CONSTANT CURVED MINIMAL CR 3-SPHERES IN $\mathbb{C} \boldsymbol{P}^{n}$

ZHEN-QI LI ${ }^{『}$ and AN-MIN HUANG

(Received 3 April 2003; revised 4 February 2004)

Communicated by C. D. Hodgson

Abstract

In this paper we prove that minimal 3 -spheres of CR type with constant sectional curvature c in the complex projective space $\mathbb{C} P^{n}$ are all equivariant and therefore the immersion is rigid. The curvature c of the sphere should be $c=1 /\left(m^{2}-1\right)$ for some integer $m \geq 2$, and the full dimension is $n=2 m^{2}-3$. An explicit analytic expression for such an immersion is given.

2000 Mathematics subject classification: primary 53C42; secondary 53C55.
Keywords and phrases: minimal, constant curvature, CR-submanifold, complex projective space.

1. Preliminary

In [1], Bejancu established the concept of CR-submanifold M in a Kähler manifold N. Namely, if there is a decomposition $T M=V_{1} \oplus V_{2}$ with V_{i} a subbundle of $T M$, $i=1,2$, such that $J V_{1} \subset T^{\perp} M$ and $J V_{2}=V_{2}$, where J is the complex structure of N and $T^{\perp} M$ is the normal bundle on M, then M is called a $C R$-submanifold of N.

In this paper, we assume that N is the complex projective space $\mathbb{C} P^{n}$ with constant holomorphic sectional curvature 4.

The minimal surface theory in $\mathbb{C} P^{n}$ has made a great progress over the past thirty years. For constant curved minimal 2 -spheres in $\mathbb{C} P^{n}$, the immersion $\varphi: S^{2} \rightarrow \mathbb{C} P^{n}$ is uniquely determined by the induced metric, and φ can be constructed from its directrix $\varphi_{0}: S^{2} \rightarrow \mathbb{C} P^{n}$ by using arithmetical procedure [2].

Up to now merely a few examples have been known for higher dimensional minimal submanifolds in $\mathbb{C} P^{n}$. There are some examples of holomorphic submanifolds and Lagrangian minimal submanifolds [3, 4, 6]. In [5] we studied equivariant minimal 3spheres with constant (sectional) curvature c immersed in $\mathbb{C} P^{n}$. Here the terminology

Project supported by the NSFC (10261006), the NSFJP (0211005) and the FANEDD (200217).
(C) 2005 Australian Mathematical Society $1446-7887 / 05 \$$ A $2.00+0.00$
'equivariant' means that the immersion $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ is compatible with the Lie group structure on $S^{3}=\operatorname{SU}(2)$, that is, there exists a homomorphism $E: S^{3} \rightarrow$ $\mathrm{U}(n+1)$ of Lie group such that $\varphi=A \circ \pi_{2} \circ E$, where

$$
\pi_{2}: \mathrm{U}(n+1) \rightarrow \mathbb{C} P^{n}=\mathrm{U}(n+1) / \mathrm{U}(1) \times \mathrm{U}(n)
$$

is the natural projection and $A: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n}$ is a holomorphic isometry. In [5], we provided two examples of minimal immersions from S^{3} into $\mathbb{C} P^{n}$. One of these examples is below.

EXAMPLE 1. For a given integer $m \geq 2$, put $k=(m-2)(m+1), l=(m-1)(m+2)$,

$$
\cos ^{2} t=\frac{1}{2}-\frac{1}{2 m}=\frac{m-1}{2 m}, \quad \sin ^{2} t=\frac{1}{2}+\frac{1}{2 m}=\frac{m+1}{2 m}
$$

where $t \in(0, \pi / 2)$. Let

$$
f=\sum_{j=0}^{k} \sqrt{\binom{k}{j}} z^{j} w^{k-j} \varepsilon_{j}, \quad g=\sum_{j=0}^{l} \sqrt{\binom{i}{j}} z^{j} w^{l-j} \varepsilon_{j}^{\prime},
$$

where $(z, w) \in S^{3}=\left\{(z, w) \in \mathbb{C}^{2} \mid z \bar{z}+w \bar{w}=1\right\}$, and $\left\{\varepsilon_{0}, \ldots, \varepsilon_{k}, \varepsilon_{0}^{\prime}, \ldots, \varepsilon_{l}^{\prime}\right\}$ is the natural basis of $\mathbb{C}^{k+l+2}=\mathbb{C}^{k+1} \oplus \mathbb{C}^{l+1}$. Let $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ be the Hopf fibration. Define $\varphi=\pi \circ e_{0}: S^{3} \rightarrow \mathbb{C} P^{k+l+1}$, where

$$
\begin{equation*}
e_{0}=(\cos t f, \sin t g): S^{3} \rightarrow S^{2(k+l)+3} \subset \mathbb{C}^{k+l+2} \tag{1.1}
\end{equation*}
$$

Then
(a) φ is an equivariant minimal immersion with respect to the induced metric $d s^{2}$;
(b) φ is of CR type, that is, $\varphi\left(S^{3}\right)$ is a CR-submanifold of $\mathbb{C} P^{n}$;
(c) The sectional curvature of the induced metric $d s^{2}$ is a constant $c=1 /\left(m^{2}-1\right)$.

Since k and l are all even, the immersion φ in Example 1 induces an embedding $\psi: \mathbb{R} P^{3} \rightarrow \mathbb{C} P^{n}$.

We will always assume that $\left(S^{3}, d s^{2}\right)$ has constant sectional curvature c and we will identify S^{3} with the Lie group $\mathrm{SU}(2)$. Up to an isometry of S^{3} we may consider the metric $d s^{2}$ as a bi-invariant metric on $\operatorname{SU(2)}$. Two maps $\varphi, \psi: S^{3} \rightarrow \mathbb{C} P^{n}$ are said to be equivalent if there is a holomorphic isometric $A: \rightarrow C P^{n} \mathbb{C} P^{n}$ such that $\psi=A \circ \varphi$. We have the following results from [5].

THEOREM 1.1 ([5]). Let $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ be an equivariant minimal immersion of CR type with constant curvature c. If φ is linearly full, then $c=2 /(n+1)$ where $n=2 m^{2}-3$ for some integer $m \geq 2$. Moreover, up to an isometry of S^{3}, φ is equivalent to the immersion defined in Example 1.

Theorem 1.2 ([5]). Let $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ be a minimal immersion of $C R$ type. Suppose that the induced metric is bi-invariant. If $\varphi^{*} \Omega$ is left-invariant, where Ω is the Kähler form of $\mathbb{C} P^{n}$, then φ is equivariant.

In the present paper we will prove the following
Theorem 1.3. Up to an isometry of S^{3}, a minimal immersion $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ of $C R$ type with constant curvature c is equivariant.

Theorem 1.3 together with Theorem 1.1 implies that a compact minimal CRsubmanifold M of dimension 3 with constant curvature $c>0$ in $\mathbb{C} P^{n}$ is an embedded $\mathbb{R} P^{3}$, since the universal covering space of M is the 3 -sphere S^{3} with constant curvature c. It has rigidity. And the curvature $c=1 /\left(m^{2}-1\right)$ for some integer $m \geq 2$. If the immersion is full, then $n=2 m^{2}-3$. Up to a holomorphic isometry of $\mathbb{C} P^{n}$ and an isometry of $S^{3},(1.1)$ is the unique analytic expression of the embedding.

2. Local formulae

Identify S^{3} with the Lie group $\operatorname{SU}(2)$ with metric $d s^{2}$ of constant curvature c as follows

$$
S^{3} \ni(z, w) \longleftrightarrow\left(\begin{array}{cc}
z & -\bar{w} \\
w & \bar{z}
\end{array}\right) \in \mathrm{SU}(2),
$$

where the metric $d s^{2}$ is bi-invariant and is given by $d s^{2}=c^{-1} \sum_{j=1}^{3} \omega_{j}^{\prime} \otimes \omega_{j}^{\prime}$ with $\left\{\omega_{j}^{\prime} \mid j=1,2,3\right\}$ being determined by

$$
\left(\begin{array}{cc}
i \omega_{1}^{\prime} & -\omega_{2}^{\prime}+i \omega_{3}^{\prime} \tag{2.1}\\
\omega_{2}^{\prime}+i \omega_{3}^{\prime} & -i \omega_{1}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\bar{z} & \bar{w} \\
-w & z
\end{array}\right)\left(\begin{array}{cc}
d z & -d \bar{w} \\
d w & d \bar{z}
\end{array}\right), \quad(i=\sqrt{-1}) .
$$

Denote by $\mathfrak{s u}(2)$ the set of all left-invariant vector fields on $S^{\mathbf{3}}(=\mathrm{SU}(2))$. It is well known that $\mathfrak{s u}(2)$ is a real vector space of dimension 3 and the dual space $\mathfrak{s u}(2)^{*}$ consists of all left-invariant 1 -forms on S^{3}. The bi-invariant metric $d s^{2}$ defines an inner product on $\mathfrak{s u}(2)$ in a natural way, and induces the inner product on $\mathfrak{s u}(2)^{*}$ and $\mathfrak{s u}(2)^{*} \wedge \mathfrak{s u}(2)^{*}$ respectively.

Let $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ be an isometric immersion of CR type. That is to say, $\varphi\left(S^{3}\right)$ is a CR-submanifold of $\mathbb{C} P^{n}$. Denote by g, Ω and J the metric, the Kähler form and the complex structure of $\mathbb{C} P^{n}$ respectively. The tensor field $\varphi^{*} \Omega$ defines a bundle endomorphism $F: T M \rightarrow T M$ by

$$
\begin{equation*}
d s^{2}(F X, Y)=-\varphi^{*} \Omega(X, Y)=g\left(J \varphi_{*} X, \varphi_{*} Y\right), \quad \forall X, Y \in T_{p} S^{3}, p \in S^{3} \tag{2.2}
\end{equation*}
$$

Since $\varphi^{*} \Omega$ is skew symmetric and φ is of CR type, $F_{p}: T_{p} S^{3} \rightarrow T_{p} S^{3}$ has rank 2 for all $p \in S^{3}$. We then have a decomposition $T S^{3}=V_{1} \oplus V_{2}$ of F-invariant subbundle such that

$$
\begin{equation*}
V_{1}=\operatorname{ker} F, \quad\left(\left.F\right|_{V_{2}}\right)^{2}=-I \tag{2.3}
\end{equation*}
$$

Here $\left.F\right|_{V_{2}}$ determines an orientation of V_{2}. Thus V_{1} is orientable, and there is a unit section X_{1} of V_{1}. By definition $F X_{1}=0$. Take a local orthonormal frame $\left\{X_{2}, X_{3}\right\}$ of V_{2} defined on some open subset U such that

$$
\begin{equation*}
F X_{2}=X_{3}, \quad F X_{3}=-X_{2} \tag{2.4}
\end{equation*}
$$

Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be the dual frame of $\left\{X_{1}, X_{2}, X_{3}\right\}$. We then have

$$
\begin{equation*}
d s^{2}=\varphi^{*} g=\sum_{j=1}^{3} \omega_{j} \otimes \omega_{j}, \quad-\varphi^{*} \Omega=\omega_{2} \otimes \omega_{3}-\omega_{3} \otimes \omega_{2}=\omega_{2} \wedge \omega_{3} \tag{2.5}
\end{equation*}
$$

on U by (2.2)-(2.4).
Denote by \langle,$\rangle the canonical symmetric scalar product of \mathbb{C}^{n+1}$. Choose a local unitary frame $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ of the trivial bundle $\mathbb{C}^{n+1}=S^{3} \times \mathbb{C}^{n+1}$ such that $\varphi=\pi \circ e_{0}$ on U. Set

$$
\left\{\begin{array}{l}
d e_{0}=i \rho_{0} e_{0}+\sum_{A} \theta_{A} e_{A} \\
d e_{A}=-\bar{\theta}_{A} e_{0}+\sum_{B} \theta_{A B} e_{B}, \quad(A, B=1, \ldots, n),
\end{array}\right.
$$

where $i=\sqrt{-1}$ and $\rho_{0}=-i\left\langle d e_{0}, \bar{e}_{0}\right\rangle$ is a real 1 -form. From (2.5) we get (see, for example, [5])

$$
\left\{\begin{align*}
\varphi^{*} g & =\frac{1}{2} \sum_{A}\left(\theta_{A} \otimes \bar{\theta}_{A}+\bar{\theta}_{A} \otimes \theta_{A}\right)=\sum_{j=1}^{3} \omega_{j} \otimes \omega_{j} \tag{2.6}\\
-\varphi^{*} \Omega & =\frac{i}{2} \sum_{A} \theta_{A} \wedge \bar{\theta}_{A}=\omega_{2} \wedge \omega_{3}
\end{align*}\right.
$$

Set $\theta_{A}=\sum_{j=1}^{3} a_{A j} \omega_{j}$ and $e_{j}^{\prime}=\sum_{A=1}^{n} a_{A j} e_{A}$. By (2.6), we have

$$
\sum_{A} a_{A j} \bar{a}_{A k}=\delta_{j k}-i J_{j k},
$$

where $J_{j k}=d s^{2}\left(F X_{j}, X_{k}\right)=g\left(J \varphi_{*} X_{j}, \varphi_{*} X_{k}\right)$. It follows that

$$
\left\langle e_{1}^{\prime}, \bar{e}_{2}^{\prime}\right\rangle=\left\langle e_{1}^{\prime}, \bar{e}_{3}^{\prime}\right\rangle=0, \quad\left\langle e_{2}^{\prime}, \bar{e}_{3}^{\prime}\right\rangle=-i, \quad\left|e_{1}^{\prime}\right|^{2}=\left|e_{2}^{\prime}\right|^{2}=\left|e_{3}^{\prime}\right|^{2}=1
$$

and from $\left|e_{2}^{\prime}+i e_{3}^{\prime}\right|^{2}=0$, we obtain $e_{3}^{\prime}=i e_{2}^{\prime}$. We have proved

Lemma 2.1. Let $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ be an isometric immersion of CR type. Then $T S^{3}=V_{1} \oplus V_{2}$ where $V_{1}=\operatorname{ker} F, V_{2}$ is perpendicular to V_{1} and $\left(\left.F\right|_{V_{2}}\right)^{2}=-\mathrm{id}$. Furthermore, locally we have an orthonormal frame $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ of $T^{*} S^{3}$ with ω_{1} a section of V_{1}^{*}, and a unitary frame $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ of \mathbb{C}^{n+1} such that $\varphi=\pi \circ e_{0}$ satisfying de $e_{0}=i \rho_{0} e_{0}+\omega_{1} e_{1}+\omega e_{2}$, where $\omega=\omega_{2}+i \omega_{3}$.

Exterior differentiating (2.1) gives

$$
\begin{equation*}
d \omega_{1}^{\prime}=2 \omega_{2}^{\prime} \wedge \omega_{3}^{\prime}, \quad d \omega_{2}^{\prime}=2 \omega_{3}^{\prime} \wedge \omega_{1}^{\prime}, \quad d \omega_{3}^{\prime}=2 \omega_{1}^{\prime} \wedge \omega_{2}^{\prime} \tag{2.7}
\end{equation*}
$$

which implies that $d: \mathfrak{s u}(2)^{*} \rightarrow \mathfrak{s u}(2)^{*} \wedge \mathfrak{s u}(2)^{*}$ is an isomorphism between vector spaces.

A local section σ of $T^{*} S^{3}$ is said to be left-invariant if there are real numbers a_{1}, a_{2}, a_{3} such that $\sigma=a_{1} \omega_{1}^{\prime}+a_{2} \omega_{2}^{\prime}+a_{3} \omega_{3}^{\prime}$. Note that a left-invariant local 1-form σ can be extended uniquely as a left-invariant 1 -form $\tilde{\sigma} \in \mathfrak{s u}(2)^{*}$. We have the following

Lemma 2.2. Suppose $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ is a local orthonormal frame of $T^{*} S^{3}$ defined on an open subset U of S^{3}. If

$$
\begin{equation*}
d \omega_{1}=2 a \omega_{2} \wedge \omega_{3}, \quad d \omega_{2}=2 a \omega_{3} \wedge \omega_{1}, \quad d \omega_{3}=2 a \omega_{1} \wedge \omega_{2} \tag{2.8}
\end{equation*}
$$

for some constant a, then $a^{2}=c$ and ω_{j} is left-invariant for $j=1,2,3$.
PROOF. Let $\left\{\omega_{j k} \mid j, k=1,2,3\right\}$ be the connection forms satisfying

$$
\begin{equation*}
\nabla X_{j}=-\sum_{k} \omega_{j k} X_{k} \tag{2.9}
\end{equation*}
$$

where $\left\{X_{j}\right\}$ is the dual of $\left\{\omega_{j}\right\}$ and ∇ is the Levi-Civita connection. The structure equations for S^{3} are

$$
\left\{\begin{array}{l}
d \omega_{j}=-\sum_{k} \omega_{j k} \wedge \omega_{k}, \quad \omega_{j k}+\omega_{k j}=0 \tag{2.10}\\
d \omega_{j k}=-\sum_{l} \omega_{j l} \wedge \omega_{l k}+c \omega_{j} \wedge \omega_{k}
\end{array}\right.
$$

From (2.8) we know that $\omega_{12}=a \omega_{3}, \omega_{23}=a \omega_{1}, \omega_{31}=a \omega_{2}, c=a^{2}$.
Since $\left\{\tilde{\omega}_{j}=(1 / \sqrt{c}) \omega_{j}^{\prime} \mid j=1,2,3\right\}$ is a global orthonormal frame of $T^{*} S^{3}$, we set $\omega_{j}=\sum_{k} u_{j k} \tilde{\omega}_{k}$, where $u_{j k}(j, k=1,2,3)$ are defined on U and satisfy

$$
\begin{equation*}
\sum_{l} u_{l j} u_{l k}=\delta_{j k}=\sum_{l} u_{j l} u_{k l} \tag{2.11}
\end{equation*}
$$

Without loss of generality we set $a=\sqrt{c}$ and

$$
\omega_{1} \wedge \omega_{2} \wedge \omega_{3}=* 1=\tilde{\omega}_{1} \wedge \tilde{\omega}_{2} \wedge \tilde{\omega}_{3}
$$

where $* 1$ denotes the the volume element of S^{3}.
The Hodge's star operator induces a bundle homomorphism * : $T^{*} U \rightarrow\left(T^{*} U\right) \wedge$ ($T^{*} U$) by

$$
* \sigma \wedge \tau=\langle\sigma, \tau\rangle * 1, \quad \forall \sigma, \tau \in T_{p}^{*} U, p \in U
$$

It is clear that $*(f \sigma)=f * \sigma$ for all $\sigma \in C^{\infty}\left(T^{*} U\right)$ and $f \in C^{\infty}(U)$. From (2.8) we see that $d \omega_{j}=2 \sqrt{c} * \omega_{j}$ for $j=1,2,3$. On the other hand, $d \tilde{\omega}_{j}=2 \sqrt{c} * \tilde{\omega}_{j}$ ($j=1,2,3$) by (2.7). Thus

$$
\begin{align*}
\sum_{k} u_{j k} d \tilde{\omega}_{k} & =2 \sqrt{c} \sum_{k} u_{j k} * \tilde{\omega}_{k}=2 \sqrt{c} * \omega_{j} \tag{2.12}\\
& =d \omega_{j}=\sum_{k}\left(d u_{j k} \wedge \tilde{\omega}_{k}+u_{j k} d \tilde{\omega}_{k}\right) \quad(j=1,2,3)
\end{align*}
$$

If we set $d u_{j k}=\sum_{l} u_{j k, l} \tilde{\omega}_{l}$, then $u_{j k, l}=u_{j l, k}(j, k, l=1,2,3)$ by (2.12). From (2.11) we see that $\sum_{j} u_{j m} u_{j k, l}=0$ for $m, k, l=1,2,3$. Consequently $u_{j k}$ are constants for $j, k=1,2,3$.

Lemma 2.3. Suppose $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ is a local orthonormal frame of $T^{*} S^{3}$ defined on an open subset U of S^{3}. If $d \omega_{1}=2 a \omega_{2} \wedge \omega_{3}$ for some constant $a \neq 0$, then ω_{1} is left-invariant.

Proof. Let $\left\{X_{j}\right\}$ be the dual of $\left\{\omega_{j}\right\}$. Set

$$
\begin{equation*}
Z=\left(X_{2}-i X_{3}\right) / 2, \quad \omega=\omega_{2}+i \omega_{3}, \quad \sigma=\omega_{12}+i \omega_{13} \tag{2.13}
\end{equation*}
$$

where $\left\{\omega_{j k}\right\}$ are the connection forms determined by (2.9). Then (2.10) can be rewritten as

$$
\left\{\begin{align*}
d \omega_{1} & =-(\bar{\sigma} \wedge \omega+\sigma \wedge \bar{\omega}) / 2, & d \omega & =\sigma \wedge \omega_{1}+i \omega_{23} \wedge \omega \tag{2.14}\\
d \sigma & =i \omega_{23} \wedge \sigma+c \omega_{1} \wedge \omega, & d \omega_{23} & =i(\sigma \wedge \bar{\sigma}+c \omega \wedge \bar{\omega}) / 2
\end{align*}\right.
$$

By assumption we have $-(\bar{\sigma} \wedge \omega+\sigma \wedge \bar{\omega}) / 2=2 a \omega_{2} \wedge \omega_{3}=i a \omega \wedge \bar{\omega}$. This forces $\sigma\left(X_{1}\right)=0$. We set $\sigma=\lambda \omega+\mu \bar{\omega}$ with $\lambda-\bar{\lambda}=-2 i a$. Thus $\lambda=\lambda_{1}-i a$ for some real λ_{1}. Using (2.14) we get

$$
\begin{align*}
& {\left[d \lambda_{1}-\left(\lambda_{1}-i a\right)^{2} \omega_{1}-\left(|\mu|^{2}+c\right) \omega_{1}\right] \wedge \omega} \tag{2.15}\\
& \quad+\left[d \mu-2 \mu \lambda_{1} \omega_{1}-2 i \mu \omega_{23}\right] \wedge \bar{\omega}=0
\end{align*}
$$

which implies that $X_{1}\left(\lambda_{1}\right)-\left(\lambda_{1}-i a\right)^{2}-\left(|\mu|^{2}+c\right)=0$. Since X_{1} is real and $a \neq 0$, we get $\lambda_{1}=0$ and

$$
\begin{equation*}
|\mu|^{2}=a^{2}-c \tag{2.16}
\end{equation*}
$$

If $a^{2} \neq c$, we set $\mu=b e^{i t}$ with $b=\sqrt{a^{2}-c}$. From (2.15) we know that $d \mu=2 i \mu \omega_{23}+\nu \bar{\omega}$. This gives $i d t=2 i \omega_{23}+\mu^{-1} \nu \bar{\omega}$. Thus $\nu=0$ and $\omega_{23}=d t / 2$. Using (2.14) we get $|\mu|^{2}=|\lambda|^{2}+c=a^{2}+c$, contradicting (2.16).

Therefore, we have $a^{2}=c$ and $\mu=0$. Then $\sigma=-i a \omega$, that is, $\omega_{12}=a \omega_{3}$ and $\omega_{31}=a \omega_{2}$. Now we have $d \omega_{23}=i a^{2} \omega \wedge \bar{\omega}=2 a^{2} \omega_{2} \wedge \omega_{3}=a d \omega_{1}$ by (2.14). Locally we set $\omega_{23}=a \omega_{1}+d f$ for some $f \in C^{\infty}(U)$. Choose frame

$$
\left\{\tilde{X}_{1}=X_{1}, \tilde{X}_{2}=\cos f X_{2}+\sin f X_{3}, \tilde{X}_{3}=-\sin f X_{2}+\cos f X_{3}\right\}
$$

and let $\left\{\tilde{\omega}_{j}\right\}$ be the dual frame of $\left\{\tilde{X}_{j}\right\}$. Then $\tilde{\omega}_{1}=\omega_{1}, \tilde{\omega}_{2}=\cos f \omega_{2}+\sin f \omega_{3}$ and $\tilde{\omega}_{3}=-\sin f \omega_{2}+\cos f \omega_{3}$.

From (2.10) we have

$$
d \tilde{\omega}_{1}=2 a \tilde{\omega}_{2} \wedge \tilde{\omega}_{3}, \quad d \tilde{\omega}_{2}=2 a \tilde{\omega}_{3} \wedge \tilde{\omega}_{1}, \quad d \tilde{\omega}_{3}=2 a \tilde{\omega}_{1} \wedge \tilde{\omega}_{2}
$$

Thus $\omega_{1}=\tilde{\omega}_{1}$ is left-invariant by virtue of Lemma 2.2.

3. Proof of Theorem $\mathbf{1 . 3}$

Let $\varphi: S^{3} \rightarrow \mathbb{C} P^{n}$ be a minimal immersion of CR type with induced metric $d s^{2}=c^{-1} \sum_{j} \omega_{j}^{\prime} \otimes \omega_{j}^{\prime}$. It is sufficient to prove that $\varphi^{*} \Omega$ is left-invariant by virtue of Theorem 1.2.

Since $V_{1}=\operatorname{ker} F$ is orientable, we have a unit section ω_{1} of V_{1}^{*}. Using Lemma 2.1, for any $p \in S^{3}$ we have a local unitary frame $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ of \mathbb{C}^{n+1} and a local orthonormal frame $\left\{\omega_{2}, \omega_{3}\right\}$ of V_{2}^{*} defined on an open neighbourhood U of p such that

$$
\left\{\begin{array}{l}
d e_{0}=i \rho_{0} e_{0}+\omega_{1} e_{1}+\omega e_{2} \tag{3.1}\\
d e_{1}=-\omega_{1} e_{0}+i \rho_{1} e_{1}+\theta_{12} e_{2}+\sum_{A=3}^{n} \theta_{1 A} e_{A} \\
d e_{2}=-\bar{\omega} e_{0}-\bar{\theta}_{12} e_{1}+i \rho_{2} e_{2}+\sum_{A=3}^{n} \theta_{2 A} e_{A} \\
d e_{A}=-\bar{\theta}_{1 A} e_{1}-\bar{\theta}_{2 A} e_{2}+\sum_{B=3}^{n} \theta_{A B} e_{B} \quad(A=3, \ldots, n)
\end{array}\right.
$$

where $\omega=\omega_{2}+i \omega_{3}$ and $\theta_{A B}+\bar{\theta}_{B A}=0$ for $3 \leq A, B \leq n$.

The exterior differential of (3.1) gives

$$
\begin{equation*}
i d \rho_{0}=-\omega \wedge \bar{\omega}=-2 i \varphi^{*} \Omega \tag{3.2}
\end{equation*}
$$

by (2.6) and
(3.3) $d \omega_{1}=i\left(\rho_{0}-\rho_{1}\right) \wedge \omega_{1}+\bar{\theta}_{12} \wedge \omega, \quad d \omega=i\left(\rho_{0}-\rho_{2}\right) \wedge \omega-\theta_{12} \wedge \omega_{1}$,

$$
\begin{align*}
& \omega_{1} \wedge \theta_{1 A}+\omega \wedge \theta_{2 A}=0 \quad(A=3, \ldots, n) \tag{3.4}\\
& i d \rho_{1}=-\theta_{12} \wedge \bar{\theta}_{12}-\sum_{A=3}^{n} \theta_{1 A} \wedge \bar{\theta}_{1 A} \tag{3.5}\\
& i d \rho_{2}=\omega \wedge \bar{\omega}+\theta_{12} \wedge \bar{\theta}_{12}-\sum_{A=3}^{n} \theta_{2 A} \wedge \bar{\theta}_{2 A} \\
& d \theta_{12}=-\omega_{1} \wedge \omega+i\left(\rho_{1}-\rho_{2}\right) \wedge \theta_{12}-\sum_{A=3}^{n} \theta_{1 A} \wedge \bar{\theta}_{2 A} \tag{3.6}\\
& d \theta_{1 A}=i \rho_{1} \wedge \theta_{1 A}+\theta_{12} \wedge \theta_{2 A}+\sum_{B=3}^{n} \theta_{1 B} \wedge \theta_{B A}, \quad(A \geq 3) \tag{3.7}
\end{align*}
$$

Comparing (3.3) with (2.14) and noting that $\omega_{1}, \omega_{23}, \rho_{0}, \rho_{1}$ and ρ_{2} are all real-valued 1 -forms, we get

$$
\left\{\begin{array}{l}
i\left(\rho_{0}-\rho_{1}\right) \wedge \omega_{1}=\left(\theta_{12} \wedge \bar{\omega}-\bar{\theta}_{12} \wedge \omega\right) / 2 \tag{3.8}\\
\left(\sigma+\theta_{12}\right) \wedge \bar{\omega}+\left(\bar{\sigma}+\bar{\theta}_{12}\right) \wedge \omega=0 \\
i\left(\rho_{0}-\rho_{2}-\omega_{23}\right) \wedge \omega=\left(\sigma+\theta_{12}\right) \wedge \omega_{1}
\end{array}\right.
$$

The third equation in (3.8) gives $\left(\rho_{0}-\rho_{2}-\omega_{23}\right)(\bar{Z})=0$, where $\bar{Z}=\frac{1}{2}\left(X_{2}+i X_{3}\right)$. Thus $\rho_{0}-\rho_{2}-\omega_{23}=\lambda_{0} \omega_{1}$ for some real-valued function λ_{0} and therefore $\sigma+\theta_{12}=$ $-i \lambda_{0} \omega+\mu_{0} \omega_{1}$.

From (3.8) one gets $\lambda_{0}=\mu_{0}=0$. Therefore,

$$
\begin{equation*}
\sigma=-\theta_{12}, \quad \omega_{23}=\rho_{0}-\rho_{2} \quad \text { and } \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
i\left(\rho_{0}-\rho_{1}\right) \wedge \omega_{1}=(\bar{\sigma} \wedge \omega-\sigma \wedge \bar{\omega}) / 2 \tag{3.10}
\end{equation*}
$$

Since φ is minimal, we have [5]

$$
\begin{align*}
& \operatorname{tr}\left\{\nabla \omega_{1}-i \rho_{0} \otimes \omega_{1}+i \rho_{1} \otimes \omega_{1}-\bar{\theta}_{12} \otimes \omega\right\}=0 \tag{3.11}\\
& \operatorname{tr}\left\{\theta_{1 A} \otimes \omega_{1}+\theta_{2 A} \otimes \omega\right\}=0 \quad(A=3, \ldots, n) \tag{3.12}
\end{align*}
$$

According to (2.9), $\nabla \omega_{1}=-\omega_{12} \otimes \omega_{2}-\omega_{13} \otimes \omega_{3}=-(\bar{\sigma} \otimes \omega+\sigma \otimes \bar{\omega}) / 2$. Substituting it into (3.11) and using (3.9), we have

$$
\begin{equation*}
\operatorname{tr}\left\{-i\left(\rho_{0}-\rho_{1}\right) \otimes \omega_{1}+(\bar{\sigma} \otimes \omega-\sigma \otimes \bar{\omega}) / 2\right\}=0 \tag{3.13}
\end{equation*}
$$

If we set

$$
\begin{equation*}
i\left(\rho_{0}-\rho_{1}\right)=2 i \lambda \omega_{1}+\mu \omega-\bar{\mu} \bar{\omega} \tag{3.14}
\end{equation*}
$$

for some real-valued function λ defined on U, then

$$
\begin{equation*}
\sigma=-2 \bar{\mu} \omega_{1}-i \lambda \omega+\nu \bar{\omega} \tag{3.15}
\end{equation*}
$$

by (3.10) and (3.13). Similarly, we may set

$$
\begin{equation*}
\theta_{1 A}=\lambda_{A} \omega \quad \text { and } \quad \theta_{2 A}=\lambda_{A} \omega_{1}+\mu_{A} \omega \quad(A=3, \ldots, n) \tag{3.16}
\end{equation*}
$$

by (3.4) and (3.12).
Exterior differentiating (3.9) and using (2.14), (3.6), (3.9), (3.14) and (3.15) we get

$$
\begin{gather*}
\bar{\mu}^{2}=i \lambda \nu \tag{3.17}\\
\sum_{A=3}^{n} \lambda_{A} \bar{\mu}_{A}=\mu \nu-i \lambda \bar{\mu}, \tag{3.18}\\
\sum_{A=3}^{n}\left|\lambda_{A}\right|^{2}+2\left(\lambda^{2}+|\mu|^{2}\right)=1-c .
\end{gather*}
$$

Now we claim that (1) $\mu \equiv 0$ and (2) $\nu \equiv 0$ on U.
In fact, if $\mu \neq 0$ at a point $q \in U$, then $\bar{\mu}^{2}=i \lambda \nu \neq 0$ near q. Thus $\sum_{A} \lambda_{A} \bar{\mu}_{A}=$ $\nu\left(\lambda^{2}+|\mu|^{2}\right) / \bar{\mu} \neq 0$ by (3.18) and therefore $\sum_{A} \lambda_{A} e_{A} \neq 0$ locally. By taking new frame

$$
\left\{e_{0}, e_{1}, e_{2}, e_{3}^{\prime}=\frac{\sum_{A} \lambda_{A} e_{A}}{\left|\sum_{A} \lambda_{A} e_{A}\right|}, e_{4}^{\prime} \ldots, e_{n}^{\prime}\right\}
$$

we set $\lambda_{3} \neq 0$ and $\lambda_{4}=\cdots=\lambda_{n}=0$ in (3.16). From (3.7) we have

$$
\left[d \lambda_{3}+i \lambda_{3}\left(\omega_{23}-\rho_{1}+\rho_{3}\right)+\mu_{3} \sigma\right] \wedge \omega=-2 \lambda_{3} \sigma \wedge \omega_{1}=2 \lambda_{3}(i \lambda \omega-v \bar{\omega}) \wedge \omega_{1}
$$

by (3.15), where $\rho_{3}=-i \theta_{33}$. This gives $\nu=0$, a contradiction by (3.17). Thus $\mu \equiv 0$ on U.

It follows that if $v \neq 0$ at some point $p_{1} \in U$, then $\lambda=0$ near p_{1} by (3.17). Locally we have $\rho_{0}=\rho_{1}$ by (3.14) and $\sigma=\nu \bar{\omega}$ by (3.15), then

$$
-\omega \wedge \bar{\omega}=i d \rho_{0}=i d \rho_{1}=-\sigma \wedge \bar{\sigma}-\sum_{A=3}^{n} \theta_{1 A} \wedge \bar{\theta}_{1 A}=\left(|\nu|^{2}-\sum_{A=3}^{n}\left|\lambda_{A}\right|^{2}\right) \omega \wedge \bar{\omega}
$$

by (3.2), (3.5) and (3.9). This together with (3.19) leads to

$$
|\nu|^{2}=\sum_{A=3}^{n}\left|\lambda_{A}\right|^{2}-1=-c
$$

a contradiction. So we have $\nu \equiv 0$ on U.
Now $\sigma=-i \lambda \omega$ and therefore

$$
\lambda \omega_{23} \wedge \omega+c \omega_{1} \wedge \omega=d \sigma=-i d \lambda \wedge \omega+\lambda\left(\lambda \omega_{1} \wedge \omega+\omega_{23} \wedge \omega\right)
$$

by (2.14). It follows that $\left[i d \lambda+\left(c-\lambda^{2}\right) \omega_{1}\right] \wedge \omega=0$. Set $i d \lambda+\left(c-\lambda^{2}\right) \omega_{1}=\mu_{1} \omega$. We then get $\lambda^{2}=c$ since λ is real.

From (2.14) we see that $d \omega_{1}=i \lambda \omega \wedge \bar{\omega}=2 \lambda \omega_{2} \wedge \omega_{3}$, where $\lambda= \pm \sqrt{c} \neq 0$. Thus ω_{1} is left-invariant by virtue of Lemma 2.3. Since ω_{1} is a global section of V_{1}^{*}, we know $\omega_{1} \in \mathfrak{s u}(2)^{*}$. Then by (3.2) we finally obtain

$$
\varphi^{*} \Omega=-\frac{i}{2} \omega \wedge \bar{\omega}=-\frac{1}{2 \lambda} d \omega_{1} \in d\left(\mathfrak{s u}(2)^{*}\right)=\mathfrak{s u}(2)^{*} \wedge \mathfrak{s u}(2)^{*} .
$$

This completes the proof of Theorem 1.3.

References

[1] A. Bejancu, Geometry of CR-submanifolds (D. Reidel Publishing Company, Dordrecht, 1986).
[2] J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, 'On conformal minimal immersions of S^{2} into $C P^{n}$, Math. Ann. 279 (1988), 599-620.
[3] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, 'An exotic totally real minimal immersion of S^{3} in $C P^{3}$ and its characterization', Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 153-165.
[4] -_, 'Lagrangian isometric immersions of a real space form $M^{n}(c)$ into a complex space form $\tilde{M}^{n}(4 c)^{\prime}$, Math. Proc. Cambridge Philos. Soc. 124 (1998), 107-125.
[5] Z. Q. Li, 'Minimal S^{3} with constant curvature in $\mathbb{C} P^{n}$ ', J. London Math. Soc. (2) 68 (2003), 223-240.
[6] K. Ogiue, 'Differential geometry of Kaehler submanifolds', Adv. Math. 13 (1974), 73-114.

Department of Mathematics
Nanchang University
Nanchang 330047
P. R. of China

Current address:
Lab. of Math. for Nonlinear Sciences
Fudan University
Shanghai 200433
P. R. of China
e-mail: zhenqili@263.net

Department of Mathematics
Nanchang University
Nanchang 330047
P. R. of China
e-mail: anminhuang@163.com

