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Recent efforts to include kinetic effects in fluid simulations of plasmas have been very
promising. Concerning collisionless magnetic reconnection, it has been found before
that damping of the pressure tensor to isotropy leads to good agreement with kinetic
runs in certain scenarios. An accurate representation of kinetic effects in reconnection
was achieved in a study by Wang et al. (Phys. Plasmas, vol. 22, 2015, 012108) with
a closure derived from earlier work by Hammett and Perkins (Phys. Rev. Lett., vol. 64,
1990, 3019). Here, their approach is analysed on the basis of heat flux data from a
Vlasov simulation. As a result, we propose a new local closure in which heat flux is
driven by temperature gradients. This way, a more realistic approximation of Landau
damping in the collisionless regime is achieved. Previous issues are addressed and
the agreement with kinetic simulations in different reconnection set-ups is improved
significantly. To the authors’ knowledge, the new fluid model is the first to perform
well in simulations of the coalescence of large magnetic islands.
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1. Introduction
Magnetic reconnection is a process where the magnetic field line topology changes

(field lines reconnect) to an energetically more advantageous state. Magnetic energy
is converted into heating and particle acceleration. Reconnection occurs throughout
the Universe, e.g. in the context of gamma ray bursts, in stellar and especially solar
flares or in the Earth’s magnetosphere. Due to its importance and the diversity of the
underlying microphysics, it is one of the most studied topics in plasma physics with
more than 764 000 entries in a web search. We only mention some major lines of this
research. Besides the fundamental studies of Sweet–Parker (Sweet 1956; Parker 1957)
and Petschek (1964) (see also Biskamp 2000) a milestone of reconnection research
has been the formulation of the geospace environmental modelling (GEM) challenge
(Birn et al. 2001) where various plasma descriptions such as magnetohydrodynamics
(MHD), Hall-MHD and kinetic simulations were compared in order to understand the
process of fast reconnection. This started intense studies on how to move from a large
scale MHD description to more and more refined models and finally to a full kinetic
treatment. Another direction continued with a MHD description focused however
on turbulent reconnection (see Lazarian et al. (2015) and references therein) and/or
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multiple island reconnection (Loureiro, Schekochihin & Cowley 2007; Bhattacharjee
et al. 2009). The last reference (Bhattacharjee et al. 2009) also contains an overview
of the parameter regimes in which Hall-MHD or MHD plasmoid reconnection takes
place. In addition, a recent review on the 0.1 reconnection rate problem can be found
in Cassak, Liu & Shay (2017).

Plasma phenomena that happen on large time and spatial scales and those
where collisions are an important factor can often be described sufficiently with
hydrodynamic or fluid models. In many cases, such as collisionless magnetic
reconnection and collisionless shocks, these conditions are not fulfilled and thus
kinetic effects have to be taken into account. However, kinetic simulations are
computationally expensive and problems with large system sizes such as reconnection
in the magnetotail or three-dimensional reconnection on larger scales cannot be
computed with a fully kinetic model at this point. The fluid equations on the
other hand can be orders of magnitude cheaper to compute and can be a good
approximation depending on how well the corresponding closure suits the problem.

Thus fluid closures including or mimicking kinetic effects have a long history. An
excellent overview is given in Chust & Belmont (2006). Our starting point is the
closure of Hammett & Perkins (1990) and successive work in this direction (Hammett,
Dorland & Perkins 1992; Passot & Sulem 2003). An extension providing heat fluxes
in the parallel and perpendicular directions (with respect to the magnetic field) was
presented in Sharma, Hammett & Quataert (2003). All of these closures rely on the
Hilbert transform and thus form non-local closures.

Wang et al. (2015) suggested a heat flux closure which approximates a spectrum
of wavenumbers by one single wavenumber k0. The closure, although simple, gave
very good results in fluid simulations of collisionless reconnection. Nevertheless, Wang
et al. asserted that further work is needed to improve the closure, e.g. by finding a
more suitable k0. One way to do this is to compare the closure approximation to the
actual heat flux gained from a kinetic simulation. This is difficult with a particle in
cell (PIC) code because higher moments like pressure and especially heat flux are very
noisy in PIC simulations. We analyse the closure making use of kinetic data from a
Vlasov simulation. Dependence of k0 on plasma parameters is sought as well as other
major potential improvements to the closure.

2. Vlasov equation and ten moment fluid equations
A plasma may be described by distribution functions fs(x, v, t) which determine the

particle density at point (x,v) in phase space at time t for the particle species s. Under
the assumption that there are no collisions (which is a good approximation e.g. for
plasmas in space physics), the evolution of the distribution function is given by the
continuity equation

∂fs

∂t
+∇ · (vfs)+∇v · (afs)= 0. (2.1)

Inserting Lorentz acceleration a= (q/m)(E+ v×B), the equation can be rearranged
to give the Vlasov equation

∂fs

∂t
+ v · ∇fs + qs

ms
(E+ v×B) · ∇v fs = 0. (2.2)

Evolution of electric and magnetic fields is given by Maxwell’s equations ∇ ·E=ρ/ε0,
∇ ·B= 0, ∇×E=−∂B/∂t and ∇×B=µ0 j+µ0ε0(∂E/∂t).
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The charge and current densities are defined as ρ = ∑s qsns and j = ∑s qsnsus.
Fluid quantities can be derived by taking moments of the distribution function,
i.e. multiplying fs by powers of v and taking the integral over velocity space. The
zeroth moment is the particle density ns(x, t) = ∫ fs(x, v, t) dv. Similarly, the first
moment is the mean velocity us(x, t)= (1/(ns(x, t)))

∫
vfs(x, v, t) dv. Higher moments

include pressure Ps = ms
∫

v′ ⊗ v′fs dv and heat flux Qs = ms
∫

v′ ⊗ v′ ⊗ v′fs dv, where
v′ = v − u.

By taking moments of the whole Vlasov equation, one can obtain the fluid
equations. Due to the v · ∇f term in the Vlasov equation, however, every moment
contains a quantity that is defined by the next higher moment. Therefore, the resulting
system of equations needs a closure in order to be self-consistent. Usually this is
done by finding an approximation for pressure or heat flux. Two common versions of
the fluid equations are the five moment equations (pressure closure) and ten moment
equations (heat flux closure).

The following three equations along with Maxwell’s equations and a heat flux
closure are the complete set of ten moment equations:

∂ns

∂t
+∇ · (nsus)= 0, (2.3)

ms
∂(nsus)

∂t
= nsqs(E+ us ×B)−∇ ·Ps, (2.4)

∂Ps

∂t
− 2qs sym

(
nsusE+ 1

ms
P ×B

)
=−∇ ·Qs. (2.5)

Ps = ms
∫

v ⊗ vfs dv and Qs = ms
∫

v ⊗ v ⊗ vfs dv are the second and third moment
of the distribution function and ‘sym’ denotes the symmetrization.

3. Wang et al. physical space fluid closure for Landau damping

Many heat flux closures for collisionless plasmas exist and have been successfully
applied, e.g. the Landau damping closures by Hammett & Perkins (1990) or Passot
& Sulem (2003). An overview is given in Chust & Belmont (2006). Most closures
are not designed for heat flux and pressure tensors in three dimensions however.
Hammett & Perkins (1990) (also: Hammett et al. 1992) approximated the plasma
response function using a Padé series in order to include Landau damping in the
fluid equations which is the main damping mechanism – and thus cause of heat flux
– in collisionless plasmas. The closure was found to be an excellent approximation
in many different cases (see e.g. the study by Sarazin et al. 2009).

The Hammett–Perkins closure is an approximation of the scalar heat flux q in one-
dimensional Fourier space:

q̃k =−n0χ1
21/2vt

|k| ikT̃k, (3.1)

with vt =√kBT/m, χ1= 2/
√

π and the equilibrium density n0. The closure resembles
Fick’s second law q=−nD(∂T/∂x).

Equations (2.3)–(2.5) and (3.1) contain two extreme cases: in the limit of vanishing
heat flux Qs = 0 these equations integrate to the Chew, Goldberger & Low (CGL)
equations of state where p‖ ∝ n3/B2 and P⊥ ∝ nB (Chew, Goldberger & Low 1956).
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The other extreme case is when the thermal velocity tends to infinity vth=∞ in (3.1)
such that ∇T = 0, indicative of a Boltzmann plasma with constant temperature.

The Hammett–Perkins closure was derived under the assumption of small deviations
from a Maxwellian background. Thus, fine scale structures in velocity space or particle
trapping cannot be covered with this closure. A closure for guide field reconnection,
including the weakening of the heat flux by particle trapping, is described in Le et al.
(2009) (see also the review Egedal, Le & Daughton 2013). Thus, the Hammett–Perkins
closure will not cover all of the physics near the X-point but may well be justified
outside this region where the magnetic field lines are nearly straight. For simulations
coupling a kinetic treatment near the X-point and a fluid description outside the
reconnection zone (see Rieke, Trost & Grauer 2015) this closure can substantially
improve and simplify the transition from the fluid to the kinetic description.

It was found by Johnson & Rossmanith (2010) that heat flux in collisionless
reconnection can be modelled by a relaxation of the pressure tensor to an isotropic
equilibrium pressure. This can be motivated with the Hammett–Perkins closure:
equation (3.1) was simplified by Wang et al. (2015) in order to be applicable in
three-dimensional physical space. Since ∇ · Q will be approximated, the divergence
of (3.1) is taken which gives

LHS= ikt ·Qs (3.2)

on one side and

RHS= n0χ1
21/2vt

|k| kt · (kt · T̃s) (3.3)

on the other side of the equation. Here, kt is the transposed wave vector. It becomes
obvious that a direct generalization of Fick’s law to tensors is not possible since (3.2)
is a second-order tensor and (3.3) is a scalar. Therefore, the vector character of k was
neglected on the right-hand side (and the constant χ1

√
2≈ 1.6 was dropped), resulting

in
ikmQijm(k)≈ n0

vt

|k|k
2T̃ij(k)= n0vt|k|T̃ij(k). (3.4)

The adjustment done by treating k as a scalar is that (in physical space) ∇ · (∇ ·Ts)

is replaced by ∇2Ts, i.e. the Laplace operator is used on each component of Ts. At
the same time regular divergence is taken on the left-hand side. A motivation for this
approximation is given in § 7.

The perturbed temperature T̃ij can be expressed as (P ij − pδij)/n0, where pδij is the
isotropic pressure with p= (Pxx + Pyy + Pzz)/3. Thus

ikmQijm(k)≈ vt|k| (P ij(k)− p(k)δij). (3.5)

Finally, the wavenumber field k is approximated by one single wavenumber k0, so
that the closure can be written in physical space as

∂mQijm ≈ vt|k0| (P ij − pδij). (3.6)

We will refer to this closure as the scalar-k closure in this paper.
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4. Numerical set-up
Fluid and kinetic Vlasov simulations of different reconnection problems are

performed. The Vlasov code is described in Schmitz & Grauer (2006a,b), the
fluid code and its coupling to the Vlasov code is presented in Rieke et al. (2015).
Time is normalized over the inverse ion cyclotron frequency Ω−1

i,0 , length over ion
inertial length di,0, speed over Alfvén velocity vA,0 and mass over ion mass mi. The
electron–ion mass ratio is mi/me = 25 in all set-ups.

4.1. GEM
The GEM (geospace environmental modelling) reconnection set-up (Birn et al. 2001)
is a reconnection problem that uses a Harris sheet configuration (Harris 1962). The
initial magnetic field is given by Bx(y) = B0 tanh(y/λ) and the particle density by
n(y) = n0 sech2(y/λ) + nb where λ = 0.5, B0 = 1, n0 = 1 and the background density
nb = 0.2. Temperature is defined by n0(Te + Ti) = B2

0, Ti/Te = 5. Speed of light is
set to c= 20vA,0. The domain is of size Lx × Ly = (8π× 4π)di,0. It is translationally
symmetric in the z-direction, periodic in the x-direction and has conducting walls
for fields and reflecting walls for particles in the y-direction. In order to start the
reconnection process, a perturbation in the magnetic field is applied that takes the
form B= ẑ×∇ψ where the perturbation in the magnetic flux is given by ψ(x, y)=
0.1 cos(2πx/Lx) cos(πy/Ly). Because of symmetries, it is sufficient to simulate one
fourth of the domain. The time span covered by the Vlasov simulation is 40Ω−1

i,0 ,
reconnection rate peaks at t≈ 20Ω−1

i,0 . The domain is resolved by 256× 128 cells.

4.2. Large Harris sheet – WHBG
Reconnection in the Earth’s magnetotail happens on much larger spatial scales than
reconnection in the GEM set-up. In order to approach larger scales, Wang et al. (2015)
performed kinetic and fluid simulations in a configuration like GEM but with a (100×
50)di,0 domain and c=15vA,0. For simple reference, it will be called the WHBG set-up
(Wang, Hakim, Bhattacharjee, Germaschewski) in this paper. A study of reconnection
in a domain of this size was done before by Daughton, Scudder & Karimabadi (2006),
but with open boundary conditions unlike the WHBG version.

4.3. Island coalescence
The island coalescence reconnection problem has also been studied extensively, e.g. by
Karimabadi et al. (2011) (large PIC simulations), Stanier et al. (2015) (PIC, hybrid
and Hall-MHD compared) and Ng et al. (2015) (MHD, Hall-MHD and ten moment
fluid simulations). We use the same parameters as the aforementioned studies. The
initial configuration is a Fadeev equilibrium (Fadeev, Kvabtskhava & Komarov 1965):
Az=−λB0 ln(cosh(y/λ)+ ε cos(x/λ)) and n=n0(1− ε2)/(cosh(y/λ)+ ε cos(x/λ))2+nb
with ε = 0.4, nb = 0.2 and a variable λ. Temperature is T = Ti = Te = 0.5, speed
of light c = 15vA,0 and the domain size is proportional to λ according to Lx × Ly =
(2πλ × 4πλ)di,0. The boundaries are periodic in the y-direction and conducting for
fields and reflecting for particles in the x-direction. The B-field perturbation is δBx =
0.1 sin(y/(2λ)−π) cos(x/(2λ)) and δBy=−0.1 cos(y/(2λ)−π) sin(x/(2λ)) (Daughton
et al. 2009). Time is normalized to the Alfvén time tA = Ly/vA,0. The normalized
reconnection rate ER is computed as ER = (∂Ψ /∂t)/(B′v′A) where B′ is the maximum
of the absolute value of the magnetic field between the X-point and the O-point at
x = 0 and t = 0 and v′A = B′/

√
µ0n0mi. The magnetic flux is Ψ = ∫ X

O dyBx (integral
from the O- to the X-point).
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FIGURE 1. Comparison of actual heat flux change (first row) and scalar-k closure (second
row). (a) (∇ ·Qe)xx at t=17.5Ω−1

i , (b) (∇ ·Qe)xy at t=7.5Ω−1
i , (c) (∇ ·Qe)zz at t=30Ω−1

i .

5. Comparison of heat flux data and the scalar-k closure
In order to examine how well the actual divergence of heat flux agrees with the

closure approximation, both sides of (3.6) have been computed. While Wang et al.
chose 1/de,0 as k0 for all components, ideally one can find a better k0 by analysing
the plots (cf. § 6) of the kinetic simulations. The comparison is done with simulations
of the GEM set-up.

Taking symmetry into account, the heat flux tensor Qs has ten and the pressure
tensor Ps has six independent components. Therefore (3.6) results in six separate
equations, one for each of the pressure tensor’s components. 1/de,0 equates to 5d−1

i,0
since the electron–ion mass ratio me/mi is 1/25. For the purpose of comparison, a
value of k0 = 1d−1

i,0 is used to compute the closure. Representative plots are shown in
figure 1.

Overall the agreement is decent considering that heat flux often has a complex
shape. The approximation is best in the period before and during reconnection. In the
beginning of the simulation the magnitude is usually off by a factor of between 1/10
and 10 whereas after reconnection the shape of the heat flux generally becomes very
convoluted which is hard to replicate with a closure.

Figure 1(a) shows typical issues insofar as the basic structure is approximated well
(the area in the centre of the plot) but other parts of the shape are wrong (here the
outer area around the x-axis). Another recurring problem is that the whole outer region
usually has no heat flux, which is wrongly predicted by the scalar-k closure. A major
improvement with correct damping in this outer region will be presented in § 7.

A positive example of the scalar-k closure is given by figure 1(b), showing how it
can even cover details like the changing sign at the left and right borders around the
x-axis. After reconnection, structures tend to get complicated (figure 1c) and while
the shape is still similar, both the sign and the location of extrema are inaccurate.
This holds true for many components towards the end of the simulation (35–40Ω−1

i,0 ).
Concerning a fixed k0, the comparison suggests that values between 0.1 and 10d−1

i,0
can be reasonable choices for both ions and electrons.

6. Searching for a parameter dependent k0

The field of wavenumbers k from (3.1) was replaced with a single fixed number
k0 by Wang et al. (2015). Although this is a massive simplification, it already leads
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to good results. Nonetheless, there are differences between a kinetic simulation and
a ten moment fluid simulation using the scalar-k closure. Discrepancies exist e.g. in
the pressure tensor which may be attributed to the issue that there is no trivial way
to generalize the original Hammett–Perkins closure to three dimensions and that k is
the same for each component of the pressure tensor.

The idea behind the approximation is that a k0 represents the average length scales
at which Landau damping occurs in the given scenario. Wang et al. (2015) found
k0= 1/de,0= 5d−1

i,0 to fit well in their (100× 50)di,0 reconnection set-up. Tests showed
that in the original GEM reconnection problem, however, k0,i= 0.3d−1

i,0 seems to be the
optimal value. This is unintuitive as usually a smaller domain size would not require a
smaller (indeed much smaller) characteristic wavenumber. That means k0 seems to be
specific to the respective problem. It would be desirable to find a consistent variable
k0 which might depend on local plasma parameters.

Eligible plasma parameters were investigated experimentally by computing the
closure with the respective k0 candidate and comparing it to the actual divergence
of heat flux as done in § 5. Promising candidates were additionally tested in a ten
moment fluid simulation which was then compared to a run with k0 = 5d−1

i,0 and a
Vlasov run. Dependence of k0 on plasma parameters and quantities was examined in
the GEM set-up, but none of the experiments led to an improvement. It is difficult
to find suitable plasma parameters since the closure’s shape is overall decent and
differences compared to the actual heat flux are often very complex or vary heavily
in time and component. Taking the analysis done in § 5 and in this section into
account, it appears that the deficiencies are not solely related to k0 and its possible
dependence on local plasma parameters.

7. Modified, gradient driven closure

The Hammett–Perkins closure was transferred to physical space because a Fourier
space representation may be computationally expensive in a physical space code.
More important is the issue that it is not clear how to generalize the closure to
three-dimensional tensors. A generalization to tensors in Fourier space was proposed
by Ng et al. (2017). They started with (3.1) and searched for a total symmetric
generalization of the heat flux Qijm resulting in

Qijm(x)= n(x)Q̃ijm(x), ˆ̃Qijm(k)=−i
vt

|k|χk[iT̂jk], (7.1a,b)

where ˆ̃Qijm and T̂jk denote the Fourier transforms of Q̃ijm and Tjk.
We take a different approach and focus not on the heat flux directly but on its

divergence ∂mQijm. To attain the symmetry of this divergence tensor, Wang et al.
(2015) used −k2P in place of the derivative −kt · (kt · P) and then approximated k
by k0. The physical space equivalent of this is to replace ∇ · (∇ · P) by ∇2P where
now the second approximation (k ≈ k0) is not needed. This way the dependence on
k0 is reduced and a different relaxation in each component of the pressure tensor
is allowed. The resulting expression takes the form of a Fick’s law and thus the
damping nature of the Hammett–Perkins closure is clearly retained.

Our candidate for a new collisionless heat flux closure is

∂mQijm =− vt

|k0|∇
2(P ij − pδij), (7.2)
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FIGURE 2. Hammett–Perkins closure, components from left to right: Qxxz,e,Qxxz,i,Qxyy,e.

where the symmetry of the divergence of the heat flux appears naturally. We will call
it the gradient closure in this paper.

The motivation as to why −k2 P might be a suitable approximation of the derivative
has not yet been clarified. In order to do so, assume B= (Bx, 0, 0). The wave vector
k is related to plasma oscillations, therefore k ‖ B and k = (kx, 0, 0). The Hammett–
Perkins closure in Wang et al.’s three-dimensional version is

ikmQijm = χ1
21/2vt

|k| k2(P ij − pδij) (7.3)

or

ikxQijx + ikyQijy + ikzQijz = χ1
21/2vt

|k| (k
2
x + k2

y + k2
z )(P ij − pδij). (7.4)

After dividing by ikx and with ky= kz= 0, the equation has the form of the original
Hammett–Perkins closure

Qijx(k)=−χ1
21/2vt

|kx| ikx(P ij(k)− p(k)δij). (7.5)

Hence, equation (3.6) is a plausible generalization to three-dimensional tensors
along magnetic field lines. This indicates that, while not exact in all space, the
simplification of treating k as a scalar is reasonable.

In the outer region of the simulation, field lines are nearly parallel to the x-axis.
Thus, it is straightforward to use (7.5) to test whether the Hammett–Perkins closure
can be applied to the problem of reconnection or, more precisely, how far the issues
found are related to the choice of k0 and the scalar-k approximation and in how far the
problems are inherent to the original closure. The heat flux according to the closure
was calculated by Fourier transforming a one-dimensional section of the pressure data
with y= const., multiplying it by −i(k/|k|)=−i sgn(k) and then Fourier transforming
back to physical space. This corresponds to the Hilbert transform of the perturbed
pressure. Data were taken at t=17.5Ω−1

i and y=−4.27di,0. As an example, the results
compared to the actual heat flux are plotted in figure 2. The deviation from the heat
flux data is different for the various components. Generally, the issues are similar to
those of the scalar-k closure concerning shape, magnitude and sign, but to a lesser
extent.

As done before with the scalar-k closure, we also compare the gradient closure
to heat flux data from a Vlasov run. A comparison of magnitude suggests k0,s =
3/ds,0 for the characteristic wavenumber in the new closure. This is also the value
that was used for the plots in figure 3. Improvements are recognizable like a better
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FIGURE 3. Comparison of actual heat flux change (first row), scalar-k closure (second
row) and gradient closure (third row). (a) (∇ · Qi)xx at t = 20Ω−1

i , (b) (∇ · Qi)xy at t =
7Ω−1

i , (c) (∇ ·Qe)yy at t= 17.5Ω−1
i .

representation of extrema (figure 3a). It has been asserted before that the scalar-k
closure sometimes yields bad results in the outer regions which was not the case
with the original Hammett–Perkins closure. This issue has indeed been fixed using the
Laplacian as can be seen in figure 3(b,c). Recent efforts to couple the Vlasov equation
to the ten moment fluid equations (Rieke et al. 2015; Trost, Lautenbach & Grauer
2017) could profit from the improvement in the outer region since that is where the
fluid model would be used in a coupling scenario.

8. The pressure gradient closure in reconnection simulations
8.1. GEM

In the GEM set-up the gradient fluid run is compared to both the kinetic Vlasov run
and a scalar-k fluid run. The respective plots can be seen in figure 4. Snapshots are
taken at times where a similar amount of flux has reconnected since fluid simulations
of Harris sheet reconnection usually have a longer onset than kinetic ones. The
reconnected flux is measured at y= 0 as Ψ = ∫ O

X By dx where the integral is between
the centre and the right border of the domain (X- and O-point).

The scalar-k simulation of the GEM set-up that is displayed here was computed
with k0,i = 0.3d−1

i,0 and k0,e = 5d−1
i,0 which gave the best agreement with the Vlasov

simulation (cf. § 6). Significant improvement can be observed in the run with the
gradient closure throughout all parameters. Also, the time development of the gradient
run is closer to the Vlasov run. Figure 4(a) shows that the extremum of the current
after reconnection is caught better. Details like the extrema and the changing sign
in figure 4(b) in the outer areas around the x-axis that the scalar-k run misses are
now included. This indicates that the new closure provides a better representation
of kinetic effects. Heat flux change directly influences the pressure tensor, so it
is particularly interesting that the agreement with the kinetic pressure tensor has
improved. In figure 4(c) an example is shown where the scalar-k closure produces a
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FIGURE 4. Vlasov run (first row), scalar-k fluid run (second row) and gradient fluid run
(third row). (a) jz when Ψ = 1.8, (b) jx when Ψ = 2, (c) Pxy,e when Ψ = 2.

FIGURE 5. jz when Ψ = 1.8 in the GEM set-up for different mass ratios. From left to
right: mi/me = 25 (1024× 512 cells), mi/me = 400 (1024× 512 cells) and mi/me = 1836
(2048× 1024 cells).

result significantly different from the Vlasov run while the result from the gradient
closure is very similar.

Using a higher resolution of 1024 × 512 cells for the gradient closure simulation
further improves agreement with the Vlasov simulation (cf. figure 5). In the GEM
configuration, and in the other configurations as well, the ion–electron mass ratio was
mi/me = 25 which makes the simulations computationally cheaper compared to more
realistic mass ratios. Figure 5 shows the differences between runs with mass ratios
of 25, 400 and the actual ratio 1836. Results are very similar to each other and are
in good agreement with the Vlasov simulation. A lower electron mass allows more
complex structures to develop with a localized X-point and leads to a higher current
peak.

Le, Egedal & Daughton (2016) (see also: Le et al. 2009; Egedal et al. 2013)
showed that anisotropy due to particle trapping plays an important role in anti-
parallel magnetic reconnection both near the X-point and in the inflow regions. A
Hammett–Perkins type closure might be able to imitate this particle trapping by
predicting a very low heat flux (CGL limit) in the appropriate regions. Usually, vt,e

in a Hammett–Perkins closure would cause higher electron heat fluxes with realistic
electron masses and therefore lead to a Boltzmann limit for the electrons. However,
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FIGURE 6. Time development of the reconnected flux in the GEM set-up for different
simulations. If not specified differently, the electron–ion mass ratio is mi/me = 25. The
number next to the model is the resolution, e.g. 1024 for a resolution of 1024 × 512
cells.

since k0,s ∝ 1/ds,0, the amount of heat flux is independent of the mass ratio so that
the anisotropy is not underestimated for realistic mass ratios.

In figure 6 the time development of the reconnected flux in different GEM runs is
compared. It can be seen that the low resolution scalar-k run has lower reconnection
rates than the Vlasov run and the reconnection rate drops further when going to a
higher resolution. The high resolution gradient run on the other hand has the same
slope as the Vlasov run after a slightly longer onset and the low resolution gradient
run has a differing slope but reconnection happens similarly fast overall.

8.2. WHBG
Originally, the scalar-k closure was tested by Wang et al. (2015) in the case of
reconnection in a larger domain of size (100 × 50)di,0. They compared the ten
moment scalar-k closure to a kinetic particle in cell (PIC) simulation and found good
agreement but some issues as well. Figure 7 shows ten moment runs of the WHBG
set-up with the scalar-k closure on one hand and the gradient closure on the other
hand (resolution 4096 × 2048 cells). The scalar-k run is very similar to the one by
Wang et al. The gradient run is closer to Wang et al.’s PIC run and has little to
no plasmoid formation. The characteristic wavenumbers in the gradient closure were
chosen as k0,s = (1/3)d−1

s,0 , although other values of k0,s are possible as well.

8.3. Island coalescence
The coalescence of islands has been observed in space plasmas and is reported
to accelerate electrons to high energies (Song et al. 2012). Until now no fluid or
MHD model was capable of reproducing the kinetic effects in island coalescence
well. Ng et al. (2015) found good agreement of the scalar-k ten moment model
with PIC runs on small spatial scales with k0,e = 5d−1

i,0 , k0,i = 0.3d−1
i,0 as the optimal

wavenumber values. Going to larger islands, however, average reconnection rates
decreased according to (λ/di,0)

−0.2 whereas there was a stronger scaling of (λ/di,0)
−0.8

in kinetic PIC simulations (see also Stanier et al. 2015). There were also further
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FIGURE 7. uz,e in the WHBG set-up when Ψ = 2.7. (a) Scalar-k simulation
(t= 140Ω−1

i,0 ) and (b) gradient simulation (t= 131Ω−1
i,0 ).

differences from kinetic simulations, e.g. islands did not bounce from each other and
secondary islands formed in larger systems.

Ng et al. (2017) proposed a global generalization (see (7.1)) of the Hammett–
Perkins closure to tensors and tested it in the island coalescence set-up. The
generalization is in Fourier space which is computationally expensive but has the
advantage that no k0 needs to be chosen. It performed better than the scalar-k closure
concerning the average reconnection rates (∝(λ/di,0)

−0.45) but did not approach
the kinetic scaling. Scaling of the maximum reconnection rate did not improve
significantly and the other discrepancies mentioned above remained.

We conducted runs of the island coalescence problem with the scalar-k and the
gradient closure. The results of our scalar-k simulations are very similar to those of
Ng et al. (2017) with a scaling of the average reconnection rate ∝(λ/di,0)

−0.23 and also
matching values for the maximum reconnection rate. In our simulations no secondary
islands formed however.

Fluid simulations with the gradient closure show the characteristics of kinetic
simulations, if k0 is chosen correctly. Here, the optimal value is k0,s= (1/2)/ds,0. The
average reconnection rate (average taken from 0 to 1.5tA) is displayed in figure 9(a)
and scales as (λ/di,0)

−0.73 which is almost identical to the kinetic scaling. Scaling
of the maximum reconnection rate is much stronger than with the scalar-k closure
as well (figure 9b). There is no formation of secondary islands. Due to the lower
reconnection rates, islands now bounce, as can be seen in figure 9(c). The out-of-plane
current jz is displayed in figure 8 for both closures. The current sheet and the island’s
oval form in the gradient simulation are similar to results from kinetic simulations
(see the movie in the supplemental material of Stanier et al. 2015).

Two different resolution set-ups were employed in order to show that the results do
not change as long as the electron inertial length is resolved. Set-up 1 was 512× 256
cells for λ= 5di,0, 1024× 512 cells for λ= 10di,0 and λ= 15di,0 and 2048× 1024 cells
for λ= 25di,0. Set-up 2 had a resolution of 2048× 1024 cells for all simulations. Both
average and maximum reconnection rates of the gradient closure runs were alike for
the two set-ups, as can be seen in table 1. There were also no differences concerning
the current sheet width and the overall shape of the islands.

Figure 10 shows how the reconnection rate is affected by the choice of k0 for
λ = 5di,. A higher amount of heat flux (small k0) leads to faster reconnection. The
scaling of the reconnection rate with λ depends on k0 as well. k0 was chosen so that
the reconnection rates agree with the kinetic results which automatically implied the
correct kinetic scaling concerning the domain size. This indicates that there are kinetic
effects that are handled appropriately by the closure.
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FIGURE 8. The island coalescence set-up at t= tA for λ= 25di,0. Scalar-k closure (a) and
gradient closure (b).

Resolution set-up 1 Resolution set-up 2
λ/di,0 Avg. rec. rate Max. rec. rate Avg. rec. rate Max. rec. rate

5 0.180 0.387 0.181 0.392
10 0.113 0.285 0.113 0.286
15 0.081 0.208 0.082 0.210
25 0.052 0.127 0.052 0.127

TABLE 1. Reconnection rates in the island coalescence set-up (gradient closure) using
different resolutions. Columns 2 and 3 show the same data as figure 9(a).

8.4. Numerics
The Laplacian in the closure was computed explicitly by means of finite differences.
Therefore, instabilities are enhanced and a smaller time step is needed. Time step
restrictions increase with higher resolution. For now, this has been circumvented by
subcycling the computation of the Laplacian. Since the domain has to be split up
into blocks for parallelization, and since boundaries are not exchanged in between the
subcycles (for performance reasons), inaccuracies occur at these borders. Furthermore,
the velocities and densities needed to compute pressure from the second moment are
not updated between the subcycles, which has little influence however. A comparison
of a subcycled version of the WHBG set-up with one without subcycling shows that
globally there is no difference and that the approximation is acceptable when used
thoughtfully. A more sophisticated solution to the time step problem is left to future
work.

9. Conclusion
Following an analysis of kinetic heat flux data, a closure to the ten moment fluid

equations is presented which approximates the heat flux tensor as

∂mQijm =− vt

|k0,s|∇
2(P ij − pδij), (9.1)
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FIGURE 9. Coalescence of magnetic islands. (a) Scaling of the average reconnection rate
with the size parameter λ for both closures next to the scaling found by Stanier et al.
(2015) in kinetic PIC simulations which was ∝(λ/di,0)

−0.8. (b) Scaling of the maximum
reconnection rate. (c) Distance of the islands’ O-points relative to their initial distance for
λ= 15di,0.

FIGURE 10. Island coalescence set-up in gradient closure simulations: reconnection rates
dependent on k0 for a fixed domain size (λ= 5di,0).

with the free parameter k0,s (a typical wavenumber) and p = (Pxx + Pyy + Pzz)/3.
Suitable values for k0,s in magnetic reconnection are 3/ds,0 in the GEM set-up,
(1/3)/ds,0 in the WHBG set-up and (1/2)/ds,0 in island coalescence.

https://doi.org/10.1017/S002237781800048X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781800048X


Temperature gradient driven heat flux closure 15

The derivation of (9.1) used findings of Hammett & Perkins (1990) and Wang
et al. (2015). The approximations made were motivated by a test of the original
one-dimensional Hammett–Perkins approach along magnetic field lines. The new
closure was tested in three different reconnection set-ups and the results agreed well
with kinetic Vlasov and PIC simulations in all cases. Good results were achieved
in the coalescence of magnetic islands where fluid models were unsuccessful before.
Including the pressure gradient is supposed to improve the approximation of kinetic
effects like Landau damping so that the fluid equations can replace expensive kinetic
computations. This way, simulations of large spatial scales like the Earth’s magnetotail
become within reach.

Future work includes further investigation of the free parameter because currently
it has to be determined from experiments and a comparison with kinetic simulations.
The focus should be on the effect of different set-ups since the free parameter appears
to be specific to the specific problem. Another approach would be to couple the fluid
code to Vlasov computations in order to adaptively adjust the free parameter. From a
technical point of view, more elaborate solutions to the time step restrictions caused
by the Laplacian will be needed.
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