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Abstract

Let \)/ be a partial recursive function (of one argument) with .̂-defining term Fe A". This means

There are several proposals for what Frn1 should be in case \|/(n) is undefined: (1) a term
without a normal form (Church); (2) an unsolvable term (Barendregt); (3) an easy term
(Visser); (4) a term of order 0 (Statman).

These four possibilities will be covered by one 'master' result of Statman which is based on
the 'Anti Diagonal Normalization Theorem' of Visser (1980). That ingenious theorem about
precomplete numerations of Ershov is a powerful tool with applications in recursion theory,
metamathematics of arithmetic and lambda calculus.

1 Introduction

This paper presents a general theorem of Statman about ^.-definability of the partial
recursive functions. It analyses, for partial recursive functions that are undefined at
some argument n, what is the behaviour of the representing .̂-term applied to the
corresponding numeral rn~*. The result is an application of Visser's Anti Diagonal
Normalization Theorem for precomplete numerations of Ershov.

The paper is self-contained, except that some elementary facts and notations from
recursion theory and .̂-calculus are used (see Rogers, 1967, and Barendregt, 1984, if
necessary).

Notation
(i) N is the set of natural numbers {0,1,2,...}.
(ii) 2P3R. is the set of unary partial recursive functions from N to F̂ l. If vi/e^"^? then

v|/(«)l denotes that v|/(«) is defined; v|/(w)t denotes that vy(«) is undefined.
(iii) 2̂ is the set of unary total recursive functions.
(iv) A is the set of X-terms and A° is the set of closed X.-terms. rnn = Xfx.f" x are

Church's numerals. M =$N means that M and N are |}-convertible.
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368 H. Barendregt

(v) If Me A0, then #Me N is its code number (according to some effective coding),
and r M n =D e f

r#Mn is the corresponding numeral. There exists a self-interpreter
EeA° such that VMeA°ErAP = pM (see e.g. Barendregt, 1991).

Theorem 1.1 (X-definability of the recursive functions; Kleene, 1936)
V/e 013 Fe A° V n e N F1"/?"1 = p

 r/(«)"1.

Definition 1.2
Let V|/e^^ and ,*/ £ A°. Then vy is said to be X-definable w.r.t. jrf as set of undefined
elements if for some Fe A° one has for all n e N

(2)

In this definition the elements of si are used as a representation of'undefined'. It is
natural to require that si n {rr0 | n e N} = 0. Then it follows immediately that for all
n,meN one has

y(n) = m o F r«~" = p W (3)
y | / ( n ) f o F V € ^ . (4)

Definition 1.3
(i) MeA° is called solvable<=>M has a head normal form; otherwise M is called

(ii) MeA° is called easyoVNeA°X + M = TV is consistent,
(iii) Me A is called of order 0<=>VyVeAM 4= fXx.N.

Examples 1.4
(i) Y = \Z".(?oc.f(xx)(kx.f(xx)) is solvable; Yl = p(^.x.xx)(Xx.xx) isunsolvable.
(ii) K = Xxy. x is not easy, because ^.+ K = Kl I— P = Q for arbitrary P,QeA.

(iii) (Xx. xx) (Xx. xx) is of order 0; YK is not of order 0.

Theorem 1.5
All yeSPSR. can be X-defined w.r.t. each of the following sets si as undefined elements.

(i) j / = {Me A° | M has no normal form} (Church, 1941).
(ii) rf = {Me A01M is unsolvable] (Barendregt, 1971).

(iii) si = {Me A° | M is easy} (Visser, 1980).
(iv) si = {Me A° | M is of order 0} (Statman, 1987).

Each of the results (ii)-(iv) of Theorem 1.5 have been proved by the method of the
proof of (i), plus some extra work. The main content of this paper is the following
master theorem which captures all cases of Theorem 1.5.

Definition 1.6
A set Si <=, A° is called a Visser set if Si is r.e. (after coding, i.e. {#M\Me@} is r.e.)
and Si is closed under =p, i.e. Me Si & M =p7V
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Theorem 1.7 (Statman, 1990)
Let si £ A° be non-empty and a co-Visser set (i.e. B = A°\si is a Visser set). Then all
yet?!% can be X-defined w.r.t. si as a set of undefined elements.

Indeed, Theorem 1.5 follows from Theorem 1.7, because each si is non-empty and
has a Visser set as complement.

2 Precomplete numerations

The notion of precomplete numeration comes from Ershov (1973). He also formulated
for these the fixed-point Theorem 2.5:

Definition 2.1
(i) A numeration is a pair y = (v,S) with v : N - * S a surjection.
(ii) Given a numeration y = (v, S) define on N the following equivalence relation

n ~ym-s=>v(«) = v(m).

(iii) Let y1 = (v^Sj) and y2 = (v2,52) be two numerations. A map i ^ S ^
called a morphism from y1 to y2, notation u:yx->y2, if for some /e ^2 one has

v2 of = u o Vj; in diagram form:

is

The intuition behind a numeration y = (v, S) is that the elements of S are
somewhat complicated, but have codes in N. If v(n) = s, then n is called a code for
5. Then n ~ y m means that n and m code the same object of S. Moreover, u: Sx -»• 52

is a morphism if '(i can be computed by means of the codes'.

Examples 2.2
(i) Ap = (E, A°/ = p) with £(«) = Er«n is a numeration.

(ii) PR = ( O , ^ 2 ) , with (&(«) = c|)n, the «th partial recursive function, is a
numeration.

Definition 2.3
A numeration y is said to be precomplete if

V y e 0*913/e <% V n e N[\|/(«) 4 =>/(«) ~ y V(«)l-

Following Visser (1980), we say t h a t / totalizes v|/ modulo ~ y .

Proposition 2.4
(i) Ap w precomplete.

(ii) PR w precomplete.
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Proof
(i) Given V J / E ^ let FeA° be a ^-defining term for v|/. Define/(«) = #(EoFr«n).

Then if y(«) j one has

hence/(n)~£\)/(/j).
(ii) Given v|/e^2 define

By the s—m-n theorem one has for some fe01 and all n,meN

0(w, m) = (j)/(n) (m).

Then \j/(«) J. =><f>/(re) = <|>V(B) =>/(«) ~Yv|/(n) for all neM, and we are done. •

Theorem 2.5 (Fixed-point theorem)
Let y = (v, S) be a precomplete numeration. Then

VfeR3neNf(n)~.fn.

Proof
Given fe0>@ define \\i(m) =f($m(m)). Then ye3P0l, so there is an hsM that totalizes
\s? modulo ~y. Let h = <fre. Then (j)e(e) = h(e) = n, say, is defined, hence also y(e) j . It
follows that

Therefore n satisfies our requirement. •

Corollary 2.6
Let y = (v, S) be precomplete. Let \i:S->S be an endomorphism, i.e. u:y->y. Then
\i has a fixed-point :

3seS\\(s) = s.

Proof
By the definition of morphism there is an/e^2 such that v o / = uo v. By the theorem
there is an ne N such that/(«) ~yn. Then s = v(n) is a fixed-point of u:

= u(v(n))

= s. n
Theorem 2.5 implies both the fixed-point theorem of ^.-calculus and the recursion

theorem.
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Corollary 2.7

(i) (Fixed-point theorem in ^.-calculus.)

VFeA3NeAFN = f

(ii) (Recursion theorem.)

Proof
(i) Apply Theorem 2.5 to Ap. Define /(«) = #F(Ern^). Then fe3t and by the

theorem n ~Ef(n) for some neN. It follows that

therefore we can take N = Ernn.
(ii) By Theorem 2.5 applied to PR one has /(«) ~^n for some neN; therefore

3 The Anti Diagonal Normalization Theorem

In Visser (1980) the so-called Anti Diagonal Normalization (ADN) Theorem is
proved, which is a result about precomplete numerations. Applied to the numeration
PR it gives a result that roughly satisfies the following equation:

Godel sentence : Rosser sentence = recursion theorem : ADN theorem.

Applications of the ADN theorem to metamathematics of arithmetic can be found
in Bernardi and Sorbi (1983). Another application is shown in the next section.

The following definition is reminiscent of the construction of Rosser sentences in
Peano arithmetic (see, e.g., Kleene, 1952, §42, theorem 29; or Mendelson, 1987,
proposition 3.36).

Definition 3.1
Let 2:(«) and Q2(n) be r.e. predicates. Then for some binary recursive relations
Rx{n,m) and R2(n,m) one has for z'e{l,2}

Q((ri) o]ffl R((n, m).

Write 6i(«i) *S 22(«2)o^mR^n^m) & Vm' < m-.R2(n2,m')

and 2i(«i) < Q2(
n2)'i>^mRi(ni,m) & V m ' ^ m - i / j ^ m ' ) .

These definitions are best understood and remembered by noting that

2i(«i) «S 22("2) «* V™ • RMv m)^\im. R2(n2, m)

and 2i(«i) < 22(«2) <* V*n. R^, m)<\xm. R2(n2, m).

Here \un.... denotes the operation of taking the least number m such that.. . holds.
Note that the notions

6i(«i) ^ Qt0h) and Qfa) < Q2(n2)

are intensional, i.e. they depend on the way the Qt are given via the Rv
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Lemma 3.2

0) 2i(«i) ^ 62(^2) ar%d 2i(n i ) < 22(W2) are both r.e. relations in nv n2.
(ii) [gxK) v e2(«2)]=>[e1(«1) ^ e2(n2) v QMx) < e2(«2)]-

Proof
(i), (ii). These follow immediately from the intuitive description following Definition
3.1. •

Definition 3.3
Let y = (v, S) be a numeration. An anti diagonal function (w.r.t. y) is a §e8P£% such
that for all n e N one has

8(fi);=»5(n)+Tfi.

Theorem 3.4 (Anti Diagonal Normalization Theorem; Visser, 1980)
Let y = (v,S)be a precomplete numeration with 8 e SPffl an anti diagonal function. Then
for all yeSPSfr there exists an fe0l such that for all neN one has

V(«H =>/(«) ~TV(«)
vj/(«) \ =>/(«) $ dom (8).

We say that f totalizes y modulo ~y avoiding dom (8).

Proof
Let v|»eM be given. Define 9(n) = (j)n(n). Then also 0 e ^ 2 . Since y is precomplete,
there is a g e i such that

for all ne N. By the s-m-n theorem there exists an se& such that

)) i

f else.

Claim: <bs(n)(s(n)) \, => §s(n)(s(n)) = \/(n). Indeed, suppose towards a contradiction that
4>s(n)W«)H but <J>f(B)(5(/i)) = 5(^(«))) . Then

which is impossible. Therefore we have

v|/(n) I => <t>,(n)(.s(M)) = v|/(«) I, by the claim,

=>g(s(n)) ~T4>s(n)W«)) = \|/(n);

and on the other hand,

\|/(n) f => <!>„,,)(*(«)) t . b y the claim'
=>5(g(j(H)))t

Therefore we can take f= gos. •
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Corollary 3.5
Let y = (v, S) be a precomplete numeration. Let B £ N be a non-trivial (i.e. B 4= N) r.e.
set closed under ~ , i.e. such that

neB & n ~ym

Then Vy e0>M3fe@[f totalizes i|/ modulo ~ y avoiding B].

Proof
Let no$B. Define

5(«) = n0 if n e B,

= f otherwise.
Then for all n e N

5(n) 4 => 8(n) = «0 -f T«-

Hence 8 is an anti diagonal function. Therefore the theorem applies and
dom(8) = B can be avoided. •

4 Notions of 'undefined'

Now we can prove Statman's result.

Theorem 4.1
Let 38 £ A° be a non-trivial Visser set. Then

Proof
We will apply 3.5 to Ap = (E, A°/P) which is a precomplete numeration. Define B =
{«| Ern1e3§}. Then B is non-trivial, r.e. and ~£-closed. Given v | /e^2 define

= f, otherwise.

Then Er\|/1(n)n = p
 rv|/(n)n. There exists an/x e ^? that totalizes v|/x modulo ~ £ avoiding

5, i.e.

Let Fx X.-define/j. Then

¥(«)l=>Vi(«)-l-

=* E o F / I I T = p

So we can take F s EoFj. •
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Corollary 4.2
Let si £ A0 be one of the following sets:

(i) si = {M e A° | M has no normal form);
(ii) si = {M e A° | M is unsolvable);

(iii) si = {Me A° | M is easy);
(iv) si = {MeA°|M is of order 0}.

Then every \\i e &01 can be X-defined by an Fe A° such that

Proof
Let 8ft = A°\si. Then 39 satisfies the requirements of the theorem. •

The results in this paper on the unary partial recursive functions can be generalized
to the /c-ary ones. The reason is that fc-tuples of numbers or .̂-terms can be effectively
coded as a single number or .̂-term, respectively. Also, decoding is an effective
process.
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