Hk+X is a contraction on L .̂ By induc­

tion, the sequence { ^ } ^ 0 in M has the property that \\Hk\\ < 1 for all k > 0. 
Next, we consider the infinite matrix T defined by 

[4_„ -/'—y'+l-joo 

In the notation of Lemma 3.4, for every k, m G Z, let 

*• km 

X-k-m+ 
-k—m+\ 

—k—m 

-k-m-\ 

-k—m 

-k—m—2 
tx.. 
tx. 

-k-m-\ 

-k-m-2 

-k-m-3 

be the submatrix of T. In either case, Tkm is a contraction on Ljn for every k,m G Z. By 
Lemma 3.4, T defines a contraction on L2. Therefore, it is clear that 7G i!. Then we put 
B = A — T. Since A and T have the same negative Fourier coefficients, we have 5 e l!+. 
Hence we have 

d(A,Z+) < \\A-B\\ = \\T\\ < \\HA\\ <d(A,X+). 

Then we have \\HA\\ = \\T\\ = d(A, 2+). Since B G iî+, we deduce that HT = HA-B = 
HA. This completes the proof. 

By Proposition 2.2, any left Hankel matrix operator has the left Hankel matrix. Next, 
we consider the converse. 
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THEOREM 3.5 [NEHARI]. If T is a bounded linear operator from U2 into JUQ. Then 
the following conditions are equivalent. 

(1) T has the matricial representation of the form [lx_H+] u~l~j+l ]?? v where X-n G M 
forn G N. 

(2) There exists an element A in ii such that HA = T. 
Moreover, under the above condition, then 

\\T\\ = inf{||A|| : A G « such thatHA = T}. 

PROOF. Without loss of generality, we may assume that ||r|| = 1. 
(1) ^> (2). By the proof of Theorem 3.1, there exists a contraction A in # which 

satisfies A — [£X-H+lu~l~j+l](ij=_0O, where xn G M for n > 0. Then we have HA = T, 
(2) =̂> (1). By Proposition 2.2, we have (1). 
Next let B be an operator in i? such that//^ = T. Then ||r|| = \\HA\\ < \\B\\ and so 

||r|| <inf{| |5| | :BeZ,T = HB}. 

Since we can take a contraction A in y such that //^ = 7\ we have the converse inequality. 
This completes the proof. 
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