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METRIC PROJECTIONS AND THE
DIFFERENTIABILITY OF DISTANCE FUNCTIONS

SIMON FITZPATRICK

Let M be a closed subset of a Banach space E such that the
norms of both E and E* are Fréchet differentiable. It is
shown that the distance function d(e, M) is Fréchet
differentiable at a point * of E ~ M if and only if the
metric projection onto M exists and is continuous at X . If
the norm of E 1is, moreover, uniformly Gateaux differentiable,
then the metric projection is continuous at x provided the
distance function is Gateaux differentiable with norm-one
derivative. As a corollary, the set M is convex provided the
distance function is differentiable at each point of E~ M .
Examples are presented to show that some of our hypotheses are

needed.

1. Introduction
For a nonempty subset M of a real Banach space FE , let
¢o(z) = inf{|lz-y|| : y € M}
be the distance function associated to M and let
Plz) ={y e M : [lz-y| = ¢(z)}

be the set of nearest points in M to x , for each x € F . We call a

sequence (yn) from M a minimizing sequence for x provided

lz-y I > ¢(z) as n+e .

Received 17 April 1980.
291

https://doi.org/10.1017/50004972700006596 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006596

292 Simon Fitzpatrick

If M is also bounded we define, for each x € E ,
v(z) =suplllz-yll : y € M}
and
Flz) = {y € M : |-yl = 9(=)} ,
the set of farthest points in M from z , and we call a sequence (v,)
from M a maximizing sequence for x provided IIx-ynll > P(x) as n >,

The maps P and F are called the metric projection and antiprojection

for M respectively.

A real-valued function f on E 1is said to be Gateaux differentiable
at a point x* of E if there is an element df(x) of E* (the dual of
E ) such that, for each y in E ,

lim ¢ (flasty)-f(2)) = Cdflx), > ,
>0

and we call df(x) the Gateaux derivative of f at x .

We say that f is Fréchet differentiable at a point x if there is
an element f/(x) of E* such that

R -1
lim iyl ™ (Flawy)-fl@)L (), »2) =0,
liyll-o0 :
and we call f'(x) the Fréchet derivative of f at x . Clearly, if f
is Fréchet differentiable at a point & then it is also Gateaux
differentiable at x and f'(x) = df(z) .

Denote by B(E) the closed unit ball at the Banach space E and let
S(E) = {zx € E : lzll = 1} be the unit sphere of E . We say that a nonzero
element x* of E* strongly exposes B(E) at =z € S(E) provided a,

sequence (yn) from B(E) converges to x whenever ({z*, yn))

converges to |lx*| . A Banach space E is said to be strictly convex if
S(E) contains no line segments and locally uniformly convex provided a

sequence (xn) from B(E) converges to a point x of S(E) whenever

sl > 2 .

Let D denote the (set-valued) norm-one duality map on E , defined
for each x € E by
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D(x) = {x* € B(E*) : (z*, ) = |x|I} .

The Banach space E is smooth provided D(x) 1is a singleton for all non-

zero £ in FE , in which case, for each nonzero x and y ,

(1) £ (Nertyll-lzll) - ¢D(z), ) >0 as t~+0 .

This is clearly equivalent to the assertion that the norm of E 1is Gateaux,
differentiable at each nonzero point & , with Gateaux derivative D(x) .
It is easily seen that the norm of E is Fréchet differentiable (at each
nonzero point z ) if (1) holds uniformly for y € S(E) . We say that the
norm of E is uniformly Gateaur differentiable if (1) holds uniformly for
x € 5(E) , for each y in E .

Smulian [18] showed that the norm of E* is Fréchet differentiable at
x* € E* if and only if x* strongly exposes B(E) , and that if E* has
Fréchet differentiable norm then £ is reflexive. Lovaglia [12] showed
that if E 1is reflexive and locally uniformly convex then E* has Fréchet
differentiable norm. In[17], Smulian proved that the norm of E is
uniformly Gateaux differentiable if and only if E* is weak* uniformly

convexr, that is, whenever (x;) and (y;] are sequences from B(E*) such
x4y 4] > A _ % *_ ; ;
that "xn yn” 2 we have z* - y* 0 weak Using this

characterization, it can be shown that every separable Banach space has an
equivalent norm which is uniformly Gateaux differentiable (see [24],

p. 429}, and Trojanski [20] showed that there are nonseparable reflexive
Banach spaces with no equivalent uniformly Gateaux differentiable norm.
Sultivan [19] has investigated some consequences of uniform Gateaux

differentiability.

A multivalued mapping T from a Banach space X to a Banach space Y
is said to be continuous at x € X provided T is single-valued at =x

and Y, > Tx whenever x, >z and yn'E Txn .

In [3], Asplund showed that if M 1is a closed subset of Hilbert space
and x has a nearest point in M , then the metric projection onto M is
continuous at the point x if and only if ¢ is Fréchet differentiable at
X ; moreover, P 1is norm-weak comtinuous at x if and onmly if ¢ is
Gateaux differentiable at x . His proofs used properties that are unique

to Hilbert space.
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We will prove similar results in more general Banach spaces, and we
will not need to assume the existence of a nearest point to x . If ¢ is
only Gateaux differentiable at 2x we will need to assume that
lde(x)l] =1 , but this will actually yield (norm-norm) continuity of P at
2 . The case where ¢ is differentiable for all x ¢ M is of special
interest: we give conditions under which this yields the convexity of the

set M .

Throughout this chapter, ¥ will be assumed to be a non-empty subset
of the Banach space E .

2. Consequences of the differentiability of ¢ and ¢
The first lemma we need is obvious.

LEMMA 2.1. For a nonempty subset M of a Banach space E and any
points y and z of E , we have |¢(y)-¢(2)| = lly-zll and if M is
bounded then |p(y)-y(z)| = |ly-2| .

LEMMA 2.2 (Viasov [21], Blatter [6]). Let M be a subset of a
Banach space E .

(a) If x €E~M is a point of Gateaux differentiability of ¢ and
y € P(z) then {de(z), z-y) = llz-yll and |dd(x)|} =1 .

(b) If M is bounded, x € E is a point of Gateaux
differentiability of ¥ and y € Flx) then (dP(z), z-y) = llz-yll and
lap(z)ll =1 .

Proof. (a) Clearly llz—yll =¢{=z) > 0. For 0< ¢t <1,

¢(z) - tlle—yll = (1-8) eyl = llx+t{y-x)-yl

Y

¢ (x+t(y—x)) since y €M,
2 ¢(x) ~ tle-yll

by Lemma 2.1. So equality holds throughout and

(dp(x), y=c) = lim t_l{¢[x+t(yavc)]—¢(x)}

t»0
= Jy—~=ll 5
hence (d¢(x), x-y> = {lx-yll . But Lemma 2.1 implies that [ldé(x)| =1 ,

so this also shows that |ldo(x)| =1 .

(b) If M is a single point this is clear. Otherwise x # y and
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lz-yll = ¥(z) . For O <t <1,

(1+8) |lz-yl| = llz+tl{z-y) -yl
Y(x+t(x-y)) since y €M,
= p(z) + tlz-yll .

P(z) + tle-yll

1A

n
—

As above, this implies that (d¥(z), x-y) = |lz—yl and |dp(x)|]
Now we can give a proof of a result of Zhivkov.

THEOREM 2.3 [23]. Suppose M 1is a subset of a strictly convex
Banach space E .
{a) If x 1is a point of Gateaux differentiability of ¢ then there

is at most one nearest point in M to x .

(b) If M <is bounded and x 18 a point of Gateaux differentiability

of Y then there is at most one farthest point in M to x .

Proof. (a) If x €M , this is obvious. Otherwise Lemma 2.2 shows

that for all elements y and 2z of P(zx) ,

(@b(a), -y) = ldo() oyl = Idp(a) - o=zl = (), o-z)
Since E is strictly convex, d¢(x) can attain its norm at only one point
of S(E) , which implies that P(x) has at most one element.

(b) This is proved similarly.

Lemma 2.2 tells us that if ¢ 1is Gateaux differentiable at & and
ld¢(z)|] < 1 then P(x) is empty. (We will give an example later to show
that this situation can occur even in Hilbert space.) When |[ldo(x)] =1 ,
we can prove the existence of nearest points but we need some strong

assumptions.

THEOREM 2.4. Let M be a closed subset of a Banach space E with

uniformly Gateaux differentiable norm.

(a) Suppose that x € E~ M <is a point of Gateaur differentiability
of ¢ with |do(z)|| =1 . Assume

(i) that do(x) strongly exposes B(E) at some point z and
(ii) that =z strongly exposes B(E*) at dé(z)

Then every minimizing sequence for x converges to x - ¢(x)z , and the

latter is the unique nearest point in M to =z .
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(b) Suppose that M is bounded and that x 1is a point of Gateaux
differentiability of ¢ with |ldp(x)l] =1 . Assume

(1) that dy{x) strongly exposes B(E) at some point =z and
(1) that =z strongly exposes B(E*) at dy(xz) .

Then every maximizing sequence for x converges to x - P(x)z , and the

latter is the unique farthest point in M from =z .
Proof. (a) Suppose (yn] is a minimizing sequence for x . For all

t>0,

A

¢(x+tz) - ¢(x) < inf ||x+tz-yn]| -~ lim ||x—yn||
n now

1A

lim inf (Jz+ta-y l-lz-y, |I) -
n-co

By assumption (%),

1 = {d¢(z), ) =1lim t"1(¢(x+tz)-¢(x)) ,
>0

so
1 < lim inf lim inf t—l(I|x+tz—yn]|-|]x—yn|]] .
t>0+ noe
We claim that, as ¢ > 0 ,
(2) t-l(Il:c+tz—yn||—”:c-yn”) - <D(:c—yn] , 8 >0

uniformly for n € N . To see this, let o = Hx—yn” and note that by the

uniform Gateaux differentiability of the norm,

-”agl(x-yn) I” - <D[a;ll(x_yn)), z>. .

uniformly in n as t - O . From the fact that D(ru) = D(u) for u € E

¢t [“a’;l [:c_yn] +tz

and r > 0 , together with homogeneity of the norm, we see that
-1
(ant] (I[x-ynmntzll-llx-ynﬂ) - (D(x-yn] , 2 >0
uniformly in 7 as t > 0. But o - ¢(x) > 0, so this yields the

uniform convergence of (2).

Thus 1 < lim inf ( D(.’c-yn) » 8 . Since 2 strongly exposes B(E*)
7

https://doi.org/10.1017/50004972700006596 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006596

Distance functions 297

at d¢(x) , we have D x-yn) > d¢(x) . Now

v

lz-y, Il = ¢db(z), 2y, = D(z-y,), z-y,) + (do(z)-D(zy,), =¥,

v

lz-y |l - 1d9(=)-D (=g, ) Iy, Il

s0 <d¢(x), le-ynll—l (:c—yn)> +1 as n > o . By assumption (%), this
implies that H:z:—ynll—l (x—yn] *2; hemce y > - ¢(x)z as required.

(b) Suppose that (yn) is a maximizing sequence for x . For each

t<o,

v

Y(x+tz) - P(x) = sup le+tz—yn|l - lim ”:L'—ynll
n ne

v

Lin sup (lovta—y |I-le-y, ) -
nr e

From assumption (%) it is clear that

1 ={dplz), 2) = lim £ L (plz+tz)(x)) ,
>0

SO

[
1A

1lim inf E,_l 1lim sup (||x+tz—ynl|—”x-yn||)]
t+0- e

lim inf lim inf t-l(ll:c+tz-yn||-||x-y Iy -
t>0- (30l n

The rest of the proof is similar to part (a).

COROLLARY 2.5. Suppose that M 1is a closed subset of a Banach space
E equipped with a norm which is Fréchet differentiable, is uniformly
Gateauxr differentiable and induces a Fréchet differentiable dual norm on
E* .

(a) If x= € E~M is a point of Gateauxr differentiability of ¢
with ||dé(x)|| = 1 then each minimizing sequence for =z converges and

hence P 1is continuous at = .

(b) If M <is bounded and x <s a point of Gateaux differentiability
of Vv with |ld(z)ll =1 then each maximizing sequence for x converges

and hence F 1is continuous at x .
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Proof. Our assumptions on the norm of E imply that every nonzero
element of E (respectively E* ) strongly exposes B(E*) (respectively
B(E) ). Thus we can apply Theorem 2.4. The continuity of P
(respectively F ) follows immediately from the convergence of all

minimizing (respectively maximizing) sequences.

If we strengthen the hypothesis on ¢ to Fréchet differentiability of
¢ at x , then we can obtain the convergence of minimizing sequences for

x with weaker assumptions on the Banach space F .
THEOREM 2.6. Suppose M 1is a closed subset of a Banach space E .

{a) If x € E~M is a point of Fréchet differentiability of ¢ ,
then (o' (x)||

then every minimizing sequence for x converges to x - ¢(x)z , and the

1. If ¢'(x) strongly exposes B(E) at some point =z ,

latter 1s the unique nearest point in M to x .

(b) If M <is bounded and x € E 1is a point of Fréchet
differentiability of ¢ , then |0'(x)|l =1 . If V¥'(x) strongly exposes
B(E) at some point 2z , then every maximizing sequence for x converges
to x - Y(x)z , and the latter is the unique farthest point in M from

X .

Proof. 1In order to prove (a) and (b) simultaneously, introduce a
constant A which is to be equal to 1 in part (a) and equal to -1 in

part (a). In part (b) let (yn) be any minimizing sequence for x and
let ¢1 =¢ . In part (b), let [yn) be any maximizing sequence for <«

and let ¢—l =y .
Choose a sequence (an) of positive numbers such that o, 0 and
2
a > A(Hx—yn”—¢x(x)) for every n € N . If 0< ¢t <1 then for each n ,

Mxkﬂt@ﬂan EMMHt@ﬁm}leshme %ZEM,

M1-At) fla-y, |

A

(l-At)[ui+A¢A(x)) ;
hence

(3) Ay (2) = A0y (wnre(y, ~x)) = o, (z) - 202 .
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Now let € > 0 . By definition of ¢X(x) , there is § > 0 such that
whenever llyll < 8 we have

[0, (x4 )-8, (2)< 9/ (2), )| = ellyll -

_ -1 . .
Let ¢ = an(”x—ynﬂ) . For large n, a < 8§ , so taking Atn(yn z) in

place of y yields

etnllx-yn” - Xo)(2), Atn[yn-x)) z My (=) - A¢)\[x+>\tn(yn-x))

v

2
tn¢k(x) - 2un
by (3). Thus

! > 2
(¢A(x), tn(x-yn)) 2 —eq, - Qun + tn¢k(x)

and dividing by an yields

%

(o1(2), (hoey, ) oy, ) ) 2 = - 20 + (lz=y, JI) "oy () .

Since € > 0 was arbitrary, o, > 0 and ”¢X(x)” <1 (by Leima 2.1) we
have
12 3im inf (8021, (llx-yﬂll)“l(x-z{n)>
2 Lin inf (loy, ) 7o, (=) = 1
o
hence ”¢i(x)” =1 as required. Furthermore, if ¢i(x) strongly exposes

B(E) at =z then (”x-ynﬂ)_lﬂr—yn) + 2z because

(85020, (ho-y, ) g,) ) > 1 = loj () -
It follows that y =& - ¢A(x)z .

COROLLARY 2.7. Suppose M 1is a closed subset of a Banach space E
such that the norm of E* is Fréchet differentiable.

(a) If ¢ <is Fréchet differentiable at some zx € E , then every

minimizing sequence for x converges, hence P 1is continuous at = .
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(b) If M 1is bounded and V is Fréchet differentiable at some
x € E , then every maximizing sequence for x converges, hence F is

continuous at x .

Proof. By the assumptions on .E , every nonzero element of E*
strongly exposes B(E) . So Theorem 2.6 applies, except for the trivial

case x € M in part (a).

COROLLARY 2.8. Suppose M 1is a closed bounded subset of a Banach
space E such that the norm of E* 1is Fréchet differentiable. Then the
set of x in E which have every maximizing sequence for x converging
to the unique farthest point in M for x is a residual subset of E .

Proof. The function § is clearly convex and E is reflexive, so g
is Fréchet differentiable at the points of some residual subset of E (see
[141). By Corollary 2.7 (b}, each of these points has the required
property.

Corollary 2.8 generalizes a result of Asplund [2].

THEOREM 2.9. Let M be a bounded subset of a Banach space E .
Suppose that x € E and y € F(x) and that dy(x) exists. Then the norm
of E 1is Gateaux differentiable at = - y , with derivative dy(x) . If
Y'(z) exists then the norm of E 1is Fréchet differentiable at x -y .

Proof. Suppose §'(x) exists, and let x* € D(z—y) , so that for
every h €E ,

(x*, h)

1A

le-y+hll - flz-yll .

since [lx—y+hl - lle-yll = Y(x+h)
there is 6 > 0 such that |k

Y(x) we have that for every € > 0

A

§ implies

Cx*, b)) =(p'(x), W + €eln]] ,
that is, whenever ||z =1 ,

(z*, 2) =(yp'(x), 2) + ¢ .

This being true for all € > O we conclude that z* = y'(z) . It follows
that for each € > O there is 6§ > 0 such that |h]| < § implies

z*, B = |lzy+hi| - llzyll <z, B + €|n] ,

so z* = §’(x) is the Fréchet derivative of the norm at zx - y . If only

dp(x) exists, a similar proof shows that dy{x) is the Gateaux derivative
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of the norm at * -y

Theorem 2.9 does not have an analogue for the function ¢ , as the

following example shows.

EXAMPLE 2.10. Let E = R2 equipped with the norm
||(:z:l, x2) I = lel + I:z:2| , and let M be the bounded set

{(o, t) € RS : 1<t=< 1} . Then ¢ is (Fréchet) differentiable at each
point & = (xl, x2) such that xl # 0 and -1 < x2 <1 : for such

points, ¢(x) = ]xll and P(x) = (0, = However, the morm is not

5)
differentiable at x - P(z) = (xl, O)

3. Sufficient conditions for differentiability of ¢ and ¢

It should not now be surprising that we need some continuity-like
condition (such as "every maximizing sequence converges”) in order to prove
that ¢ or ¢ is differentiable. Also," Theorem 2.9 shows that, at least

for ¢ , we need to assume the differentiability of the norm at «x - Fx .

THEOREM 3.1. Suppose M is a closed subset of a Banach space E
and x €E~ M.

(a) If every minimizing sequencé in M for x converges to =z and
the norm of E <1s Gateaux (respectively Fréchet) differentiable at =z - z
then ¢ is Gateaux (respectively Fréchet) differentiable at =x .

(b) If P(y) <s nonempty for a derse set of y in some
neighborhood of x and if P 1is continuous at x , with the norm E
Gateauxr (respectively Fréchet) differentiable at x - Px , then ¢ 1is
Gateaux (Fréchet) differentiable at x .

Abatzoglou [1] proved a result less general than Theorem 3.1 (b): he

assumed that P 1is continuous on an open set containing « .

THEOREM 3.2. Suppose M is a closed bounded subset of a Banach
space E and let x €FE .

(a) If every maximizing sequence for x converges to 2z and the
norm of E 1is Gateaux (respectively Fréchet) differentiable at x - z
then ¢ <is Gateaux (respectively Fréchet) differentiable at =z .

2
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(b) If F(y) <is nonempty for a dense set of y in some neighborhood
of x and F 1is continuous at =z , with the norm of E being Gateaux
(respectively Fréchet) differentiable at x ~ F(x) , then ¢ <s Gateaux
(respectively Fréchet) differentiable at x .

To prove these theorems we will obtain a general result which contains
both as special cases. Let h : E >R be a Lipschitz function. If M is

a subset of FE define
n(z) = int{h(x-m) : m € M} .
Recall the definition of the Clarke subgradient [7}, 8h of h : first

let

1%z, y) = lim sup h{z+t t)-h(z)
27T
>0+

for x, y € £ , and then define

dh(x) = {x* € BE* : (x*, y) = ho(x, y) for all y € E} .

Note that if dh(x) is single valued then dh(x) exists and
Mm(x) = {dn(z)} (see [11]).

We need the following mean-value property for 3k .

PROPOSITION 3.3 (11). If x and y are points of E then there
is a point z of [z, yl = {tz+(1-¢t)y : 0 = £ =1} and some =z* € 3n(z)
such that

Cz*, y-a) = hly) - Alx)

THEOREM 3.4, Let M, h and n be as above. Suppose that x is a
point of E where 0 <tis finite and that 2z 1is a point of M such that
n(x) = h(z-z) and Oh <is single-valued at x - z . Further assume the
following continuity-1like condition: for every y in some neighborhood of

zero in E we can assign an element my) of M such that, as y ~ O,

both

(%) llyll-l{h(xs‘y—In(y)]—n(x+y)} >0
and

(5) m(y) + 5 .
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It then follows that n 18 Gateaux differentiable at x and
dnlzx) = dh(z-z) . Moreover, if dh 1is continuous at x ~ 2 then n s
Fréchet differentiable at x .

Proof. Let y €EF and ¢ >0 . Then define

(6) r(ty) = t [ n(z+ty)-n(z)=(dhr(z-3), ty)]
< t M W(xrty-2)-h(z-2){dh(z-z), ty’]
since 2 € M. Also if we define

of ty) = t—l[h(x+ty)~h[¢+ty-m(ty))] ,

then @(ty) * 0 as t >0 by (4). Moreover,

(7) rity) = t_l{h[x+ty-m(ty)]-h[x-m(ty)]} + ofty) - (dh(z-2), y?
{zt, y) - {dh(x-z), y) + olty)

[

for some x* = z*(ty) € dh(w(ty)) , where w(ty) € [x+ty-m(ty), z-m(ty)] ,
by Proposition 3.3. As t * 0 we have m(ty) >z , by (5), so w(ty)
converges to & - 2 . Since ok is norm-weak* upper semicontinuous at
z -z (see [11]) we have x*(ty) > dh{x-z) weak* as t =+ 0 . Thus
{z*(ty)-dh(z-2z), y> >0 as ¢t >0, so (7) converges to zero as ¢t + O .
Also (6) converges to zero as t > 0 sinée h is Gateaux differentiable
at x - 2 . So we have r(ty) >0 as ¢ »> 0+, for all y € E , which
implies that dn(x) exists and is equal to dh(z-2)

If oh is continuous at &« - 2 , then all the assertions concerning
convergence in this proof are valid uniformly for y € B(E) , and n is

Frechet differentiable at « .

Proof of Theorem 3.1. It easily is seen that for %k equal to the
norm of E , the Clarke subgradient 0% and the duality map D are
identical, and that D is single-valued (respectively continuous) at a
point x* of £ if and only if the norm is Gateaux (respectively Fréchet)
differentiable at x . Hence, setting % equal to the norm, we only need

to produce m(y) satisfying the conditions (4) and (5) of Theorem 3.h.

(a) For each nonzero y in E take any m(y) € ¥ such that

0 = lesymy)ll - ¢(z+y) = |lyll?

and take m(0) = 2 ; this choice of m(y) clearly satisfies condition (4)
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of Theorem 3.4. Furthermore,

$(x) = Jle-m(y)ll = llxsy-m(y)] + lyll
< Iyl + ¢(2%y) + lyll by choice of m(y) ,
< fyl? + o) + 2lyl

By Lemma 2.1. This shows that if y > 0 then Hx-m(yn)H + ¢(x) , so
m(yn) + 2 since (m(yn]) is a minimizing sequence for & . Thus
condition (5) of Theorem 3.4 is also satisfied.

(b) Let U be a neighborhood of zero such that there is a dense
subset A of x + U on which nearest points exist. For each nonzero

y €U take any w(y) € A such that

2
lz+y-w(y) | < yll® ,

and take w(0) =x . Let m(y) be any element of P[w(y)) for each
y €U . Then continmuity of P at & implies that m(y) + P(x) as
y >0 . Also

lz+y-m(y) Il - ¢(x+y)
lzey-w() N + lo(y)am() I - s(wly)) + llctywiy)
by the triangle inequality and Lemma 2.1,

o
IA

1A

1A

llo(y)-m()]l - o{wly)) + 2llyl® - by choice of w(y) ,

2yl since m(y) € P(w(y))
Thus the conditions of Theorem 3.4 are satisfied.
Proof of Theorem 3.2. We note that

Wy) = -infl{-lly-m|| : m € M}

and thus we can apply Theorem 3.4 to % = -[|*]] and n = -y . The details

are similar to those of the Proof of Theorem 3.1.

COROLLARY 3.5. Suppose that E <is a Banach space such that the
norms of E and E* are both Fréchet differentiable.

(a) If M 1is a closed subset of E and x € E~ M , then the
following are equivalent:

(i) the metric projection is continuous at x ;

(ii) every minimizing sequence in M for x converges;
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(121) the function ¢ 1is Fréchet differentiable at =x .

(b) If M 4is a closed bounded subset of E and x 1is a point of
E , then the following are equivalent:

(1) the metric antiprojection is continuous at < ;
(i1) every maximizing sequence in M for x converges;
(iii) the function ¢ 1is Fréchet differentiable at =z .

Proof. (a) Lau [10] proved that P(y) is nonempty for a dense set
of y in E . Now, by Theorem 3.1 (b), if P is continuous at =z , then
¢ is Fréchet differentiable at « . Conversely, if ¢ is Fréchet
‘differentiable at x , then Corollary 2.7 shows that every minimizing
sequence for x converges, which in turn implies the continuity of P at

X .

(b) By Corollary 2.8, there is a dense set of y € E such that F(y)
is nonempty. Now Theorem 3.2 (b) and Corollary 2.7 finish the proof, as in

part (a).

COROLLARY 3.6. Suppose that M is a closed subset of a Banach space
E such that the norm of E is both Fréchet differentiable and uniformly
Gateaux differentiable and the norm of E* <is Fréchet differentiable.

(a) The following are equivalent for a point x of E~M :
(1) the function ¢ is Fréchet differentiable at =x ;

(11) the function ¢ is Gateaur differentiable at x and
lido(z)ll = 1 ;

(ii1) the metric projection onto M <is continuous at x .
(b) If M is bounded and x € E , the following are equivalent:
(Z) the function ¢ <is Fréchet differentiable at =z ;

(i) the function Y is Gateaux differentiable at x and
ldp(z)ll = 1 ;

(1i1) the metric antiprojection is continuous at x .

Proof. This is immediate from Theorem 2.6, Corollary 2.5 and

Corollary 3.5.

Our interest in the differentiability of ¢ arose initially from an
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attempt to answer the following question. Is every real valued locally
Lipschitzian function on a separable reflexive Banach space necessarily
Fréchet differentiable on a dense set? This question appears to remain
open. (The counterexample presented in [4] (and cited subsequently in [5],
[75] and [22]) is in fact continuously Frechet differentiable, while the
one presented in [13] is convex, hence differentiable on a dense GG set.)

The next corollary shows that such a "generic" differentiability result is

valid for ¢ in certain spaces.

COROLLARY 3.7. Let M be a nonempty closed subset of a reflexive
locally wniformly convex Banach space E . If E 1is smooth then ¢ 1is
Gateaux differentiable except on a set of the first category, and if the
norm of E 1is Fréchet differentiable then ¢ <is Fréchet differentiable

except on a set of the first category.

Proof. Lau [10] has shown that there is a dense G6 subset A of E

such that, if x € 4 , then every minimizing sequence in M for x
converges. We can apply Theorem 3.1 (a) to get ¢ differentiable on
A~ M . However, ¢ is constant (zero) on the interior of M , so we have

¢ differentiable on A ~ boundary(M) , which is a dense GG set since the
boundary of M is closed and nowhere dense.

We need not prove a corresponding result for ¢ since Y is convex
and every reflexive space E 1is an Asplund space [14], that is, every

continuous convex function on E 1is Fréchet differentiable on a dense Gd

subset of F .

4. Convexity of ¥ when ¢ is differentiable

Suppose that M 1is a closed subset of a Banach space E . If ¢ is
Fréchet differentiable (or Gateaux differentiable with norm-one derivative)
at each point of E ~ M then we give conditions on £ which guarantee

that M is convex.

A subset M of FE 1is called a Eebygev set if every point x of F
has a unique nearest point in M , and the set M is spproximatively
compact provided every minimizing sequence in ¥ for each point = of E

is relatively compact. We need the following results of Vliasov.
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THEOREM 4.1 (Viasov [211). (a) In a smooth locally uniformly
convex Banach space E , every approximatively compact lebysev set is

convex.

(b) In a Banach space with uniformly Gateauxr differentiable norm,

every approximatively compact Cebysev set is convex.

Our first result of this section is for ¢ Gateaux differentiable
with norm-one derivative. However, if ¢ is Fréchet differentiable, then
Theorem 2.6 shows that the derivative has norm equal to one, for each point

of E~M.

THEOREM 4.2. Suppose that M <is a closed subset of a Banach space
E equipped with a norm which ig Fréchet differentiable, is uniformly
Gateaux differentiable and induces a Fréchet differentiable norm on E* .
If ¢ s Gateaur differentiable at x and |dé(x)l| = 1, for all
x €EE~M, then M 1is convex.

Proof. By Corollary 2.5, if z is a point of F ~ M then x has a
unique nearest point in ¥ and every minimizing sequence for «x
converges, hence is relatively compact. If & is a point of M , then the
same conclusions are obvious. Thus M is an approximatively compact

Cebysev set, and Theorem 4.1 (b) shows that M is convex.

THEOREM 4.3. ILet M be a closed subset of a smooth reflexive
locally uniformly convex Banach space. If & <s Fréchet differentiable at

each point of E~M then M is convex.

Proof. By Corollary 2.7, if x € E~ M then x has a unique nearest
point in M and every minimizing sequence for x converges, hence is
relatively compact. So M 1is an approximatively compact 5eby§ev set, and

M 1is convex by Theorem 4.1 (a).

The farthest distance function ¢ 'for a closed nonempty bounded
subset M of a reflexive space FE can not be Gateaux differentiable with
nonzero derivative at each point of F . [Since Y is nonnegative-valued
and convex, and F is reflexive, it is easily seen that ¢ attains its
minimum at some 2z € E . But then d¥(z) = 0 .] Nor does taking ¥
differentiable only for points not in M help.

EXAMPLE 4.4. There is, in any Hilbert space H , a bounded nonconvex
subset M such that ¥'(z) exists for all x € H~M . 1In fact, we can
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take M= S(H) u {0} ={x € H : |zl =0 or 1} . Then y(x) =1 + |lx|| for
all x € H , which is Fréchet differentiable at every nonzero x € H , yet
0 eM.

5. More examples

EXAMPLE 5.1. Let E ©be the Hilbert space Z2 and M the closed

-1 .
subset {2@1, l%ez, ey (l+n ]en, ...} where e is the nth

coordinate unit vector. Then 0 € ¥ has no nearest point in M but ¢

is Gateaux differentiable at 0 with d¢(0) =0

Proof. For x € E we have, as in Asplund [3],

2 -1 2
o (x) = inf{“x—(l+n ]enl tn=1, 2, ...}
2
= Jl=ll® - fl=)
where f(x) = sup{2(l+n-l)(x, en)—(1+n_l]2 tm=1, 2, ...} , so f is
continuous and convex. Also f(x) = -1 whenever
2(l+n—l](x, e, < (l+n_l)2 -1
for all 7 ; hence
2 2
(8) ¢ (x) = fl=lI® + 1

provided

(z, ) < (2n+1)- (2nZ+2n) 1

2 - f is the difference of two convex

for all n . Since ¢2 =
functions, it is sufficient to check Gateaux differentiability of ¢ on a

dense set of directions. Thus on the set

A = {x €E :{x, en) < (2n+l)-(2n2+2n)_l, n=1, 2, ...}

%
we have d¢(x) = (l+”x“2) z for all x € A , by (8), since the derivative

of ".“2 at x 1is equal to 2r for all x € 12 .

It should also be noted that ¢ is not Fréchet differentiable at any
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point of A by Corollary 3.6, and that A 1is not a Gaussian null set in
the sense of Phelps (see Lemma 3 of [16]); of course, since the closure of
A has empty interior, it is of the first category in 12 .

EXAMPLE 5.2. In E = 22 let

M= {el, l%ez, cees (1+n'l)en, ...} .

Then O € E has a unique nearest point in M (namely, el ) but ¢ is

not Gateaux differentiable at O , since Lemma 2.2 would then imply that
lide(0) |l = 1 and Corollary 2.5 would show that every minimizing sequence

for O converges to el , which is not the case.

EXAMPLE 5.3, There exists a locally uniformly convex Asplund space
E and a nonempty bounded closed convex subset M of F which admits no
farthest points. This shows that Corollary 2.7 fails if the conditions on

E are weakened to E Dbeing a locally uniformly convex Asplund space.

Proof, Cobzas [8] defined an equivalent norm ||| on the Asplund

space ¢, such that E = (co, li+M) is locally uniformly convex and if

M= {x € co : ”x”m = l} is the original unit ball of ¢ then no point of

0
E ~ M has a nearest point in M . Consequently, M admits no farthest
points: if x € F and y € M is a farthest point from x , with

r = |lx-yll , say, then » >0 and Mc z + rB(E) . Let az =2y -z . If

m €M , then |m-x| = r and therefore

lz-zll = ll2(y-2)-(m-z)|| = 2r - r = r = |lz-y| ,
so y 1is a nearest point in M to =z

Nor does Corollary 2.7 work if £ 1is only assumed to be reflexive and

structly convex.

EXAMPLE 5.4, There exists a strictly convex reflexive Banach space
E , a nonempty open subset U and a closed set M in F , such that ¢
is Fréchet differentiable throughout U but no point in U has a nearest

point in M .

Proof, Edelstein [9] renormed Z2 ®R by taking
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¥

~on 2

M(x, P)Hl = max(llxh, |r]) + r°+Y2 z,
n

for (x, r) € E , and showed that mo point in the open set

U={(u, ) : full <% and |r] < %}

has a nearest point in the set

M= {[e , 2+n'1] in=1, 2, ...} i
n

However, for ({(uw, r) €U ,

which

€1

[2]

[3]

(4]

£51

£61

[73

¥

¢lu, r) =2 -»r + (2-—r)2 +y 2_2nui

n

is easily seen to be Fréchet differentiable on U .
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