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Mean flow and turbulence in unsteady canopy
layers
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Non-stationarity is the rule in the atmospheric boundary layer (ABL). Under such
conditions, the flow may experience departures from equilibrium with the underlying
surface stress, misalignment of shear stresses and strain rates, and three-dimensionality in
turbulence statistics. Existing ABL flow theories are primarily established for statistically
stationary flow conditions and cannot predict such behaviours. Motivated by this
knowledge gap, this study analyses the impact of time-varying pressure gradients on
mean flow and turbulence over urban-like surfaces. A series of large-eddy simulations of
pulsatile flow over cuboid arrays is performed, programmatically varying the oscillation
amplitude α and forcing frequency ω. The analysis focuses on both longtime-averaged
and phase-dependent flow dynamics. Inspection of longtime-averaged velocity profiles
reveals that the aerodynamic roughness length z0 increases with α and ω, whereas
the displacement height d appears to be insensitive to these parameters. In terms of
oscillatory flow statistics, it is found that α primarily controls the oscillation amplitude
of the streamwise velocity and Reynolds stresses, but has a negligible impact on their
wall-normal structure. On the other hand, ω determines the size of the region affected
by the unsteady forcing, which identifies the so-called Stokes layer thickness δs. Within
the Stokes layer, phase-averaged resolved Reynolds stress profiles feature substantial
variations during the pulsatile cycle, and the turbulence is out of equilibrium with the
mean flow. Two phenomenological models have been proposed that capture the influence
of flow unsteadiness on z0 and δs, respectively.

Key words: boundary layer structure, atmospheric flows, turbulent boundary layers

1. Introduction

Advancing our conceptual understanding and ability to predictively model exchange
processes between urban areas and the atmosphere is of critical importance to a wide
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range of applications, including urban air quality control (Britter & Hanna 2003; Barlow,
Harman & Belcher 2004; Pascheke, Barlow & Robins 2008), urban microclimate studies
(Roth 2012; Li & Bou-Zeid 2014; Ramamurthy, Li & Bou-Zeid 2017) and weather and
climate forecasting (Holtslag et al. 2013), to name but a few. It hence comes as no surprise
that substantial efforts have been devoted towards this goal over the past decades, via,
e.g. numerical simulations (Bou-Zeid, Meneveau & Parlange 2004; Xie, Coceal & Castro
2008; Cheng & Porté-Agel 2015; Giometto et al. 2016; Auvinen et al. 2017; Sadique et al.
2017; Zhu et al. 2017; Li & Bou-Zeid 2019), wind tunnel experiments (Raupach, Thom
& Edwards 1980; Böhm et al. 2013; Marucci & Carpentieri 2020) and observational
studies (Rotach 1993; Kastner-Klein & Rotach 2004; Rotach et al. 2005; Christen, Rotach
& Vogt 2009). These studies have explored the functional dependence of flow statistics on
urban canopy geometry (Lettau 1969; Raupach 1992; Macdonald, Griffiths & Hall 1998;
Coceal & Belcher 2004; Yang et al. 2016; Li & Katul 2022), characterized the topology of
coherent structures (Kanda, Moriwaki & Kasamatsu 2004; Christen, van Gorsel & Vogt
2007; Coceal et al. 2007; Li & Bou-Zeid 2011; Inagaki et al. 2012) and derived scaling laws
for scalar transfer between the urban canopy and the atmosphere (Pascheke et al. 2008;
Cheng & Porté-Agel 2016; Li & Bou-Zeid 2019), amongst others. Most of the previous
works have focused on atmospheric boundary layer (ABL) flow under (quasi) stationary
conditions. However, stationarity is a rare occurrence in the ABL (Mahrt & Bou-Zeid
2020), and theories based on equilibrium turbulence are, therefore, often unable to grasp
the full range of physics characterizing ABL flow environments.

Major drivers of non-stationarity in the ABL include time-varying horizontal pressure
gradients, associated with non-turbulent motions ranging from submeso to synoptic
scales, and time-dependent thermal forcings, induced by the diurnal cycle or by
cloud-induced time variations of the incoming solar radiation (Mahrt & Bou-Zeid 2020).
These conditions often result in departures from equilibrium turbulence, with important
implications on time- and area-averaged exchange processes between the land surface and
the atmosphere. The first kind of non-stationarity was examined in Mahrt (2007, 2008) and
Mahrt et al. (2013), which showed that time-variations of the driving pressure gradient
could enhance momentum transport under strong stable atmospheric stratifications. The
second kind of non-stationarity was instead analysed in Hicks et al. (2018), making use of
data from different field campaigns, and showed that the surface heat flux could change so
rapidly during the morning and late afternoon transition that the relations for equilibrium
turbulence no longer hold.

Numerical studies have also been recently conducted to study how exchange processes
between the land surface and the atmosphere are modulated by non-stationarity in
the ABL. In their study, Edwards Edwards, Beare & Lapworth (2006) conducted a
comparison of a prevailing single-column model based on equilibrium turbulence theories
with the observations of an evening transition ABL, as well as results from large-eddy
simulations (LES). Their findings emphasized the inadequacy of equilibrium turbulence
theories in capturing the complex behaviour of ABL flows during rapid changes in thermal
surface forcing. This breakdown of equilibrium turbulence was particularly notable during
the evening transition period, which is known for its rapid changes in thermal forcing.
Momen & Bou-Zeid (2017) investigated the response of the Ekman boundary layer to
oscillating pressure gradients, and found that quasiequilibrium turbulence is maintained
only when the oscillation period is much larger than the characteristic time scale of
the turbulence. The majority of the efforts have focused on ABL flow over modelled
roughness, where the flow dynamics in the roughness sublayer – that layer of the
atmosphere that extends from the ground surface up to approximately 2–5 times the
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mean height of roughness elements (Fernando 2010) – are bypassed, and surface drag is
usually evaluated via an equilibrium wall-layer model (see, e.g. Momen & Bou-Zeid 2017),
irrespective of the equilibrium-theory limitations outlined above. It hence remains unclear
how unsteadiness impacts flow statistics and the structure of atmospheric turbulence in
the roughness sublayer. Roughness sublayer flow directly controls exchanges of mass,
energy and momentum between the land surface and the atmosphere, and understanding
the dependence of flow statistics and structural changes in the turbulence topology on
flow unsteadiness is therefore important in order to advance our ability to understand and
predictively model these flow processes.

This study contributes to addressing this knowledge gap by focusing on non-stationarity
roughness sublayer flow induced by time-varying pressure gradients. Unsteady pressure
gradients in the real-world ABL can be characterized by periodic and aperiodic variations
in both magnitude and direction. In this study, we limit our attention to a pulsatile
streamwise pressure-gradient forcing, consisting of a constant mean and a sinusoidal
oscillating component. This approach has two major merits. First, the temporal evolution
of flow dynamics and associated statistics, as well as structural changes in turbulence,
can be easily characterized thanks to the time-periodic nature of the flow unsteadiness.
Second, the time scale of the pulsatile forcing is well defined, and can hence be varied
programmatically to encompass a range of representative flow regimes.

Pulsatile turbulent flows over aerodynamically smooth surfaces have been the subject
of active research in the mechanical engineering community because of their relevance
across a range of applications; these include industrial (e.g. a rotating or poppet valve) and
biological (blood in arteries) flows. The corresponding laminar solution is an extension
of Stokes’s second problem (Stokes 1901), where the modulation of the flow field by
an unsteady pressure gradient is confined to a layer of finite thickness known as the
‘Stokes layer’. The thickness of the Stokes layer δs is a function of the pulsatile forcing
frequency ω, i.e. δs = 2ls, where ls = √

2ν/ω is the so-called Stokes length scale and ν

is the kinematic viscosity of the fluid. In the turbulent flow regime, it has been found that
the characteristics of the pulsatile flow are not only dependent on the forcing frequency,
but also on the amplitude of the oscillation. Substantial efforts have been devoted to
investigating this problem, from both an experimental (Ramaprian & Tu 1980, 1983; Tu
& Ramaprian 1983; Mao & Hanratty 1986; Brereton, Reynolds & Jayaraman 1990; Tardu
& Binder 1993; Tardu 2005) and a computational perspective (Scotti & Piomelli 2001;
Manna, Vacca & Verzicco 2012, 2015; Weng, Boij & Hanifi 2016). Scotti & Piomelli
(2001) drew an analogy to the Stokes length and proposed a turbulent Stokes length scale,
which can be expressed in inner units as

l+t = uτ

ν

(
2(ν + νt)

ω

)1/2

, (1.1)

where uτ is the friction velocity based on the surface friction averaged over pulsatile cycles
and νt is the so-called eddy viscosity. Parameterizing the eddy viscosity in terms of the
Stokes turbulent length scale, i.e. νt = κuτ lt, where κ is the von Kármán constant, and
substituting into (1.1) one obtains

l+t = l+s

(
κl+s
2

+
(

1 +
(

κl+s
2

)1/2
))

. (1.2)

When l+t is large (e.g. when ω → 0), the flow is in a quasisteady state. Under such a
condition, the flow at each pulsatile phase resembles a statistically stationary boundary
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layer flow, provided that the instantaneous friction velocity is used to normalize statistics.
As ω increases and l+t becomes of the order of the open channel height L+

3 , the entire
flow is affected by the pulsation, i.e. time lags occur between flow statistics at different
elevations, and turbulence undergoes substantial structural changes from its equilibrium
configuration. When l+t < L+

3 /2, the flow modulation induced by the pulsation is confined
within the Stokes layer δ+

s = 2l+t . Above the Stokes layer, one can observe a plug-flow
region, with the turbulence being frozen to its equilibrium configuration and simply
advected by the mean flow pulsation. A few years later, Bhaganagar (2008) conducted
a series of direct numerical simulations (DNS) of low-Reynolds-number pulsatile flow
over transitionally rough surfaces. She found that flow responses to pulsatile forcing are
generally similar to those in smooth-wall cases, when the roughness size is of the same
order of magnitude as the viscous sublayer thickness. The only exception is that, as the
pulsation frequency approaches the frequency of vortex shedding from the roughness
elements, the longtime averaged velocity profile deviates significantly from that of the
steady flow case due to the resonance between the pulsation and the vortex shedding. In
the context of a similar flow system, Patil & Fringer (2022) also reported a comparable
observation in their DNS study.

In addition to the work of Bhaganagar (2008) and Patil & Fringer (2022), pulsatile flow
over small-scale roughness, e.g. sand grain roughness, has also been studied extensively in
the oceanic context, i.e. combined current-wave boundary layers, which play a crucial role
in controlling sediment transport and associated erosion in coastal environments (Grant &
Madsen 1979; Kemp & Simons 1982; Myrhaug & Slaattelid 1989; Sleath 1991; Soulsby
et al. 1993; Mathisen & Madsen 1996; Fredsøe, Andersen & Sumer 1999; Yang et al. 2006;
Yuan & Madsen 2015). The thickness of the wave boundary layer, which is the equivalent
of the Stokes layer in the engineering community, is defined as

δw = 2κuτ,max

ω
, (1.3)

where uτ,max = √
τmax, and τmax denotes the maximum of kinematic shear stress at

the surface during the pulsatile cycle. Within the wave boundary layer, mean flow and
turbulence are controlled by the nonlinear interaction between currents and waves. Above
this region, the modulation of turbulence by waves vanishes. The wall-normal distribution
of the averaged velocity over the pulsatile cycle deviates from the classic logarithmic
profile, and is characterized by a ‘two-log’ profile, i.e. the velocity exhibits a logarithmic
profile with the actual roughness length within the wave boundary layer and a different one
characterized by a larger roughness length further aloft (Grant & Madsen 1986; Fredsøe
et al. 1999; Yang et al. 2006; Yuan & Madsen 2015). Such behaviour was first predicted
by a two-layer time-invariant eddy viscosity model by Grant & Madsen (1979), followed
by many variants and improvements (Myrhaug & Slaattelid 1989; Sleath 1991; Yuan &
Madsen 2015).

On the contrary, pulsatile flow at high Reynolds numbers over large roughness
elements, such as buildings, has received far less attention. Yu, Rosman & Hench
(2022) conducted a series of LES of combined wave-current flows over arrays of
hemispheres, which can be seen as a surrogate of reefs near the coastal ocean. They
focused only on low Keulegan–Carpenter numbers KC ∼ O(1–10), where KC is defined
as the ratio between the wave excursion UwT and the diameter of the hemispheres, and
Uw and T are the wave orbital velocity and the wave period, respectively (Keulegan
et al. 1958). However, conclusions from Yu et al. (2022) cannot be readily applied to
pulsatile flow over urban-like roughness (i.e. large obstacles with sharp edges), mainly

974 A33-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.801


Mean flow and turbulence in unsteady canopy layers

because different surface morphologies yield distinct air–canopy interaction regimes under
pulsatile forcings (Carr & Plesniak 2017).

Motivated by this knowledge gap, this study proposes a detailed analysis on the
dynamics of the mean flow and turbulence in high-Reynolds-number pulsatile flow over
idealized urban canopies. The analysis is carried out based on a series of LES of pulsatile
flow past an array of surface-mounted cuboids, where the frequency and amplitude of
the pressure gradient are programmatically varied. The LES technique has been shown
to be capable of capturing the major flow features of pulsatile flow over various surface
conditions (Scotti & Piomelli 2001; Chang & Scotti 2004). The objective of this study
is to answer fundamental questions pertaining to the impacts of the considered flow
unsteadiness on the mean flow and turbulence in the urban boundary layer:

(i) Does the presence of flow unsteadiness alter the mean flow profile in a
longtime-averaged sense? If so, how do such modifications reflect in the
aerodynamic surface parameters?

(ii) To what extent does the unsteady pressure gradient impact the overall momentum
transport and turbulence generation in a longtime-averaged sense within and above
the canopy?

(iii) How do the phase-averaged mean flow and turbulence behave in response to the
periodically varying pressure gradient? How are such phase-dependent behaviours
controlled by the oscillation amplitude and the forcing frequency?

This paper is organized as follows. Section 2 introduces the numerical algorithm and the
set-up of simulations, along with the flow decomposition and averaging procedure. Results
are presented and discussed in § 3. Concluding remarks are given in § 4.

2. Methodology

2.1. Numerical procedure
A suite of LES is performed using an extensively validated in-house code (Albertson
& Parlange 1999a,b; Bou-Zeid, Meneveau & Parlange 2005; Chamecki, Meneveau &
Parlange 2009; Anderson, Li & Bou-Zeid 2015; Fang & Porté-Agel 2015; Giometto et al.
2016; Li et al. 2016). The code solves the filtered continuity and momentum transport
equations in a Cartesian reference system, which read

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

(
∂ui

∂xj
− ∂uj

∂xi

)
= − 1

ρ

∂p∗

∂xi
− ∂ij

∂xj
− 1

ρ

∂p∞
∂x1

i1 + Fi, (2.2)

where u1, u2 and u3 are the filtered velocities along the streamwise (x1), cross-stream
(x2) and wall-normal (x3) direction, respectively. The advection term is written in the
rotational form to ensure kinetic energy conservation in the discrete sense (Orszag &
Pao 1975). Here ρ represents the constant fluid density, ij is the deviatoric component
of the subgrid-scale (SGS) stress tensor, which is evaluated via the scale-dependent
dynamic (LASD) Smagorinsky model (Bou-Zeid et al. 2005). The LASD model has
been extensively validated in wall-modelled simulations of unsteady ABL flow (Momen
& Bou-Zeid 2017; Salesky, Chamecki & Bou-Zeid 2017) and in the simulation of flow
over surface-resolved urban-like canopies (Anderson et al. 2015; Giometto et al. 2016; Li
et al. 2016; Yang 2016). Note that viscous stresses are neglected in the current study; this
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assumption is valid as the typical Reynolds number of the ABL flows is Re ∼ O(109),
and the flow is in the fully rough regime. Here p∗ = p + 1

3ρii + 1
2ρuiui is the modified

pressure, which accounts for the trace of SGS stress and resolved turbulent kinetic energy.
The flow is driven by a spatially uniform but temporally periodic pressure gradient, i.e.

− ∂p∞/∂x1 = ρfm
[
1 + αp sin(ωt)

]
, (2.3)

where fm denotes the mean pressure gradient. Here αp is a constant controlling the
amplitude of the forcing, ω represents the forcing frequency and ij is the Kronecker delta
tensor.

Periodic boundary conditions apply in the wall-parallel directions, and free-slip
boundary conditions are employed at the upper boundary. The lower surface is
representative of an array of uniformly distributed cuboids, which serves as a surrogate
of urban landscapes. This approach has been commonly adopted in fundamental studies
of ABL processes due to its limited number of characteristic length scales, which makes
it amenable to comprehensive examination and analytical treatment (Reynolds & Castro
2008; Cheng & Porté-Agel 2015; Tomas, Pourquie & Jonker 2016; Basley, Perret & Mathis
2019; Omidvar et al. 2020). Such an approach is justified on the basis that one should
first study a problem in its simplest set-up before introducing additional complexities.
Nonetheless, it is important to acknowledge that the introduction of randomness in
roughness alters the flow characteristics and the generation of turbulence in rough-wall
boundary layer flows. For example, Xie et al. (2008) studied flows over random urban-like
obstacles and found that turbulence features in the roughness sublayer are controlled by
the randomness in the roughness. Giometto et al. (2016) conducted an LES study and
highlighted that roughness randomness enhances the dispersive stress in the roughness
sublayer. Chau & Bhaganagar (2012) carried out a series of DNS of flow over transitionally
rough surfaces, demonstrating that different levels of roughness randomness lead to
distinct turbulence structures in the near-wall region and subsequently affect turbulence
intensities.

Spatial derivatives in the wall-parallel directions are computed via a pseudospectral
collocation method based on truncated Fourier expansions (Orszag 1970), whereas a
second-order staggered finite difference scheme is employed in the wall-normal direction.
A second-order Adams–Bashforth scheme is adopted for time integration. Nonlinear
advection terms are dealiased via the 3/2 rule (Canuto et al. 2007; Margairaz et al. 2018).
Roughness elements are explicitly resolved via a discrete-forcing immersed boundary
method (IBM) (Mittal & Iaccarino 2005), which is also commonly referred to as the direct
forcing IBM (Mohd-Yusof 1996; Fang et al. 2011). The IBM was originally developed in
Mohd-Yusof (1996) and first introduced to ABL studies by Chester, Meneveau & Parlange
(2007). Since then, the IBM has been extensively validated in subsequent studies (e.g.
Graham & Meneveau 2012; Cheng & Porté-Agel 2015; Anderson 2016; Giometto et al.
2016; Yang & Anderson 2018; Li & Bou-Zeid 2019). Specifically, an artificial force Fi
drives the velocity to zero within the cuboids, and an inviscid equilibrium logarithmic
wall-layer model (Moeng 1984; Giometto et al. 2016) is applied over a narrow band centred
at the fluid–solid interface to evaluate the wall stresses. As shown in Appendix A, for
flow over cuboids in the fully rough regime, the use of an equilibrium wall model does
not impact the flow field significantly. Xie & Castro (2006) reached a similar conclusion
for a comparable flow system. The incompressibility condition is then enforced via a
pressure-projection approach Kim & Moin (1985).

Figure 1 shows a schematic of the computational domain. The size of the domain is
[0, L1] × [0, L2] × [0, L3] with L1 = 72h, L2 = 24h and L3 = 8h, where h is the height of

974 A33-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.801


Mean flow and turbulence in unsteady canopy layers

h

L1 = 72h

L1 = 72h

L3 = 8h

L2 = 24h

h

l2 = 3h
l1 = 3h

(b)

(a)

Figure 1. Side and planar view of the computational domain (a,b, respectively). The red dashed line denotes
the repeating unit.

the cuboids. The planar and frontal areas of the cube array are set to λp = λf = 0.1̄. As
such, the lower surface is comprised of (n1, n2) = (24, 8) repeating units with dimensions
of (l1, l2) = (3h, 3h). An aerodynamic roughness length of z0 = 10−4h is prescribed at
the cube surfaces and the lower surface via the wall-layer model. With the chosen value of
z0, the SGS pressure drag is a negligible contributor to the overall momentum balance
(Yang & Meneveau 2016). The domain is discretized using a uniform Cartesian grid
(N1, N2, N3) = (576, 192, 128) where each cube is resolved by (8, 8, 16) grid points. As
shown in Appendix B, this resolution yields flow statistics – up to second-order moments
– that are poorly sensitive to grid resolution.

2.2. Averaging operations
Given the inherent time-periodicity of the flow system, phase averaging is the natural
approach to evaluate flow statistics in pulsatile flows (Scotti & Piomelli 2001; Bhaganagar
2008; Weng et al. 2016; Önder & Yuan 2019). Throughout the paper, (·) denotes the phase
averaging operation. Specifically, the phase average of a quantity of interest θ is defined as

θ̄ (x1, x2, x3, t) = 1
Npn1n2

Np−1∑
n=0

n1−1∑
i=0

n2−1∑
j=0

θ(x1 + il1, x2 + jl2, x3, t + nT),

0 ≤ x1 ≤ l1, 0 ≤ x2 ≤ l2, 0 ≤ t ≤ T, (2.4)

where Np denotes the number of the pulsatile cycles over which the averaging operation is
performed, and T = 2π/ω is the time period of the pulsatile forcing.

In addition to phase averaging, we introduce an intrinsic spatial averaging operation
(Schmid et al. 2019). This operation is conducted over a thin wall-parallel slab of fluid
characterized by a thickness δ3, namely

〈θ̄〉(x3, t) = 1
Vf

∫ x3+δ3/2

x3−δ3/2

∫ l2

0

∫ l1

0
θ̄ (x1, x2, x3, t) dx1 dx2 dx3. (2.5)
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A given instantaneous quantity θ can be then decomposed as

θ(x1, x2, x3, t) = 〈θ̄〉(x3, t) + θ ′(x1, x2, x3, t), (2.6)

where (·)′ denotes a departure of the instantaneous value from the corresponding phase-
and intrinsic-averaged quantity. A phase- and intrinsic-averaged quantity can be further
decomposed into a longtime average and an oscillatory component with zero mean, i.e.

〈θ̄〉(x3, t) = 〈θ̄〉l(x3) + 〈θ̄〉o(x3, t). (2.7)

This work relies on the Scotti & Piomelli (2001) approach to analyse the flow system; in
this approach, an oscillatory quantity 〈θ̄〉o is split into two components: one corresponding
to the flow oscillation at the forcing frequency (fundamental mode), and one which
includes contributions from all of the remaining harmonics, i.e.

〈θ̄〉o(x3, t) = Aθ (x3) sin [ωt + φθ(x3)] + eθ (x3), (2.8)

where Aθ and φθ are the oscillatory amplitude of the fundamental mode and the phase
lag with respect to the pulsatile forcing, respectively. These components are evaluated via
minimization of ‖eθ‖2 at each x3.

2.3. Dimensional analysis and suite of simulations
Having fixed the domain size, the aerodynamic surface roughness length and the spatial
discretization, the remaining physical parameters governing the problem are: (i) the
oscillation amplitude α, defined as the ratio between the oscillation amplitude of 〈ū1〉 at the
top of the domain and the corresponding mean value; (ii) the forcing frequency ω; (iii) the
friction velocity based on the mean pressure gradient uτ = √

fmL3; and (iv) the height of
roughness elements h. The latter is a characteristic length scale of the flow in the urban
canopy layer (UCL), which is here defined as extending from the surface up to h. System
response is studied in time and along the x3 coordinate direction, so (v) the wall-normal
elevation x3 and (vi) time t should also be included in the parameter set. Note that the
viscosity is not taken into account since the flow is in the fully rough regime. Choosing uτ

and h as repeating parameters, a given normalized longtime (〈Ȳ〉l) and oscillatory (〈Ȳ〉o)
quantity of interest can hence be written as

〈Ȳ〉l = f
(

x3

h
,
ωh
uτ

, α

)
, and 〈Ȳ〉o = g

(
x3

h
,

uτ

h
t,

ωh
uτ

, α

)
, (2.9a,b)

respectively, where f and g are universal functions. Equation (2.9a,b) show that 〈Ȳ〉l and
〈Ȳ〉o only depend on two dimensionless parameters, namely α and ωTh. Here Th = h/uτ

is the turnover time of the largest eddies in the UCL and can be best understood as a
characteristic time scale of the flow in the UCL. Here ωTh ∼ Th/T is hence essentially the
ratio between the turnover time of the largest eddies in the UCL (Th) and the pulsation
time period (T). Also note the normalized ω can be seen as an equivalent Strouhal
number, which has been used as a non-dimensional parameter in earlier works for the
considered flow system (see e.g. Tardu, Binder & Blackwelder 1994). Four different values
of ωTh are considered in this study, namely ωTh = {0.05π, 0.125π, 0.25π, 1.25π}. For
uτ ≈ 0.1 m s−1 and h ≈ 10 m – common ABL values for these quantities (Stull 1988) –
the considered ωTh set encompasses time scales variability from a few seconds to several
hours, which are representative of submesoscale ABL flow phenomena (Mahrt 2009;
Hoover et al. 2015).
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Mean flow and turbulence in unsteady canopy layers

Acronym Target α Actual α αp ωTh

LL 0.2 0.17 2.4 0.05π

LM 0.2 0.16 6.0 0.125π

LH 0.2 0.16 12.0 0.25π

LVH 0.2 0.16 60.0 1.25π

HL 0.4 0.38 4.8 0.05π

HM 0.4 0.36 12.0 0.125π

HH 0.4 0.36 24.0 0.25π

HVH 0.4 0.37 120.0 1.25π

SS 0.0 0.0 0.0 —

Table 1. List of LES runs. The naming convention for pulsatile flow cases is as follows. The first letter
represents the oscillation amplitude: L for α = 0.2 and H for α = 0.4. The second and third letters denote the
forcing frequencies: L for ωTh = 0.05π, M for ωTh = 0.125π, H for ωTh = 0.25π and VH for ωTh = 1.25π.
Here SS denotes the statistically stationary flow case.

In this study, we aim to narrow our focus to the current-dominated regime, i.e.
0 < α < 1. Larger values of α would lead to a wave-dominated regime, which behaves
differently. The set α = {0.2, 0.4} is here considered, which yields a non-trivial flow
response while remaining sufficiently far from the wave-dominated regime. Due to the
lack of a straightforward relation between the oscillatory pressure gradient (αp) and α,
αp has been tuned iteratively to achieve the desired α. As shown in table 1, despite the
optimization process, there are still discernible discrepancies between the target α and its
actual value. As also shown in previous works (Scotti & Piomelli 2001; Bhaganagar 2008),
α is highly sensitive to variations in αp, which makes it challenging to prescribe its exact
value via the imposed pressure gradient.

The suite of simulations and corresponding acronyms used in this study are listed
in table 1. A statistically stationary flow case (α = 0) is also carried out to highlight
departures of pulsatile flow cases from the steady state condition. Simulations with
pulsatile forcing are initialized with velocity fields from the stationary flow case; the
ωTh = {0.25π, 1.25π} and ωTh = {0.05π, 0.125π} cases are then integrated in time over
200TL3 and 400TL3 , respectively, where TL3 = L3/uτ is the turnover time of the largest
eddies in the domain. This approach yields converged phase-averaged flow statistics.
The size of the time step δt is chosen to satisfy the Courant–Friedrichs–Lewy stability
condition (uδt)/δx ≤ 0.05, where u is the maximum velocity magnitude at any given
spatial location and time during a run, and δx is the grid stencil in the computational
domain. Instantaneous three-dimensional snapshots of the velocity and pressure fields
are collected every T/16 for the ωTh = {0.25π, 1.25π} cases and every T/80 for the
ωTh = {0.05π, 0.125π} cases, after an initial 20TL3 transient period.

3. Results and discussion

3.1. Three-dimensional flow fields
To gain insights into the instantaneous flow field, figure 2 displays the streamwise
fluctuating velocity within and above the UCL from the HM case at two different x3
planes and phases. The chosen phases, t = 0 and t = T/2, correspond to the end of the
deceleration (T/2 < t < T) and acceleration (0 < t < T/2) periods, respectively.

It is apparent from figure 2(a,b) that meandering low-momentum (u′
1 < 0) streaks are

flanked by adjacent high-momentum (u′
1 > 0) ones. Comparing these two, turbulence
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Figure 2. Normalized instantaneous streamwise fluctuating velocity field u′
1/uτ at streamwise/cross-stream

plane x3 = 2h (a,b) and x3 = 0.75h (c,d) from the HM case. Here uτ = √
fmL3 is the friction velocity based on

the mean pressure gradient. Panels (a,c) correspond to t = 0, whereas panels (b,d) correspond to t = T/2.

structures at t = T/2 appear smaller in size in both streamwise and spanwise directions.
Additionally, within the UCL, apparent vortex shedding occurs on the lee side of the
cubes at t = T/2, while it is less pronounced at t = 0. This suggests that flow unsteadiness
substantially modifies the flow field during the pulsatile cycle and is expected to impact
the flow statistics.

For a more comprehensive understanding of the phase-averaged flow pattern, figure 3
displays vector plots of (ū1, ū2) at x3/h = 0.75 for the LL and HVH cases. These
cases feature the weakest and strongest departures from the statistically stationary flow
regime, and the authors have verified that they comprehensively capture the range of
flow variability within the considered suite of simulations. Colours in the figure depict
the signed wall-parallel swirl strength λ, providing a visualization of the phase-averaged
vortex morphology. The definition of λ is in line with the approach of Stanislas, Perret &
Foucaut (2008) and Elsinga et al. (2012). The magnitude of λ is the absolute value of the
imaginary part of the eigenvalue of the reduced velocity gradient tensor J12, which is

J12 =
(

∂ ū1/∂x1 ∂ ū1/∂x2

∂ ū2/∂x1 ∂ ū2/∂x2

)
. (3.1)

The sign of λ is determined by the vorticity component ω3 and differentiates regions of
anticlockwise (positive) and clockwise (negative) swirling motions.

As shown in figure 3(a), the LL case exhibits a consistent vortex distribution throughout
the pulsatile cycle. Strong shear layers manifest at the leading edges of the cuboid
element, and the wake region is characterized by a pair of counter-rotating vortices. Such
a vortex pair corresponds to an arch- or horseshoe-type vortex arising from the merging
of recirculation vortices, which originate at the trailing edges of the top and sidewalls
of the roughness element. It has been frequently observed in the wake of obstacles
with height–width aspect ratios near unity. For further details, the reader is referred to
Martinuzzi & Tropea (1993), Pattenden, Turnock & Zhang (2005) and Gonçalves et al.
(2015). In marked contrast, flow unsteadiness considerably modifies the flow pattern in the
HVH case. Specifically, during the flow deceleration, the shear layers at the leading edges
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Figure 3. Vector plots of the phase-averaged velocity at the x3/h = 0.75 wall-parallel plane from LL (a) and
HVH (b) cases. Colour contours represent the wall-normal swirling strength λ.

vanish due to flow reversal, i.e. ū1 < 0. During flow deceleration, the strength of the vortex
pair is attenuated as its cores separate and distance themselves from the cuboid element,
and the process is reversed during the acceleration. This behaviour is in line with findings
from wind tunnel experiments of pulsatile flow over an isolated cube by Carr & Plesniak
(2017).

Further insight can be obtained by considering variations in the normalized
phase-averaged streamwise velocity, which are shown in figure 4 over a vertical transect
for the LL and HVH cases. Acceleration and deceleration periods are apparent from the
variations of the colour intensity in the above-UCL region, with the largest phase-averaged
velocity magnitudes characterizing the end of the acceleration period, and lower ones
the end of the deceleration. Dashed lines in figure 4 highlight that the flow is rather
homogeneous above the UCL throughout the cases and that flow pulsation has a weak
impact on the thickness of the roughness sublayer. Within the UCL, the LL case features
modest variations in the structure of the phase-averaged streamwise velocity field; such a
quantity retains approximately the same spatial structure throughout the pulsatile cycle and
only varies in magnitude, with larger magnitudes occurring at t = T/2. Phase variations
in the phase-averaged streamwise velocity become again more apparent and interesting as
the forcing frequency and amplitude increase, with the HVH case featuring ample regions
of negative phase-averaged velocity at t = 0 (end of flow deceleration) and t = 3T/4
(decelerating flow), and nearly lack thereof at T/4 (accelerating flow). Further, the largest
negative phase-averaged velocity within the UCL occurs at t = 3T/4 rather than at T/2
as for the LL case, highlighting the presence of a different coupling between the UCL
and the flow aloft. Note that all of the considered cases feature a relatively strong shear
layer separating from the trailing edge of the cube, leading to enhanced local production
of turbulent kinetic energy and transition from surface layer (above h) to canopy layer
dynamics within the UCL. These observations, while still qualitative in nature, provide
a first glimpse on complexities associated with the considered flow system and how it
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Figure 4. Phase-averaged streamwise velocity ū1/uτ at the streamwise/vertical plane through the centre of the
cube, i.e. x2 = 1.5h, for low-amplitude cases: LL (a) and HVH (b). The fields depicted in different panels are
T/4 apart. Solid contour lines denote ū1/uτ = 0. Dashed contour lines represent ū1 = ū1(0, 1.5h, 2h).

responds to a range of forcing amplitudes and frequencies. The next sections will delve
into a more detailed quantitative analysis.

3.2. Longtime-averaged statistics

3.2.1. Longtime-averaged velocity profile
Profiles of the longtime-averaged streamwise velocity are shown in figure 5. Flow
unsteadiness leads to a horizontal shift of profiles in the proposed semilogarithmic plot.
This behaviour is distinct from the ‘two-log’ profile in flow over sand grain roughness
(Fredsøe et al. 1999; Yang et al. 2006; Yuan & Madsen 2015), and also in stark contrast
to the one previously observed in current-dominated pulsatile flow over aerodynamically
smooth surfaces, where the longtime-averaged field is essentially unaffected by flow
unsteadiness (Tardu & Binder 1993; Scotti & Piomelli 2001; Tardu 2005; Manna et al.
2012; Weng et al. 2016). As also apparent from figure 5, departures from the statistically
stationary flow profile become more significant for larger values of α and ω.

Variations in the aerodynamic roughness length z0 and displacement height d
parameters with ωTh are shown in figure 6 for the considered canopy. These parameters
are evaluated via the Macdonald et al. (1998) approach, where d is the barycentre height
of the longtime-averaged pressure drag from the urban canopy, and z0 is determined via
curve fitting. More specifically,

d =
∫ h

0 〈D̄〉l(x3)x3 dx3∫ h
0 〈D̄〉l(x3) dx3

, (3.2)
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Figure 5. Wall-normal profiles of longtime-averaged streamwise velocity 〈ū1〉l of high-amplitude cases (a)
and low-amplitude cases (b). Line colour specifies the forcing frequency: navy blue, ωTh = 0.05π; dark
green, ωTh = 0.125π; light green, ωTh = 0.25π; yellow-green, ωTh = 1.25π. Here 〈ū1〉 from the SS case,
represented by the red dashed line, is included for comparison. Black solid line indicates the slope of 1/κ , with
κ = 0.4. The shaded area highlights the fitting region for the estimation of the roughness length scale z0.
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Figure 6. Normalized aerodynamic roughness length z0 (a) and displacement height d (b). Different colours
correspond to different oscillation amplitudes: blue, α = 0.2; red, α = 0.4. The black square symbol denotes
the reference SS case.

where the wall-normal distribution of the instantaneous canopy pressure drag D is obtained
by taking an intrinsic volume average of the pressure gradient, i.e.

D(x3, t) = 1
Vf

∫ x3+δz/2

x3−δz/2

∫ L2

0

∫ L1

0

1
ρ

∂p
∂x

dx1 dx2 dx3. (3.3)

Note that, in principle, one should also account for the SGS drag contribution in (3.3);
in this work, we omit SGS contributions because they are negligible when compared with
the total drag – a direct result of the relatively small aerodynamic roughness length that is
prescribed in the wall-layer model (see § 2.1).

Here z0 is solved by minimizing the root mean square error between the
longtime-averaged velocity and the law of the wall with κ = 0.4 in the x3 ∈ [2h, 6h]
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interval, i.e.

E =
∥∥∥∥〈ū1〉l − uτ

κ
log

(
x3 − d

z0

)∥∥∥∥
2
. (3.4)

The fitting interval is highlighted in figure 5. The estimated z0 was found to be poorly
sensitive to variations in the fitting interval within the considered range of values. Cheng
et al. (2007) argued that MacDonald’s method is accurate when surfaces are characterized
by a low packing density – a requirement that is indeed satisfied in the considered cases.

As apparent from figure 6, d is poorly sensitive to variations in both α and ω (variations
across cases are within the ±3 % range). This behaviour can be explained by considering
that for flows over sharp-edged obstacles, such as the ones considered herein, flow
separation consistently takes place at the sharp edges, irrespective of variations in α and
ω. This results in a similar net pressure distribution on the faces of the cuboids across
all the considered cases. This can be readily observed in figure 4. The d parameter is
here evaluated as the integral of the pressure gradient field over the surface area, so the
above considerations provide a physical justification for the observed behaviour. Note
that this finding might not be generalizable across all possible roughness morphologies.
For instance, Yu et al. (2022) showed that separation patterns in pulsatile flows over
hemispheres feature a rather strong dependence on α and ω, yielding corresponding strong
variations in d.

Contrary to d, the z0 parameter is strongly impacted by flow unsteadiness, and its value
increases with α and ω. Bhaganagar (2008) reported a similar upward shift of velocity
profile in his simulations of pulsatile flow over transitionally rough surfaces at a low
Reynolds number. She attributed the increase in z0 to the resonance between the unsteady
forcing and the vortices shed by roughness elements, which is induced when the forcing
frequency approaches that of the vortex shedding. However, such an argument does not
apply to the cases under investigation, since we observed no spurious peaks in the temporal
streamwise velocity spectrum. Rather, the increase in z0 stems from the quadratic relation
between the phase-averaged canopy drag and velocity, as elaborated below.

3.2.2. Phase-averaged drag-velocity relation
The phase-averaged canopy drag 〈D̄〉 and the local phase- and intrinsic-averaged velocity
〈ū1〉 at x3/h ≈ 0.8 are shown in figure 7, and are representative of corresponding quantities
at different heights within the UCL. Results from cases with three lower frequencies
and that from the SS case cluster along a single curve, highlighting the presence of
a frequency-independent one-to-one mapping between 〈D̄〉 and 〈ū1〉. As apparent from
figure 8(a), at these three forcing frequencies, the interaction between the wind and the
canopy layer is in a state of quasiequilibrium, i.e. 〈D̄〉 is in phase with 〈ū1〉. Moreover,
the shape of the aforementioned curve generally resembles the well-known quadratic drag
law, which is routinely used to parameterize the surface drag in reduced-order models for
stationary flow over plant and urban canopies (Lettau 1969; Raupach 1992; Macdonald
et al. 1998; Coceal & Belcher 2004; Katul et al. 2004; Poggi, Katul & Albertson 2004).
This finding comes as no surprise, given the quasiequilibrium state of the 〈D̄〉 − 〈ū1〉
relation for the three lower forcing frequencies.

On the other hand, as shown in figure 8(b), results from the highest-frequency cases
(LVH and HVH) exhibit an orbital pattern, which stems from the time lag between 〈D̄〉
and 〈ū1〉. Artificially removing this time lag indeed yields a better clustering of data points
from the highest-frequency cases along the quadratic drag law (see figure 7b).
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Figure 7. Phase-averaged canopy drag 〈D̄〉 at x3/h ≈ 0.8 as a function of the local phase- and
intrinsic-averaged velocity 〈ū1〉 (a) and the same 〈D̄〉 − 〈ū1〉 plot but with the time lag between 〈D̄〉 and 〈ū1〉
removed (b). Different colours are used to denote different forcing frequencies: navy blue, ωTh = 0.05π; dark
green, ωTh = 0.125π; light green, ωTh = 0.25π; yellow-green, ωTh = 1.25π. Different symbols are used to
distinguish between oscillation amplitudes: triangle, α = 0.2; cross, α = 0.4. Red square represents the SS
case. Red dashed line represents 〈D̄〉 = Cdλf 〈ū1〉|〈ū1〉| with Cd obtained from the SS case.
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(a) and LVH (b) cases. The acronyms of LES runs are defined in table 1.

These findings suggest the following parameterization for 〈D̄〉:
〈D̄〉(x3, t) = Cd(x3)λf 〈ū1〉 |〈ū1〉| (x3, t + �t), (3.5)

where Cd is a sectional drag coefficient that is constant in time and does not depend on α

or ω, and �t accounts for the time lag between 〈D̄〉 and 〈ū1〉, which instead does indeed
depend on α and ω. Note that, throughout the considered cases, the wall-normal-averaged
drag coefficient

∫ h
0 Cd dx3/h ≈ 0.9 – a value that is similar to those previously reported

ones for stationary flow over cube arrays (Coceal & Belcher 2004) (note that the exact
value depends on the formula used to define Cd).

Morison, Johnson & Schaaf (1950) developed a semiempirical model relating the
phase-averaged drag generated by obstacles in an oscillatory boundary layer to a given
phase- and intrinsic-averaged velocity – a model that has been extensively used in
the ocean engineering community to evaluate drag from surface-mounted obstacles
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(Lowe, Koseff & Monismith 2005; Yu, Rosman & Hench 2018; Yu et al. 2022). The
Morison model assumes that the total force applied to the fluid by obstacles consists
of a quadratic drag term and an inertial term; the latter accounts for the added mass
effect and the Froude–Krylov force arising as a direct consequence of the unsteady
pressure field. While it might seem plausible to utilize the Morison model to evaluate
surface drag as a function of phase-averaged velocity at a given x3 for the cases under
consideration, unfortunately, this approach is not applicable. As shown in Patel & Witz
(2013), the Morison model provides relatively accurate evaluations of obstacle drag when
the phased-averaged acceleration at different x3 are in phase. This is not the case in
this study, where substantial phase lags between phase-averaged accelerations at different
wall-normal locations substantially degrade the accuracy of such a model. This behaviour
can be easily inferred from the results in § 3.3.

In the following, we will make use of (3.5) to derive an alternative phenomenological
surface-drag model for the considered flow system.

3.2.3. Mapping roughness length variability to longtime-averaged flow statistics
Here z0 and d are input parameters of surface flux parameterizations that are routinely
used in numerical weather prediction, climate projection and pollutant dispersion models
(see, e.g. Skamarock et al. 2008; Benjamin et al. 2016). These models are typically based
on Reynolds-averaged Navier–Stokes closures, and feature time steps that can go from
one hour up to several days. When departures from stationarity occur at a time scale
that is much smaller than the time step of the model, model predictions are essentially
longtime-averaged quantities, and the validity of surface flux parameterizations based on
flow homogeneity and stationarity assumptions may break down. As a first step towards
addressing this problem, this section proposes a phenomenological model relating z0 to
longtime-averaged pulsatile-flow statistics.

The longtime-averaged friction velocity can be written as

u2
τ =

∫ h

0
〈D̄〉l dx3 =

∫ h

0
Cdλf 〈〈ū1〉 |〈ū1〉|〉l dx3, (3.6)

where 〈D̄〉l is the longtime-averaged surface drag. Note that the wall-normal structure of
Cd is approximately constant in the UCL (not shown here), except in the vicinity of the
surface, where local contributions to the overall drag are, however, minimal due to the
small value of 〈ū1〉. Thus, it is reasonable to assume Cd is constant along the wall-normal
direction. Also, depending on α and ω, the flow within the canopy might undergo a local
reversal in the phase- and intrinsic-averaged sense, meaning that 〈ū1〉 < 0 at selected x3
locations. Assuming that there is no flow reversal within the UCL, i.e. 〈ū1〉 ≥ 0 in x3 ≤ h,
(3.6) can be written as

u2
τ = Cdλf

(∫ h

0
〈ū1〉2

l dx3 +
∫ h

0
〈〈ū1〉2

o〉l dx3

)
, (3.7)

where the second term on the right-hand side of (3.7) is identically zero for the SS
case. Equation (3.7) essentially states that an unsteady canopy layer requires a lower
longtime-averaged wind speed to generate the same drag of a steady canopy layer since
quadratic drag contributions are generated by flow unsteadiness (the second term on the

right-hand side of (3.7)). Note that
√∫ h

0 (·)2 dx3/h is an averaging operation over the UCL
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based on the L2 norm. Rearranging terms in (3.7) leads to

〈ū1〉l,avg =
√

u2
τ

Cdλf h
− 1

h

∫ h

0
〈〈ū1〉2

o〉l dx3, (3.8)

and

〈ū1〉SS
l,avg =

√
u2
τ

Cdλf h
, (3.9)

for the pulsatile cases and the SS case, respectively. Here (·)avg denotes the
canopy-averaged quantity, and (·)SS represents a quantity pertaining to the SS case.

As discussed in § 3.2.1, flow unsteadiness yields a shift of the 〈ū1〉l profile with
negligible variations in the d parameters when compared with the stationary flow with the
same uτ . In terms of the law-of-the-wall, this behaviour can be described as a variation in
z0, i.e.

〈ū1〉SS
l,avg − 〈ū1〉l,avg = uτ

κ
log

(
x3 − d

zSS
0

)
− uτ

κ
log

(
x3 − d

z0

)
, (3.10)

where (3.10) is valid for any x3 in the logarithmic region. The shift in the velocity profile
is approximately constant for x3 ∈ [0, L3], so one can write

〈ū1〉SS
l − 〈ū1〉l ≈ 〈ū1〉SS

l,avg − 〈ū1〉l,avg, (3.11)

and substituting (3.8)–(3.10) into (3.11) finally yields

z0 = zSS
0 exp

⎡
⎢⎣κ

⎛
⎜⎝
√

1
Cdλf h

−

√√√√ 1
Cdλf h

−
∫ h

0 〈〈ū1〉2
o〉l dx3/h

u2
τ

⎞
⎟⎠
⎤
⎥⎦ . (3.12)

Equation (3.12) is a diagnostic model relating variations in the z0 parameter to the UCL
phase- and intrinsic-averaged velocity variance – a longtime-averaged quantity. The z0
estimates from (3.12) are compared with LES results in figure 9, using Cd = 0.9. It
is apparent that the proposed model is able to accurately evaluate z0 for most of the
considered cases. For the LVH, HH and HVW runs, z0 is overestimated by the model; these
departures are attributed to the presence of flow reversal in the UCL, which contradicts the
model assumptions.

Equation (3.12) highlights that, in the absence of flow reversal, z0 can be described
as a monotonically increasing function of the 〈ū1〉o variance in the UCL. As explained
at the beginning of this section, this finding is of high relevance from a flow modelling
perspective, because it relates a longtime-averaged flow statistic to the z0 parameter. Note
that zSS

0 can be accurately evaluated using any existing parameterization for stationary ABL
flow over aerodynamically rough surfaces, including the Lettau (1969), Raupach (1992)
and Macdonald et al. (1998) models. Further, Cd = 0.9 (see discussion in § 3.2.2) and
λf and h are morphological parameters that are in general a priori available. In weather
forecasting and climate models, 〈ū1〉o is an SGS quantity and would hence have to be
parameterized as a function of longtime-averaged statistics that the model computes or
from available in-situ or remote sensing measurements.
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Figure 9. Comparison between z0 estimated via (3.12) and z0 from LES. Symbols and colours correspond to
those used in figure 7.

3.2.4. Longtime-averaged resolved Reynolds stress
This section shifts the attention to longtime-averaged resolved Reynolds stresses. For all
of the considered cases, contributions from SGS stresses account for < 1 % of the total
phase-averaged Reynolds stresses and are hence not discussed.

Throughout the boundary layer, 〈u′
1u′

3〉l profiles are indistinguishable from the SS one
(not shown), indicating a weak dependence of such a quantity on α and ω. Above the UCL,
the divergence of 〈u′

1u′
3〉l balances the longtime-averaged driving pressure gradient fm, i.e.

− ∂〈u′
1u′

3〉l

∂x3
+ fm = 0. (3.13)

Since fm does not vary across the considered cases and 〈u′
1u′

3〉l(L3) = 0, a collapse of
〈u′

1u′
3〉l profiles in this region was to be expected from the mathematical structure of the

governing equations. Within the UCL, the longtime-averaged momentum budget reads

− ∂〈u′
1u′

3〉l

∂x3
+ fm − 〈D̄〉l = 0. (3.14)

Given that 〈u′
1u′

3〉l profiles collapse in this region, 〈D̄〉l is also expected to feature a weak
dependence on α and ω, which in turn explains the weak variations in the d parameter that
were observed in § 3.2.1.

Figure 10 depicts wall-normal profiles of the longtime-averaged resolved turbulent
kinetic energy, which is defined as

〈k̄〉l = 1
2(〈u′

1u′
1〉l + 〈u′

2u′
2〉l + 〈u′

3u′
3〉l). (3.15)

Such a quantity features a significant increase in the UCL when compared with its values
farther away from the surface, which as discussed in Schmid et al. (2019), is due to
dispersive contributions caused by the canopy geometry. Flow unsteadiness has a relatively
more important impact on such a quantity when compared with the 〈u′

1u′
3〉l component,

especially for flow in the UCL and for cases with a high oscillation amplitude. An increase
in α generally results in more pronounced departures of 〈k̄〉l profiles from the SS one.
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Figure 10. Longtime-averaged resolved turbulent kinetic energy 〈k̄〉l = (〈u′
1u′

1〉l + 〈u′
2u′

2〉l + 〈u′
3u′

3〉l)/2 from
high-amplitude cases (a) and low-amplitude cases (b). Line colours correspond to those used in figure 5.

This behaviour can be best explained by considering the shear production terms in the
budget equation for 〈k̄〉l, i.e.

〈P̄〉l = −
〈
〈u′

1u′
3〉

∂〈ū1〉
∂x3

〉
l

= −〈u′
1u′

3〉l
∂〈ū1〉l

∂x3︸ ︷︷ ︸
〈P̄〉l,1

−
〈
〈u′

1u′
3〉o

∂〈ū1〉o

∂x3

〉
l︸ ︷︷ ︸

〈P̄〉l,2

, (3.16)

where 〈P̄〉l,1 represents the work done by 〈u′
1u′

3〉l onto the longtime-averaged flow field,
and 〈P̄〉l,2 is the longtime average of the work done by the oscillatory shear stress
〈u′

1u′
3〉o onto the oscillatory flow field. Figure 11(a) shows that 〈P̄〉l,1 is poorly sensitive to

variations in α and ω. This behaviour stems from the constancy of 〈u′
1u′

3〉l and ∂〈ū1〉l/∂x3
across cases (the latter can be inferred from the systematic shift of 〈ū1〉l profiles in
figure 5). Conversely, 〈P̄〉l,2 from high-amplitude cases are generally larger than those
from low-amplitude ones, mainly due to the higher 〈u′

1u′
3〉o and 〈ū1〉o values. Discrepancies

in 〈P̄〉l,2 among high-amplitude cases are larger than those among low-amplitude ones,
which ultimately yields the observed variability in 〈k̄〉l.

Further insight into the problem can be gained by looking at the normal components
of the longtime-averaged resolved Reynolds stress tensor, which are shown in figure 12.
In this case, it is apparent that increases in the oscillation frequency lead to a decrease
in 〈u′

1u′
1〉l and an increase in 〈u′

2u′
2〉l and 〈u′

3u′
3〉l within the UCL – a behaviour that

is especially apparent for the high-amplitude cases (figure 12d–f ). These trends can be
best understood by examining the pressure-strain terms from the budget equations of the
longtime-averaged resolved Reynolds stresses, i.e.

Rij =
〈

p′

ρ

(
∂u′

j

∂xi
+ ∂u′

i
∂xj

)〉
l

. (3.17)

Here Rii are responsible for redistributing kinetic energy among the longtime-averaged
normal Reynolds stresses (Pope 2000), and are shown in figure 13. With the exception of
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Figure 11. Normalized shear production terms of 〈k̄〉l: 〈P̄〉l,1 (a) and 〈P̄〉l,2 (b). Symbols and line colours
correspond to those used in figure 7.
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Figure 12. Longtime-averaged resolved normal Reynolds stresses 〈u′
1u′

1〉l, 〈u′
2u′

2〉l and 〈u′
3u′

3〉l from
low-amplitude cases (a–c) and high-amplitude cases (d–f ). Line colours correspond to those used in figure 5.

the very near surface region (x3 � 0.2) where no clear trend can be observed, increases in
ω and α yield a decrease in R11 and an increase in R22 and R33, which justify the observed
isotropization of turbulence in the UCL.

3.3. Oscillatory fields
This section shifts the focus to the time evolution of velocity and resolved Reynolds
stresses during the pulsatile cycle.
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Figure 13. Pressure redistribution terms Rii: (a–c) low-amplitude cases; (d–f ) high-amplitude cases. Line
colours correspond to those used in figure 5.

3.3.1. Oscillation amplitude impacts on the oscillatory fields
Flow statistics from the LL and HL simulations are here examined to study the impact of
the oscillation amplitude (α) on the oscillatory velocity and resolved Reynolds stresses.
Only the LL and HL runs are discussed, as they were found to be representative of the
observed behaviours for the other low and high-amplitude cases, respectively.

Figure 14 contrasts the profiles of oscillatory velocity (〈ū1〉o) from the LL and HL
runs at four equispaced phases during the pulsatile cycle. The 〈ū1〉o at the top of the
domain is controlled by the α parameter, so it is natural to use uτ α as a normalization
constant to study the problem. Manna et al. (2012) investigated pulsatile open channel
flow over an aerodynamically smooth surface, and showed that using such a normalization
constant is indeed convenient as it leads to a collapse of 〈ū1〉o profiles across cases with
different amplitudes, even in the presence of strong flow reversal. This indicates that, at
a given forcing frequency, the amplitude of the oscillatory velocity within the domain is
proportional to that at the top of the domain. In this work, we show that such a scaling
works well also in the presence of aerodynamically rough surfaces, as evidenced by the
excellent collapse of 〈ū1〉o/(uτ α) profiles in figure 14. This is not trivial, especially when
considering the different scaling of surface drag between aerodynamically smooth and
rough walls in the presence of flow unsteadiness.

The oscillatory resolved turbulent kinetic energy can be defined as

〈k̄〉o = 1
2

(〈u′
1u′

1〉o + 〈u′
2u′

2〉o + 〈u′
3u′

3〉o
)
. (3.18)

As shown in figures 15 and 16, both the oscillatory resolved Reynolds shear stress 〈u′
1u′

3〉o

and 〈k̄〉o scale with u2
τ α. Although not shown, the three oscillatory normal Reynolds

stresses also obey such a scaling, suggesting that any change in 〈k̄〉o is proportionally
distributed to the three normal Reynolds stresses during the pulsatile cycle. As discussed
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Figure 14. Profiles of the oscillatory velocity 〈ū1〉o from the LL (blue) and HL (red) cases at different phases
of the pulsatile cycle. Profiles are T/4 apart.

in the following paragraphs, the scaling of 〈u′
1u′

3〉o and 〈k̄〉o is a direct consequence of the
mild nonlinearity in the production of 〈k̄〉o and 〈u′

1u′
3〉o. Subtracting the budget equation

of 〈u′
1u′

3〉l from that of 〈u′
1u′

3〉, one obtains

∂〈u′
1u′

3〉o

∂t
=−2〈u′

3u′
3〉o

∂〈ū1〉l

∂x3︸ ︷︷ ︸
〈P̄13〉o,l1

−2〈u′
3u′

3〉l
∂〈ū1〉o

∂x3︸ ︷︷ ︸
〈P̄13〉o,l2

−2〈u′
3u′

3〉o
∂〈ū1〉o

∂x3
+ 2

〈
〈u′

3u′
3〉o

∂〈ū1〉o

∂x3

〉
l︸ ︷︷ ︸

〈P̄13〉o,nl

+ · · · , (3.19)

where 〈P̄13〉o,l1 and 〈P̄13〉o,l2 are the linear production terms of 〈u′
1u′

3〉o, while 〈P̄13〉o,nl is
the nonlinear production. Similarly, the budget equations of 〈k̄〉o can be written as

∂〈k̄〉o

∂t
= −〈u′

1u′
3〉o

∂〈ū1〉l

∂x3︸ ︷︷ ︸
〈P̄k〉o,l1

−〈u′
1u′

3〉l
∂〈ū1〉o

∂x3︸ ︷︷ ︸
〈P̄k〉o,l2

−〈u′
1u′

3〉o
∂〈ū1〉o

∂x3
+

〈
〈u′

1u′
3〉o

∂〈ū1〉o

∂x3

〉
l︸ ︷︷ ︸

〈P̄k〉o,nl

+ · · · ,

(3.20)
where 〈P̄k〉o,l1 and 〈P̄k〉o,l2 are the linear production terms of 〈k̄〉o, while 〈P̄k〉o,nl is the
nonlinear production. As shown in figure 17, the nonlinear production term is substantially
smaller than the sum of the corresponding linear productions for both 〈u′

1u′
3〉o and 〈k̄〉o.

Given that 〈u′
1u′

3〉l, 〈u′
3u′

3〉l and ∂〈ū1〉l/∂x3 from the LL and HL cases are similar, when
〈ū1〉o ∼ uτ α and 〈u′

3u′
3〉o ∼ u2

τ α, the total production of 〈u′
1u′

3〉o is

〈P̄13〉o ≈ 〈P̄13〉o,l1 + 〈P̄13〉o,l2 ∼ u3
τ α

h
, (3.21)
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Figure 15. Profiles of the oscillatory resolved Reynolds shear stress 〈u′
1u′

3〉o from the LL (blue) and HL (red)
cases at different phases of the pulsatile cycle. Profiles are T/4 apart.
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Figure 16. Profiles of the oscillatory resolved turbulent kinetic energy 〈k̄〉o = (〈u′
1u′

1〉o + 〈u′
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2〉o +
〈u′

3u′
3〉o)/2 from the LL (blue) and HL (red) cases at different phases of the pulsatile cycle. Profiles are T/4

apart.

whereas that of 〈k̄〉o is

〈P̄k〉o ≈ 〈P̄k〉o,l1 + 〈P̄k〉o,l2 ∼ u3
τ α

h
. (3.22)

This in turn leads to the observed 〈u′
1u′

3〉o ∼ u2
τ α and 〈k̄〉o ∼ u2

τ α scalings.
Equations (3.21) and (3.22) are expected to fail under two conditions. Firstly, when α is

sufficiently large and the contribution of 〈P̄13〉o,nl and 〈P̄k〉o,nl can no longer be neglected.
Secondly, when differences in 〈u′

1u′
3〉l or 〈u′

3u′
3〉l among cases with different α become

large enough that the linear production terms cease to scale with u2
τ α, which occurs within

the UCL for the LVH and HVH cases (see figure 12).

974 A33-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.801


W. Li and M.G. Giometto

0 0.2 0.4 0.6 0.8 1.0

t/T
0 0.2 0.4 0.6 0.8 1.0

t/T

–10

–5

0

5

10

–4

–2

0

2

4

(b)(a)

(〈P�13〉o,l1 + 〈P�13〉o,l2)/(     ), 〈P�13〉o,nl/(     )
h

u3
τα

h
u3

τα
(〈P�k〉o,l1 + 〈P�k〉o,l2)/(     ), 〈P�k〉o,nl/(     )

h
u3

τα

h
u3

τα

Figure 17. Normalized production terms for 〈u′
1u′

3〉o (a) and for 〈k̄〉o (b) at x3/h = 1.5 from the LL (blue) and
HL (red) cases. Solid lines denote the linear production terms, and dash lines represent the nonlinear production
terms.

The above analysis has shown that the α parameter primarily controls the amplitude of
selected oscillatory flow quantities, but has little impact on their wall-normal structure. In
the next section, it will be shown that the wall-normal structure of quantities is instead
controlled by ω. This behaviour is also expected to hold in the smooth-wall set-up (Manna
et al. 2012), although the mechanism responsible for generating drag over aerodynamically
smooth surfaces is quite distinct.

3.3.2. Forcing frequency impacts on the oscillatory fields
This section discusses how the oscillatory velocity and resolved Reynolds stresses respond
to variations in the forcing frequency. Only low-amplitude cases will be considered since
conclusions can be generalized across the considered runs.

Figures 18 and 19 present the time evolution of 〈ū1〉o and ∂〈ū1〉o/∂x3. Three distinct
frequency regimes can be identified. The first regime corresponds to the highest amongst
the considered forcing frequencies, i.e. the LVH case. For this flow regime, the oscillation
in ∂〈ū1〉o/∂x3 is typically confined within the UCL. This behaviour can be best explained
when considering that the time period of the oscillation is comparable to the eddy turnover
time of turbulence in the UCL, i.e. T ≈ Th, which is the characteristic time scale for
‘information transport’ within the UCL. At the three lower forcing frequencies, i.e. the
LL, LM and LH cases, on the contrary, the interaction between the roughness elements
and the unsteady flow induces an oscillation in the shear rate, which has a phase lag of
roughly π/2 with respect to the pulsatile forcing at the top of the UCL. This oscillating
shear rate then propagates in the positive wall-normal direction while being progressively
attenuated. The propagation speed of the oscillating shear rate appears to be constant for
a given forcing frequency, which can be readily inferred by the constant tilting angle in
the ∂〈ū1〉o/∂x3 contours. The flow region affected by the oscillating shear rate defines the
so-called ‘Stokes layer’. For cases with two moderate frequencies, i.e. the LM and LH
cases, the Stokes layer thickness (δs) is smaller than the domain height L3. Above the
Stokes layer, the slope of 〈ū1〉o is nominally zero over the pulsatile cycle, and the flow in
such a region resembles a plug flow. On the contrary, in the LL case, the entire domain is
affected by the oscillating shear rate, thus δs > L3.
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Figure 18. Space–time diagrams of 〈ū1〉o/uτ from the LL (a), LM (b), LH (c) and LVH (d) cases. Horizontal
dashed lines identify the top of the UCL.
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Figure 19. Space–time diagrams of (h/uτ )∂〈ū1〉o/∂x3 from the LL (a), LM (b), LH (c) and LVH (d) cases.

Figures 20 and 21 depict the time evolution of 〈u′
1u′

3〉o and 〈u′
1u′

1〉o, respectively.
Although the contours of 〈u′

2u′
2〉o and 〈u′

3u′
3〉o are not shown, these quantities vary in a

similar fashion as 〈u′
1u′

1〉o during the pulsatile cycle. These space–time diagrams confirm
that the considered frequencies encompass three distinct flow regimes. For the LVH case,
time variations of the oscillatory resolved Reynolds stresses are essentially zero above the
UCL. In cases with three lower frequencies, oscillatory resolved Reynolds stresses exhibit
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Figure 20. Space–time diagrams of 〈u′
1u′

3〉o/u2
τ from the LL (a), LM (b), LH (c) and LVH (d) cases.
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Figure 21. Space–time diagrams of 〈u′
1u′

1〉o/u2
τ from the LL (a), LM (b), LH (c) and LVH (d) cases.

a similar behaviour to ∂〈ū1〉o/∂x3. Specifically, there appear oscillating waves propagating
away from the UCL at a constant speed and meanwhile getting weakened. In the LM and
LH cases, such oscillating waves are fully dissipated at the upper limit of the Stokes layer,
above which the turbulence is ‘frozen’ and passively advected.

A visual comparison of the tilting angles in the contours of oscillatory resolved Reynolds
stresses and ∂〈ū1〉o/∂x3 reveals that the oscillating waves in these quantities feature similar
propagation speeds. This behaviour closely resembles the one observed in smooth-wall
cases (Scotti & Piomelli 2001; Manna et al. 2015). The physical interpretation is that
when the oscillating shear rate is diffused upwards by the background turbulent flow, it
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Figure 22. Phase lag of ∂〈ū1〉o/∂x3 (red), −〈u′
1u′

3〉o (black), 〈u′
1u′

1〉o (magenta), 〈u′
2u′

2〉o (green) and 〈u′
3u′

3〉o
(blue) with respect to the pulsatile forcing from the LL (a), LM (b) and LH (c) cases.

Case cdu1dx3/uτ c−u1u3/uτ cu1u1/uτ cu2u2/uτ cu3u3/uτ

LL 0.50 0.51 0.51 0.49 0.48
LM 0.55 0.54 0.60 0.57 0.58
LH 0.72 0.71 0.77 0.76 0.74

Table 2. Propagation speeds of oscillating waves in ∂〈ū1〉o/∂x3 and oscillatory resolved Reynolds stresses.

interacts with the local turbulence via the mechanisms described in (3.19) and (3.20), thus
inducing the observed oscillations in the resolved Reynolds stresses. To further quantify
the propagation speeds of the oscillating waves in ∂〈ū1〉o/∂x3 and oscillatory resolved
Reynolds stresses, figure 22 presents the phase lag of those quantities with respect to the
pulsatile forcing. For a quantity θ , the propagation speed cθ is defined based on the slope
of the phase lag, i.e.

cθ = −ω
∂x3

∂φθ

. (3.23)

Table 2 summarizes the wave propagation speeds for ∂〈ū1〉o/∂x3, −〈u′
1u′

3〉o, 〈u′
1u′

1〉o,
〈u′

2u′
2〉o and 〈u′

3u′
3〉o of each case. This again confirms that the oscillating waves propagate

at a similar speed for the considered quantities. It is also noteworthy to point out that the
speed of the propagating wave increases with ω.

Three other observations can be made from figure 22. First, throughout the considered
cases, there appears a marked phase lag of roughly π/6 between ∂〈ū1〉o/∂x3 and (negative)
〈u′

1u′
3〉o, indicating a deviation from the Boussinesq eddy viscosity assumption. Weng et al.

(2016) reported a similar finding, and they attributed such behaviour to non-equilibrium
effects arising when the time period of the pulsatile forcing is short compared with the
local turbulence relaxation time so that the turbulence is not able to relax to its equilibrium
state during the pulsation cycle. Second, the lack of phase lag among the oscillatory
normal resolved Reynolds stresses implies that the oscillatory pressure-redistribution
terms respond immediately to the change in 〈u′

1u′
1〉o. Third, the lifetimes of oscillating
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waves in the resolved Reynolds stresses and shear rate, which are inferred by the difference
between the phase lags at the top of the UCL and at the upper limit of the Stokes layer, are
no more than half of the oscillation time period, although they decrease with ω. They are
considerably shorter than those in smooth-wall cases, which are typically larger than one
oscillation period (Scotti & Piomelli 2001; Manna et al. 2015; Weng et al. 2016).

3.3.3. Scaling of the Stokes layer thickness
Across many applications, δs is a quantity of interest, since it defines the region where
the turbulence and the mean flow are out of equilibrium. In such a region, established
turbulence theories may fail to capture flow dynamics that are of relevance for, e.g. surface
drag and scalar dispersion.

For the wave-current boundary flow, where the surface is typically transitionally rough,
the wave boundary layer thickness – an equivalent of Stokes layer thickness – scales as

δw ∼ κuτ,max

ω
, (3.24)

where uτ,max is the friction velocity based on the maximum phase- and intrinsic-averaged
wall stress during the pulsatile cycle (Grant & Madsen 1979). Such a scaling argument is
not valid for the current cases, even though the considered surface is also rough. As shown
in § 3.3.1, normalized oscillatory velocity and resolved Reynolds stresses profiles collapse
between cases with the same frequencies, implying that the Stokes layer thickness is only
dependent on ω, whereas τmax is determined by both α and ω. Rather, the scaling of δs in
the current cases is a trivial extension of the model first introduced by Scotti & Piomelli
(2001), as discussed next.

Let us recall from § 1 that the Stokes layer thickness for turbulent pulsatile flow over an
aerodynamically smooth surface (Scotti & Piomelli 2001) is defined as

δs = 2
κuτ

ω

(
1 +

√
1 + 2νω

κ2u2
τ

)
. (3.25)

Here we apply two modifications to this model in order to make it applicable to the
current rough-wall cases. First, given that the viscous stress is omitted, the molecular
viscosity ν can be neglected. Also, in the current cases, the oscillating shear rate is
generated within the UCL rather than at the bottom surface (as in the smooth-wall
cases), and the extent of the oscillating shear rate propagation defines the thickness of the
Stokes layer. This behaviour can be easily captured by augmenting δs by the displacement
height (d). Specifically, we draw an analogy to smooth-wall cases by taking d as the offset,
since it is the virtual origin of the longtime-averaged velocity profile. The displacement
height, d, is a plausible choice of the offset since it captures the limiting behaviour of the
flow system as the canopy packing density varies. For instance, in the limit of λp → 0
(very sparse canopies), d = 0, i.e. the oscillating shear rate grows from the bottom of
the domain. On the contrary, in the limit of λp → 1 (very dense canopies), d = h, i.e.
the oscillating shear layer starts at the top of the UCL. Based on these considerations, a
phenomenological model for the Stokes layer thickness is

δs = 4κuτ

ω
+ d. (3.26)

Note that, in the limit of ω → 0, the Stokes layer no longer exists, rendering (3.26) invalid.
At this limit, as previously stated in Scotti & Piomelli (2001), T is much larger than the
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Figure 23. Time variance of 〈k̄〉o: σ 2
〈k̄〉o

= ∫ T
0

( 1
2

(〈u′
1u′

1〉o + 〈u′
2u′

2〉o + 〈u′
3u′

3〉o
))2 dt/T of the LL (navy blue),

LM (dark green), LH (light green) and LVH (yellow green) cases. Circle denotes δs estimated via (3.26).
Triangle represents the location where σ 2

〈k̄〉o
is reduced to 1 % of its maximum value.

turbulence relaxation time. As a result, the turbulence maintains a quasiequilibrium state,
and the flow statistics are indistinguishable from those of the corresponding equilibrium
canopy layer flows, if scaled with the instantaneous inner/outer units.

Figure 23 compares the predictions of (3.26) against LES results. Note that only
low-amplitude cases are shown, since, as mentioned earlier, δs only depends on ω. The
upper limit of the Stokes layer is identified as the location where σ 2

〈k̄〉o
is 1 % of its

maximum, where

σ 2
〈k̄〉o

= 1
T

∫ T

0

(
1
2

(〈u′
1u′

1〉o + 〈u′
2u′

2〉o + 〈u′
3u′

3〉o
))2

dt (3.27)

is the time variance of 〈k̄〉o. From figure 23, it is apparent that the estimated δs compare
very well with LES results. The estimation of δs for the LL case is not shown in figure 23
because it exceeds the height of the computational domain. Equation (3.26) can hence
be used in future studies to identify the Stokes layer thickness for pulsatile flows over
aerodynamically rough surfaces.

4. Conclusions

This paper has examined the impact of flow pulsation on longtime-averaged and
phase-dependent flow statistics in an open-channel flow over urban-like roughness. A
series of LES of pulsatile flow past an array of cuboid elements has been carried out,
programmatically varying the oscillation amplitude (α) and frequency (ω). The forcing
frequencies have been chosen as a multiple of the characteristic frequency of turbulence in
the UCL and encompass a range of values representative of submesoscale motions (Mahrt
& Bou-Zeid 2020). The main findings and contributions of this study are outlined below.

(i) Flow pulsation leads to an increase of the z0 parameter educed from
longtime-averaged 〈ū1〉l profiles, with larger α and ω values yielding a larger z0.
On the contrary, d was found to be insensitive to variations in α and ω. The increase
of z0 was shown to be a direct consequence of the quadratic relation between the
phase-averaged canopy drag 〈D̄〉 and the phase- and intrinsic-averaged velocity
〈ū1〉, and this relation was leveraged to construct a phenomenological model for z0.
The proposed model takes surface information and the variance of the phase- and
intrinsic-averaged velocity in the UCL as input parameters and captures the impact
of flow unsteadiness on the z0 parameter in the absence of flow reversal.
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(ii) The wall-normal distributions of the longtime-averaged shear stress and canopy
drag are unaltered by the flow unsteadiness. In contrast, the same cannot be said
for longtime-averaged resolved normal Reynolds stresses, especially in the UCL. In
particular, 〈k̄〉l profiles were found to be relatively more sensitive to variations in
α via the longtime-averaged shear production of 〈k̄〉l. The highest frequency cases
were also characterized by a relatively more isotropic turbulence field in the UCL,
owing to a more efficient kinetic energy redistribution by the pressure-strain terms.

(iii) The oscillation amplitudes of phase- and intrinsic-averaged streamwise velocity and
resolved Reynolds stresses scale with α. This behaviour is due to the fact that the
nonlinear production terms of 〈u′

1u′
3〉o and 〈k̄〉o are of relatively modest magnitude

when compared with the linear ones. Increasing the pulsation amplitude might lead
to more substantial contributions from nonlinear production terms and break down
this scaling.

(iv) For each case, profiles of oscillatory shear rate and resolved Reynolds stresses
are characterized by oscillating waves which are advected away from the UCL at
a constant speed while also being dissipated. Here ω is found to determine both
the speeds of the oscillating waves and the extent of these waves, which identifies
the Stokes layer thickness (δs). More specifically, δs was found to increase with
decreasing ω, whereas the wave speed increased with ω. The scaling of δs has also
been discussed, and findings have been used to propose a model for δs.

All in all, flow pulsation is found to have a significant impact on both longtime-averaged
and phase-averaged flow statistics, with nuanced dependencies on oscillation amplitude
and frequency. The observed enhancement of the longtime-averaged surface drag, the
isotropization of turbulence in the UCL, and the presence of a Stokes layer, amongst
others, are expected to have important implications on the exchange of mass, energy
and momentum between the land surface and the atmosphere, as well as affect our
ability to model these processes in weather forecasting and climate models. These models
typically rely on surface flux parameterizations and theories that are based on flow
stationarity assumptions and are not able to capture these behaviours correctly (see,
e.g. Stensrud 2007). The proposed phenomenological models for z0 and δs, as well
as the identified scaling of phase- and intrinsic-averaged flow statistics, contribute to
advancing our understanding of flow unsteadiness in the ABL and offer a pathway for
the development of improved surface flux parameterizations. Given the massive parameter
space of unsteady ABL flow processes, it is also essential to acknowledge that several
questions remain unanswered and deserve further investigation. For example, what is
the impact of different types of periodic and aperiodic flow unsteadiness on turbulence
statistics and topology? How are these variations in the structure of turbulence impacting
land–atmosphere exchange rates of momentum, energy and mass? Can prevailing surface
flux parameterizations be modified to account for these impacts? Addressing these
questions will be the subject of future studies.
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Figure 24. Phase- and intrinsic-averaged velocity 〈ū1〉 of LES400 (blue) and DNS400 figures (red).
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Appendix A. Wall-layer modelling considerations

As discussed in § 2, simulations have been conducted using an algebraic wall-layer model
at the solid–fluid interface to evaluate tangential surface stresses. In this section, we show
that the use of an equilibrium wall-layer model can be justified on the basis that the flow
is in the fully rough aerodynamic regime.

An LES of flow over a single cube is carried out at roughness Reynolds number Reτ =
uτ h/ν = 400 (hereafter referred as to LES400), and results are compared with those from
a DNS run (DNS400). At such a Reynolds number, the flow field is in fully rough regime,
as also shown in Xie et al. (2008). The size of the computational domain is [0, 3h] ×
[0, 3h] × [0, 4h], and the planar and frontal area densities are the same as those in the main
simulations of the study. The forcing frequency and the oscillation amplitude are ωTh =
0.125π and α = 0.8, respectively, which are comparable to the ones considered in the
study. The grid resolution of LES400 follows the main simulations, which is (n1, n2, n3) =
(8, 8, 16) for each cube, and the identical wall-layer model as that in the main simulations
is applied in the vicinity of the cube facets and the lower surface with the same roughness
length scale. The grid resolution of DNS400 is (n1, n2, n3) = (64, 64, 128) per cube. Such
a grid resolution ensures that the ratio between the grid size Δ = 3

√
Δ1Δ2Δ3 and the

Kolmogorov scale η does not exceed 2, which has been proven sufficient for DNS of flow
over fully rough surfaces (Zhang et al. 2022).

In both simulations, the contribution from the tangential stresses at the cube facets and
lower surface to the total surface drag remains below 1 %, confirming that the flow is in the
fully rough regime. Figures 24 and 25 display the phase- and intrinsic-averaged velocity
(〈ū1〉) and turbulent kinetic energy (〈k̄〉), respectively. Profiles from the LES400 case are
in good agreement with corresponding DNS quantities, with the maximum error in the
LES400 profiles relative to those from the DNS400 case being approximately 1 % and
6 % for 〈ū1〉 and 〈k̄〉, respectively. The minor mismatches in 〈k̄〉 can be partly explained
by the fact that the SGS contribution to 〈k̄〉 is zero for the LES400 case. It is suggested
that, although the equilibrium assumption does not hold in a strict sense, the use of an
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Figure 26. Comparison of the mean flow (a), resolved streamwise velocity variance (b), and resolved Reynolds
shear stress (c) of the three test simulations for the resolution sensitivity analysis: red (4, 4, 8); black (8, 8, 16);
blue (12, 12, 24).

equilibrium wall-layer model does not result in a noticeable impact on model results for
the considered unsteady flow cases.

Appendix B. Resolution sensitivity analysis

To identify grid resolution requirements for simulations in this study, a grid-resolution
sensitivity analysis has been conducted for the stationary flow case, i.e. α = 0. The domain
size for this analysis is (36h, 12h, 4h), and we have studied the convergence of 〈ū1〉, 〈u′

1u′
1〉

and 〈u′
1u′

3〉 profiles as the grid stencil is progressively reduced. Three grid resolutions have
been considered, namely (4, 4, 8), (8, 8, 16) and (12, 12, 24) on a per-cube basis. Note
that the reduced domain size may have an impact on the evaluated flow statistics, but this

974 A33-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.801


Mean flow and turbulence in unsteady canopy layers

serves the purpose of this analysis, since we are here only interested in quantifying relative
variations of selected profiles across grid resolutions. Other numerical and physical
parameters of the grid-sensitivity analysis simulations are set equal to the ones used in
the main simulations.

As apparent from figure 26, profiles from the (8, 8, 16) case are essentially matching
corresponding ones from the (12, 12, 24) case, indicating that the chosen grid resolution
for the pulsatile channel flow analysis is sufficient to yield grid-independent flow statistics
(up to second order).
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