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THE FIELD G E N E R A T E D BY THE DISCRIMINANT OF 
THE CLASS INVARIANTS OF A N IMAGINARY 

Q U A D R A T I C FIELD 

BY 

D. S. DUMMIT*, R. G O L D , A N D H. KISILEVSKYt 

ABSTRACT. This note determines the quadratic field generated 
by the square root of the discriminant of the modular equation 
satisfied by the special value j(a) of the modular function j for a an 
integer in an imaginary quadratic field. 

Let fc be an imaginary quadratic field. Then it is known [1] that the Hilbert 
class field H of fc is generated over fc by adjoining to fc any one of the 
algebraic integers j(%i),. . . , /(9lh)> where %l9..., Slh are ideals of fc repres­
enting the h classes of the class group Ck of fc and j is the modular function. 
Here /(9t) = /(r), where % has an ordered Z-basis 1, r with refc, lm( r )>0 . 

The minimal polynomial of the algebraic integer j(r) has rational integer 
coefficients, is of degree h, and has a rational integral discriminant. This 
discriminant can be written as D2 where 

In this paper we determine the field Q (D) generated over the field of rational 
numbers Q by D and obtain in particular the sign of D2 [cf. 2]. As is shown in 
[1], page V-12, formula (7) and the preceding remark, 

Hence, 

D=Yl[mr)-jws)i 
r<s 

and since the class of fl in Ck is the inverse of the class of 21 in Ck, D — D or 
—D depending on the sign of the permutation representation of inversion on 
Ck. If n denotes the number of generators of the Sylow-2-subgroup of Ck, then 
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Ck has precisely 2n classes fixed by inversion (i.e. classes of order 2) and so the 
number of transpositions in the cycle decompositon of inversion is ^(h — 2n). 
Hence 

D = (-l) (h-2B) /2D. 

This is already sufficient to determine the sign of D2 , since D 2 e Q , so D 2 is 
positive if and only if D e n , i.e. D = D. Since 2n divides h, it follows that 

D2 > 0 if and only if either (a) h = 1, 2 mod 4 or (b) n > 1 

(so D 2 < 0 if and only if (a) h = 3 mod 4 or (6) h = 0 mod 4 and n = 1). 
In the same way, we may determine when D is fixed by the automorphisms 

of Gal(H/k), the Galois group of H over k. These automorphisms may be 
identified by the Artin isomorphism with <J^7 where 21 is an ideal of k, c% 
depending only on the class of 5Ï in Ck and having action o^(/(93)) = /(9I_193) 
for every ideal 93. 

It follows that cr^(D) = e^D, where e^ is the sign of the permutation of Ck 

given by multiplication by the class of 91. The determination of e^ is a 
group-theoretic problem on the regular representation for finite groups: 

Let G be a finite group and g G G be an element of order m. For any x e G, 
the orbit of x under multiplication by g is (x, gx,. . . , gm_1x) and there are 
\G\/m disjoint cycles (|G| = the order of G), so the sign of the permutation of 
multiplication by g on G is ( - i^-^ io i /m ^ ^ I G H G I M T h e r e f o r e ? t h e s i g n o f 

this permutation is — 1 if and only if G has even order and the cyclic subgroup 
generated by g has odd index in G (so any Sylow-2-subgroup would be cyclic). 

As a result, there is an automorphism c% such that cr^(D) = — D if and only 
if Ck has a non-trivial cyclic Sylow-2-subgroup, i.e. n = 1. In other words, D is 
invariant under the Galois group of H over k if and only if n ̂  1. 

We now determine the field Q(D). Since D2 is rational, Q(D) is at most a 
quadratic extension of Q. 

PROPOSITION. With notation as above, 

(i) Q, ifh = l (mod4) or n>2 
(ii) k, i /h = 3 (mod 4) 

(iii) the unique real quadratic subfield of H, 
Q(D) = | if h = 2 mod 4 

(iv) the unique imaginary quadratic subfield of 
H not equal to k, if n = 1 and 4 
divides h. 

Proof. Suppose first that n = 0 so that h is odd. Then D is fixed by all 
automorphisms of Gal(H/k) so that Q(D) is either Q or fc according as D2 is 
positive or negative, i.e. h = 1 mod 4 or h = 3 mod 4, respectively. This gives (ii) 
and the first statement of (i). 
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If n = 1, D is not invariant under Gal(H/fc), hence Q(D) is not contained in 
fc. When n = l, H contains precisely three quadratic subfields: fc, a second 
imaginary quadratic field, and a unique real quadratic field. Therefore, Q(D) is 
again determined by the sign of D2. This gives (iii) and (iv). 

Finally, if n > 2 , D is invariant under Gal(H/fc) and under complex conjuga­
tion, so that Q(D) = Q, and this completes the proof. 
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