Bull. Aust. Math. Soc. **90** (2014), 1–8 doi:10.1017/S0004972713001147

COUNTING SYMMETRIC COLOURINGS OF THE VERTICES OF A REGULAR POLYGON

YEVHEN ZELENYUK[™] and YULIYA ZELENYUK

(Received 2 November 2013; accepted 5 November 2013; first published online 10 January 2014)

Abstract

A colouring of the vertices of a regular polygon is symmetric if it is invariant under some reflection of the polygon. We count the number of symmetric r-colourings of the vertices of a regular n-gon.

2010 *Mathematics subject classification*: primary 05A15, 05C15; secondary 05C25, 11A25. *Keywords and phrases*: symmetric colouring, regular polygon, finite Abelian group, Möbius function, multiplicative function.

1. Introduction

Let *G* be a finite Abelian group and let $r \in \mathbb{N}$. An *r*-colouring of *G* is any mapping $\chi : G \to \{0, 1, \ldots, r-1\}$. Let r^G denote the set of all *r*-colourings of *G*. The group *G* naturally acts on r^G by

$$(a+\chi)(x) = \chi(x-a).$$

Colourings χ and ψ are *equivalent* if there is $a \in G$ such that $\chi(x - a) = \psi(x)$ for all $x \in G$ (that is, if they belong to the same orbit).

A symmetry (proper symmetry) of G is a mapping

$$G \ni x \mapsto a - x \in G \ (G \ni x \mapsto 2a - x \in G),$$

where $a \in G$. A colouring $\chi \in r^G$ is symmetric (properly symmetric) if there is $a \in G$ such that

$$\chi(a-x) = \chi(x) \quad (\chi(2a-x) = \chi(x))$$

for all $x \in G$ (that is, if it is invariant under some symmetry (proper symmetry)).

Of special interest is the case $G = \mathbb{Z}_n$. Identifying \mathbb{Z}_n with the vertices of a regular *n*-gon, we obtain that the symmetries (proper symmetries) of \mathbb{Z}_n are the reflections of the polygon (reflections in an axis through one of the vertices). If *n* is odd,

Supported by NRF grants IFR2011033100072 and IFR1202220164, the John Knopfmacher Centre for Applicable Analysis and Number Theory, and the Friedel Sellschop Award.

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

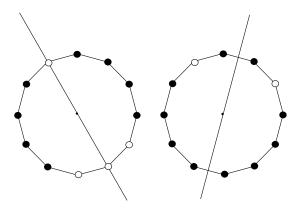


FIGURE 1. Two colourings of \mathbb{Z}_{12} .

the proper symmetries are the same as the symmetries, but if *n* is even, the proper symmetries form only half of the symmetries. A colouring of \mathbb{Z}_n is symmetric (properly symmetric) if it is invariant under some reflection of the polygon (reflection in an axis through one of the vertices). For example, in Figure 1 the first colouring is properly symmetric, and the second is symmetric but not properly symmetric. Two colourings of \mathbb{Z}_n are equivalent if one of them can be obtained from another by a rotation of the polygon.

In the case of \mathbb{Z}_n proper symmetries look incomplete in comparison with symmetries. However, proper symmetries can be defined on any group (by taking them to be the mappings $x \mapsto ax^{-1}a$), while symmetries cannot.

It is well known that there are

$$N_r(n) = \frac{1}{n} \sum_{d|n} \varphi(d) r^{n/d}$$

classes of equivalent *r*-colourings of \mathbb{Z}_n , where φ is the Euler function (see [2]). In [3] it was shown that there are

$$s_r(n) = \begin{cases} r^{(n+1)/2} & \text{if } n \text{ is odd,} \\ \frac{1}{2}(r^{n/2+1} + r^{(m+1)/2}) & \text{if } n \text{ is even} \end{cases}$$

classes of equivalent properly symmetric *r*-colourings of \mathbb{Z}_n , where *m* is the greatest odd divisor of *n*, and

$$S_{r}(n) = \begin{cases} \sum_{d|n} d \prod_{p|n/d} (1-p)r^{(d+1)/2} & \text{if } n \text{ is odd,} \\ \sum_{d|n/2} d \prod_{p|n/2d} (1-p)r^{d+1} & \text{if } n \text{ is even} \end{cases}$$

properly symmetric *r*-colourings of \mathbb{Z}_n , where *p* is a prime. Recently in [5], it was shown that there are

$$N_r^*(n) = \begin{cases} r^{(n+1)/2} & \text{if } n \text{ is odd,} \\ \frac{1}{2}(r^{n/2+1} + r^{n/2}) & \text{if } n \text{ is even} \end{cases}$$

classes of equivalent symmetric *r*-colourings of \mathbb{Z}_n .

In this note we count the number $C_r^*(n)$ of symmetric *r*-colourings of \mathbb{Z}_n . We prove the following result.

THEOREM 1.1. We have

$$C_r^*(n) = \begin{cases} \sum_{d|n} d \prod_{p|n/d} (1-p)r^{(d+1)/2} & \text{if } n \text{ is odd,} \\ \sum_{d|n/2} d \prod_{p|n/2d} (1-p)(r^{d+1}+r^d) & \\ -\sum_{d|m} d \prod_{p|m/d} (1-p)r^{(d+1)/2} & \text{if } n \text{ is even,} \end{cases}$$

where m is the greatest odd divisor of n.

As in [3], we first establish a general formula for counting the number $C_r^*(G)$ of symmetric *r*-colourings of *G* (Section 2), and then deduce from it Theorem 1.1 (Section 3).

2. General formula

For every $\chi \in r^G$, let $[\chi]$ and St (χ) denote the orbit and the stabiliser of χ , that is,

$$[\chi] = \{a + \chi : a \in G\}$$
 and $St(\chi) = \{a \in G : a + \chi = \chi\}.$

Then $|[\chi]| = |G : \text{St}(\chi)|$, and for every $\psi \in [\chi]$, $\text{St}(\psi) = \text{St}(\chi)$. Also let

$$Z(\chi) = \{a \in G : \chi(a - x) = \chi(x) \text{ for all } x \in G\}.$$

Thus, a colouring $\chi \in r^G$ is symmetric if and only if $Z(\chi) \neq \emptyset$.

LEMMA 2.1. If $a \in Z(\chi)$, then for every $b \in G$, $a + 2b \in Z(b + \chi)$.

PROOF. Indeed,

$$(b + \chi)(a + 2b - x) = \chi(a + 2b - x - b) = \chi(a + b - x)$$
$$= \chi(a - (x - b)) = \chi(x - b) = (b + \chi)(x).$$

This completes the proof.

COROLLARY 2.2. If χ is symmetric, so is every $\psi \in [\chi]$.

Notice that the 'proper' version of Lemma 2.1 was better. If

$$Z'(\chi) = \{a \in G : \chi(2a - x) = \chi(x) \text{ for all } x \in G\}$$

and $a \in Z'(\chi)$, then for every $b \in G$, $a + b \in Z'(b + \chi)$, and consequently, $\bigcup_{\psi \in [\chi]} Z'(\psi) = G$. This made counting properly symmetric colourings easier. Now we can conclude only that if $a \in Z(\chi)$, then $a + 2G \subseteq \bigcup_{\psi \in [\chi]} Z(\psi)$, where

$$2G = \{2x : x \in G\}.$$

LEMMA 2.3. If $a \in Z(\chi)$ and $Y = \text{St}(\chi)$, then $Z(\chi) = a + Y$.

PROOF. To see that $a + Y \subseteq Z(\chi)$, let $b \in Y$. Then

$$\chi(a+b-x) = \chi(a-(x-b)) = \chi(x-b) = (b+\chi)(x) = \chi(x),$$

so $a + b \in Z(\chi)$.

4

To see that $Z(\chi) \subseteq a + Y$, let $c \in Z(\chi)$. Then

$$(c-a)\chi(x) = \chi(x - (c-a)) = \chi(a - (c-x)) = \chi(c-x) = \chi(x).$$

Consequently, $c - a \in Y$, and so $c \in a + Y$.

Thus, $Z(\chi) = a + Y$.

From Lemmas 2.1 and 2.3 we obtain that the following corollary.

COROLLARY 2.4. If $a \in Z(\chi)$ and $Y = St(\chi)$, then for every $b \in G$, $Z(b + \chi) = a + 2b + Y$, and $\bigcup_{\psi \in [\chi]} Z(\psi) = a + 2G + Y$.

Define the subgroup B(G) of G by

$$B(G) = \{ x \in G : 2x = 0 \}.$$

LEMMA 2.5. If $a \in Z(\chi)$ and $Y = St(\chi)$, then $[\chi]$ decomposes into a disjoint union of subsets $\{\psi \in [\chi] : Z(\psi) = a + S\}$, where $S \in (2G + Y)/Y$, and each of the subsets consists of |B(G/Y)| colourings.

PROOF. The first statement is obvious. For the second, it suffices to check that

$$|\{\psi \in [\chi] : Z(\psi) = a + Y\}| = |B(G/Y)|.$$

Let $b \in G$. Then by Corollary 2.4, $Z(b + \chi) = a + 2b + Y$. Consequently,

$$Z(b + \chi) = a + Y \Leftrightarrow 2b \in Y \Leftrightarrow b + Y \in B(G/Y)$$

This completes the proof.

LEMMA 2.6. For every $a \in G$,

$$|\{\chi \in r^G : a \in Z(\chi)\}| = \begin{cases} r^{(|G|+|B(G)|)/2} & if \ a \in 2G, \\ r^{|G|/2} & otherwise. \end{cases}$$

PROOF. The number on the left is equal to the number of *r*-colourings of the family $\{\{x, a - x\} : x \in G\}$. Since x = a - x if and only if 2x = a, that number is

$$r^{|K_a|+(|G|-|K_a|)/2} = r^{(|G|+|K_a|)/2}$$

where $K_a = \{x \in G : 2x = a\}$. If $a \notin 2G$, then $K_a = \emptyset$. Let $a \in 2G$ and pick $x_0 \in K_a$. We claim that $K_a = x_0 + B(G)$.

To see that $x_0 + B(G) \subseteq K_a$, let $y \in B(G)$. Then $2(x_0 + y) = 2x_0 + 2y = a$, so $x_0 + y \in K_a$.

To see the converse inclusion, let $x \in K_a$. From $2x_0 = a$ and 2x = a, we obtain that $2(x - x_0) = 0$, whence $x - x_0 \in B(G)$, and so $x \in x_0 + B(G)$.

Let $\mu(Y, X)$ denote the *Möbius function* of the lattice of subgroups of A, that is,

$$\mu(Y, X) = \begin{cases} 1 & \text{if } Y = X, \\ -\sum_{Y \le Z < X} \mu(Y, Z) & \text{if } Y < X, \\ 0 & \text{otherwise.} \end{cases}$$

See [1, Ch. IV] for more information about the Möbius function and Möbius inversion.

For every subgroup $Y \le G$, let R(Y) be a set of representatives of cosets of *G* by 2G + Y. Also for every $a \in G$ and $Y \le G$, let

$$\delta_a(Y) = \begin{cases} 1 & \text{if } a \in 2G + Y, \\ 0 & \text{otherwise.} \end{cases}$$

The next theorem gives us a general formula for counting the number $C_r^*(G)$.

THEOREM 2.7. We have

$$C_{r}^{*}(G) = \sum_{X \le G} \sum_{Y \le X} \frac{|G/Y| \cdot \mu(Y, X)}{|B(G/Y)|} \sum_{a \in R(Y)} r^{(|G/X| + \delta_{a}(X) \cdot |B(G/X)|)/2}$$

PROOF. For every $a \in G$ and for every $Y \leq G$, let $C_a(Y)$ ($\overline{C}_a(G, Y)$) denote the number of all $\chi \in r^G$ such that $a \in Z(\chi)$ and $Y = \text{St}(\chi)$ ($Y \subseteq \text{St}(\chi)$). Notice that $\overline{C}_a(G, Y) = \sum_{Y \leq X \leq A} C_a(X)$ and $\overline{C}_a(G, Y) = \overline{C}_{a+Y}(G/Y, 0)$. Consequently, by Lemma 2.6,

$$\sum_{Y \le X \le G} C_a(X) = \begin{cases} r^{(|G/Y| + |B(G/Y)|)/2} & \text{if } a \in 2G + Y, \\ r^{|G/Y|/2} & \text{otherwise} \end{cases}$$

(since $a + Y \in 2(G/Y)$ if and only if $a \in 2G + Y$). Using the function $\delta_a(Y)$, we can rewrite this as

$$\sum_{Y \le X \le G} C_a(X) = r^{(|G/Y| + \delta_a(Y) \cdot |B(G/Y)|)/2}.$$

Then applying Möbius inversion gives us

$$C_a(Y) = \sum_{Y \leq X \leq G} \mu(Y, X) r^{(|G/X| + \delta_a(X) \cdot |B(G/X)|)/2}.$$

Now for every $Y \le G$, let C(Y) denote the number of all symmetric colourings χ with St (χ) = *Y*. From Lemma 2.5,

$$C(Y) = \sum_{a \in R(Y)} \frac{|G/Y| \cdot C_a(Y)}{|B(G/Y)|}.$$

Consequently,

$$C(Y) = \sum_{a \in R(Y)} \sum_{Y \le X \le G} \frac{|G/Y| \cdot \mu(Y, X)}{|B(G/Y)|} r^{(|G/X| + \delta_a(X) \cdot |B(G/X)|)/2}$$
$$= \sum_{Y \le X \le G} \frac{|G/Y| \cdot \mu(Y, X)}{|B(G/Y)|} \sum_{a \in R(Y)} r^{(|G/X| + \delta_a(X) \cdot |B(G/X)|)/2}.$$

Finally, since $C_r^*(G) = \sum_{Y \le G} C(Y)$,

$$C_{r}^{*}(G) = \sum_{Y \leq G} \sum_{Y \leq X \leq G} \frac{|G/Y| \cdot \mu(Y, X)}{|B(G/Y)|} \sum_{a \in R(Y)} r^{(|G/X| + \delta_{a}(X) \cdot |B(G/X)|)/2}$$
$$= \sum_{X \leq G} \sum_{Y \leq X} \frac{|G/Y| \cdot \mu(Y, X)}{|B(G/Y)|} \sum_{a \in R(Y)} r^{(|G/X| + \delta_{a}(X) \cdot |B(G/X)|)/2},$$

completing the proof.

3. Proof of Theorem 1.1

Recall that the classical Möbius function is defined by

 $\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n \text{ is a product of } k \text{ distinct primes,} \\ 0 & \text{otherwise,} \end{cases}$

and that it is in fact the Möbius function of the lattice of natural numbers with respect to the divisibility: if $d \mid n$, then $\mu(d, n) = \mu(n/d)$. Also recall that a function $f : \mathbb{N} \to \mathbb{C}$ is *multiplicative* if f(1) = 1 and f(mn) = f(m)f(n) whenever m, n are relatively prime. For example, the functions $\mu(n)$ and f(n) = n are multiplicative. The product of multiplicative functions is also a multiplicative function. If f is a multiplicative function, then for every $n \in \mathbb{N}$, one has

$$\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p))$$

https://doi.org/10.1017/S0004972713001147 Published online by Cambridge University Press

(see [4, Theorem II.3.b]). Here, p is a prime, and for n = 1, the right-hand side of the equality is defined to be 1.

Define the function $\delta(n)$ by

$$\delta(n) = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Both $\delta(n)$ and $1/(2 - \delta(n))$ are multiplicative functions [3, Lemma].

PROOF OF THEOREM 1.1. For every subgroup *Y* of \mathbb{Z}_n , define *R*(*Y*) by

$$R(Y) = \begin{cases} \{0, 1\} & \text{if } 2\mathbb{Z}_n + Y \neq \mathbb{Z}_n, \\ \{0\} & \text{otherwise.} \end{cases}$$

Let *d*, *k* denote the orders of subgroups *X*, *Y* of \mathbb{Z}_n . Then $\mu(Y, X) = \mu(d/k)$, $|B(G/Y)| = 2 - \delta(n/k)$,

$$R(Y) = \begin{cases} \{0, 1\} & \text{if } n/k \text{ is even,} \\ \{0\} & \text{otherwise,} \end{cases}$$

 $\delta_0(X) = 1$, $\delta_1(X) = \delta(n/d)$, and $\delta_1(X) \cdot |B(G/X)| = \delta(n/d)(2 - \delta(n/d)) = \delta(n/d)$. It follows from Theorem 2.7 that

$$\begin{split} C_r^*(n) &= \sum_{d|n} \sum_{k|d} \frac{\frac{n}{k} \mu(\frac{a}{k})}{2 - \delta(\frac{n}{k})} \Big(r^{((n/d) + 2 - \delta(n/d))/2} + \Big(1 - \delta\left(\frac{n}{k}\right) \Big) r^{((n/d) + \delta(n/d))/2} \Big) \\ &= \sum_{d|n} \sum_{k|n/d} \frac{\frac{n}{k} \mu(\frac{n}{kd})}{2 - \delta(\frac{n}{k})} \Big(r^{(d + 2 - \delta(d))/2} + \Big(1 - \delta\left(\frac{n}{k}\right) \Big) r^{(d + \delta(d))/2} \Big) \\ &= \sum_{d|n} d \sum_{k|n/d} \frac{k \mu(k)}{2 - \delta(dk)} (r^{(d + 2 - \delta(d))/2} + (1 - \delta(dk)) r^{(d + \delta(d))/2}). \end{split}$$

If *n* is odd, then $\delta(d) = \delta(dk) = 1$, and so

$$C_r^*(n) = \sum_{d|n} d \sum_{k|n/d} k\mu(k) r^{(d+1)/2} = \sum_{d|n} d \prod_{p|n/d} (1-p) r^{(d+1)/2}.$$

Now suppose that *n* is even. Write $C_r^*(n) = S_1 - S_2$, where

$$S_{1} = \sum_{d|n} d \sum_{k|n/d} \frac{k\mu(k)}{2 - \delta(dk)} (r^{(d+2-\delta(d))/2} + r^{(d+\delta(d))/2}),$$

$$S_{2} = \sum_{d|n} d \sum_{k|n/d} \frac{k\delta(dk)\mu(k)}{2 - \delta(dk)} r^{(d+\delta(d))/2}.$$

Consider S_1 . If *d* is odd, then

$$\sum_{k|n/d} \frac{k\mu(k)}{2 - \delta(dk)} = \sum_{k|n/d} \frac{k\mu(k)}{2 - \delta(k)} = \prod_{p|n/d} \left(1 - \frac{p}{2 - \delta(p)}\right) = 0,$$

since $f(k) = k/(2 - \delta(k))$ is a multiplicative function, n/d is even and f(2) = 1. Thus,

$$S_1 = \sum d \sum_{k|n/d} \frac{k\mu(k)}{2} (r^{d/2+1} + r^{d/2}),$$

where the first sum is taken over all even $d \mid n$. Hence,

$$S_1 = \sum_{d|n/2} d \sum_{k|n/2d} k\mu(k)(r^{d+1} + r^d) = \sum_{d|n/2} d \prod_{p|n/2d} (1-p)(r^{d+1} + r^d).$$

Consider S_2 . If *d* is odd, then

$$\sum_{k|n/d} \frac{k\delta(dk)\mu(k)}{2 - \delta(dk)} = \sum_{k|n/d} \frac{k\delta(k)\mu(k)}{2 - \delta(k)} = \prod_{p|n/d} \left(1 - \frac{p\delta(p)}{2 - \delta(p)}\right) = \prod_{p|m/d} (1 - p),$$

since $f(k) = k\delta(k)/(2 - \delta(k))$ is a multiplicative function, n/d is even and f(2) = 0. If *d* is even, then

$$\sum_{k|n/d} \frac{k\delta(dk)\mu(k)}{2 - \delta(dk)} = 0$$

Hence,

$$S_2 = \sum_{d|m} d \prod_{p|m/d} (1-p) r^{(d+1)/2}.$$

This completes the proof.

In this way one can also determine the number $N_r^*(n)$. However, in [5] it is done more simply.

References

- [1] M. Aigner, Combinatorial Theory (Springer, Berlin, 1979).
- [2] E. Bender and J. Goldman, 'On the applications of Möbius inversion in combinatorial analysis', *Amer. Math. Monthly* 82 (1975), 789–803.
- [3] Y. Gryshko, 'Symmetric colorings of regular polygons', Ars Combinatorica 78 (2006), 277–281.
- [4] I. Vinogradov, *Elements of Number Theory* (Dover Publications, Mineola, NY, 1954).
- [5] Y. Zelenyuk and Yu. Zelenyuk, 'Counting symmetric bracelets', *Bull. Aust. Math. Soc.*, to appear. Published online 22 August 2013.

YEVHEN ZELENYUK, School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa e-mail: yevhen.zelenyuk@wits.ac.za

YULIYA ZELENYUK, School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa e-mail: yuliya.zelenyuk@wits.ac.za