COUNTING SYMMETRIC COLOURINGS OF THE VERTICES OF A REGULAR POLYGON

YEVHEN ZELENYUK ${ }^{\boxtimes}$ and YULIYA ZELENYUK

(Received 2 November 2013; accepted 5 November 2013; first published online 10 January 2014)

Abstract

A colouring of the vertices of a regular polygon is symmetric if it is invariant under some reflection of the polygon. We count the number of symmetric r-colourings of the vertices of a regular n-gon.

2010 Mathematics subject classification: primary 05A15, 05C15; secondary 05C25, 11A25.
Keywords and phrases: symmetric colouring, regular polygon, finite Abelian group, Möbius function, multiplicative function.

1. Introduction

Let G be a finite Abelian group and let $r \in \mathbb{N}$. An r-colouring of G is any mapping $\chi: G \rightarrow\{0,1, \ldots, r-1\}$. Let r^{G} denote the set of all r-colourings of G. The group G naturally acts on r^{G} by

$$
(a+\chi)(x)=\chi(x-a)
$$

Colourings χ and ψ are equivalent if there is $a \in G$ such that $\chi(x-a)=\psi(x)$ for all $x \in G$ (that is, if they belong to the same orbit).

A symmetry (proper symmetry) of G is a mapping

$$
G \ni x \mapsto a-x \in G(G \ni x \mapsto 2 a-x \in G),
$$

where $a \in G$. A colouring $\chi \in r^{G}$ is symmetric (properly symmetric) if there is $a \in G$ such that

$$
\chi(a-x)=\chi(x) \quad(\chi(2 a-x)=\chi(x))
$$

for all $x \in G$ (that is, if it is invariant under some symmetry (proper symmetry)).
Of special interest is the case $G=\mathbb{Z}_{n}$. Identifying \mathbb{Z}_{n} with the vertices of a regular n-gon, we obtain that the symmetries (proper symmetries) of \mathbb{Z}_{n} are the reflections of the polygon (reflections in an axis through one of the vertices). If n is odd,

[^0]

Figure 1. Two colourings of \mathbb{Z}_{12}.
the proper symmetries are the same as the symmetries, but if n is even, the proper symmetries form only half of the symmetries. A colouring of \mathbb{Z}_{n} is symmetric (properly symmetric) if it is invariant under some reflection of the polygon (reflection in an axis through one of the vertices). For example, in Figure 1 the first colouring is properly symmetric, and the second is symmetric but not properly symmetric. Two colourings of \mathbb{Z}_{n} are equivalent if one of them can be obtained from another by a rotation of the polygon.

In the case of \mathbb{Z}_{n} proper symmetries look incomplete in comparison with symmetries. However, proper symmetries can be defined on any group (by taking them to be the mappings $x \mapsto a x^{-1} a$), while symmetries cannot.

It is well known that there are

$$
N_{r}(n)=\frac{1}{n} \sum_{d \mid n} \varphi(d) r^{n / d}
$$

classes of equivalent r-colourings of \mathbb{Z}_{n}, where φ is the Euler function (see [2]). In [3] it was shown that there are

$$
s_{r}(n)= \begin{cases}r^{(n+1) / 2} & \text { if } n \text { is odd } \\ \frac{1}{2}\left(r^{n / 2+1}+r^{(m+1) / 2}\right) & \text { if } n \text { is even }\end{cases}
$$

classes of equivalent properly symmetric r-colourings of \mathbb{Z}_{n}, where m is the greatest odd divisor of n, and

$$
S_{r}(n)= \begin{cases}\sum_{d \mid n} d \prod_{p \mid n / d}(1-p) r^{(d+1) / 2} & \text { if } n \text { is odd } \\ \sum_{d \mid n / 2} d \prod_{p \mid n / 2 d}(1-p) r^{d+1} & \text { if } n \text { is even }\end{cases}
$$

properly symmetric r-colourings of \mathbb{Z}_{n}, where p is a prime. Recently in [5], it was shown that there are

$$
N_{r}^{*}(n)= \begin{cases}r^{(n+1) / 2} & \text { if } n \text { is odd } \\ \frac{1}{2}\left(r^{n / 2+1}+r^{n / 2}\right) & \text { if } n \text { is even }\end{cases}
$$

classes of equivalent symmetric r-colourings of \mathbb{Z}_{n}.
In this note we count the number $C_{r}^{*}(n)$ of symmetric r-colourings of \mathbb{Z}_{n}. We prove the following result.

Theorem 1.1. We have

$$
C_{r}^{*}(n)= \begin{cases}\sum_{d \mid n} d \prod_{p \mid n / d}(1-p) r^{(d+1) / 2} & \text { if } n \text { is odd }, \\ \sum_{d \mid n / 2}^{d} \prod_{p \mid n / 2 d}(1-p)\left(r^{d+1}+r^{d}\right) & \\ -\sum_{d \mid m} d \prod_{p \mid m / d}(1-p) r^{(d+1) / 2} & \text { if } n \text { is even, }\end{cases}
$$

where m is the greatest odd divisor of n.
As in [3], we first establish a general formula for counting the number $C_{r}^{*}(G)$ of symmetric r-colourings of G (Section 2), and then deduce from it Theorem 1.1 (Section 3).

2. General formula

For every $\chi \in r^{G}$, let $[\chi]$ and $\operatorname{St}(\chi)$ denote the orbit and the stabiliser of χ, that is,

$$
[\chi]=\{a+\chi: a \in G\} \quad \text { and } \quad \operatorname{St}(\chi)=\{a \in G: a+\chi=\chi\} .
$$

Then $|[\chi]|=|G: \operatorname{St}(\chi)|$, and for every $\psi \in[\chi], \operatorname{St}(\psi)=\operatorname{St}(\chi)$. Also let

$$
Z(\chi)=\{a \in G: \chi(a-x)=\chi(x) \text { for all } x \in G\} .
$$

Thus, a colouring $\chi \in r^{G}$ is symmetric if and only if $Z(\chi) \neq \emptyset$.
Lemma 2.1. If $a \in Z(\chi)$, then for every $b \in G, a+2 b \in Z(b+\chi)$.
Proof. Indeed,

$$
\begin{aligned}
(b+\chi)(a+2 b-x) & =\chi(a+2 b-x-b)=\chi(a+b-x) \\
& =\chi(a-(x-b))=\chi(x-b)=(b+\chi)(x) .
\end{aligned}
$$

This completes the proof.
Corollary 2.2. If χ is symmetric, so is every $\psi \in[\chi]$.

Notice that the 'proper' version of Lemma 2.1 was better. If

$$
Z^{\prime}(\chi)=\{a \in G: \chi(2 a-x)=\chi(x) \text { for all } x \in G\}
$$

and $a \in Z^{\prime}(\chi)$, then for every $b \in G, \quad a+b \in Z^{\prime}(b+\chi)$, and consequently, $\cup_{\psi \in[\chi]} Z^{\prime}(\psi)=G$. This made counting properly symmetric colourings easier. Now we can conclude only that if $a \in Z(\chi)$, then $a+2 G \subseteq \bigcup_{\psi \in[\chi]} Z(\psi)$, where

$$
2 G=\{2 x: x \in G\} .
$$

Lemma 2.3. If $a \in Z(\chi)$ and $Y=\operatorname{St}(\chi)$, then $Z(\chi)=a+Y$.
Proof. To see that $a+Y \subseteq Z(\chi)$, let $b \in Y$. Then

$$
\chi(a+b-x)=\chi(a-(x-b))=\chi(x-b)=(b+\chi)(x)=\chi(x),
$$

so $a+b \in Z(\chi)$.
To see that $Z(\chi) \subseteq a+Y$, let $c \in Z(\chi)$. Then

$$
(c-a) \chi(x)=\chi(x-(c-a))=\chi(a-(c-x))=\chi(c-x)=\chi(x) .
$$

Consequently, $c-a \in Y$, and so $c \in a+Y$.
Thus, $Z(\chi)=a+Y$.
From Lemmas 2.1 and 2.3 we obtain that the following corollary.
Corollary 2.4. If $a \in Z(\chi)$ and $Y=\operatorname{St}(\chi)$, then for every $b \in G, Z(b+\chi)=a+2 b+Y$, and $\bigcup_{\psi \in[\chi]} Z(\psi)=a+2 G+Y$.

Define the subgroup $B(G)$ of G by

$$
B(G)=\{x \in G: 2 x=0\} .
$$

Lemma 2.5. If $a \in Z(\chi)$ and $Y=\operatorname{St}(\chi)$, then $[\chi]$ decomposes into a disjoint union of subsets $\{\psi \in[\chi]: Z(\psi)=a+S\}$, where $S \in(2 G+Y) / Y$, and each of the subsets consists of $|B(G / Y)|$ colourings.

Proof. The first statement is obvious. For the second, it suffices to check that

$$
|\{\psi \in[\chi]: Z(\psi)=a+Y\}|=|B(G / Y)| .
$$

Let $b \in G$. Then by Corollary 2.4, $Z(b+\chi)=a+2 b+Y$. Consequently,

$$
Z(b+\chi)=a+Y \Leftrightarrow 2 b \in Y \Leftrightarrow b+Y \in B(G / Y) .
$$

This completes the proof.
Lemma 2.6. For every $a \in G$,

$$
\left|\left\{\chi \in r^{G}: a \in Z(\chi)\right\}\right|= \begin{cases}r^{(|G|+|B(G)|) / 2} & \text { if } a \in 2 G \\ r^{|G| / 2} & \text { otherwise } .\end{cases}
$$

Proof. The number on the left is equal to the number of r-colourings of the family $\{\{x, a-x\}: x \in G\}$. Since $x=a-x$ if and only if $2 x=a$, that number is

$$
r^{\left|K_{a}\right|+\left(|G|-\left|K_{a}\right|\right) / 2}=r^{\left(|G|+\left|K_{a}\right|\right) / 2},
$$

where $K_{a}=\{x \in G: 2 x=a\}$. If $a \notin 2 G$, then $K_{a}=\emptyset$. Let $a \in 2 G$ and pick $x_{0} \in K_{a}$. We claim that $K_{a}=x_{0}+B(G)$.

To see that $x_{0}+B(G) \subseteq K_{a}$, let $y \in B(G)$. Then $2\left(x_{0}+y\right)=2 x_{0}+2 y=a$, so $x_{0}+$ $y \in K_{a}$.

To see the converse inclusion, let $x \in K_{a}$. From $2 x_{0}=a$ and $2 x=a$, we obtain that $2\left(x-x_{0}\right)=0$, whence $x-x_{0} \in B(G)$, and so $x \in x_{0}+B(G)$.

Let $\mu(Y, X)$ denote the Möbius function of the lattice of subgroups of A, that is,

$$
\mu(Y, X)= \begin{cases}1 & \text { if } Y=X \\ -\sum_{Y \leq Z<X} \mu(Y, Z) & \text { if } Y<X \\ 0 & \text { otherwise }\end{cases}
$$

See [1, Ch. IV] for more information about the Möbius function and Möbius inversion.
For every subgroup $Y \leq G$, let $R(Y)$ be a set of representatives of cosets of G by $2 G+Y$. Also for every $a \in G$ and $Y \leq G$, let

$$
\delta_{a}(Y)= \begin{cases}1 & \text { if } a \in 2 G+Y, \\ 0 & \text { otherwise }\end{cases}
$$

The next theorem gives us a general formula for counting the number $C_{r}^{*}(G)$.
Theorem 2.7. We have

$$
C_{r}^{*}(G)=\sum_{X \leq G} \sum_{Y \leq X} \frac{|G / Y| \cdot \mu(Y, X)}{|B(G / Y)|} \sum_{a \in R(Y)} r^{\left(|G / X|+\delta_{a}(X) \cdot \mid B(G / X \mid) / 2\right.}
$$

Proof. For every $a \in G$ and for every $Y \leq G$, let $C_{a}(Y)\left(\bar{C}_{a}(G, Y)\right)$ denote the number of all $\chi \in r^{G}$ such that $a \in Z(\chi)$ and $Y=\operatorname{St}(\chi)(Y \subseteq \operatorname{St}(\chi))$. Notice that $\bar{C}_{a}(G, Y)=$ $\sum_{Y \leq X \leq A} C_{a}(X)$ and $\bar{C}_{a}(G, Y)=\bar{C}_{a+Y}(G / Y, 0)$. Consequently, by Lemma 2.6,

$$
\sum_{Y \leq X \leq G} C_{a}(X)= \begin{cases}r^{(|G / Y|+|B(G / Y)|) / 2} & \text { if } a \in 2 G+Y, \\ r^{|G / Y| / 2} & \text { otherwise }\end{cases}
$$

(since $a+Y \in 2(G / Y)$ if and only if $a \in 2 G+Y)$. Using the function $\delta_{a}(Y)$, we can rewrite this as

$$
\sum_{Y \leq X \leq G} C_{a}(X)=r^{\left(|G / Y|+\delta_{a}(Y) \cdot|B(G / Y)|\right) / 2}
$$

Then applying Möbius inversion gives us

$$
C_{a}(Y)=\sum_{Y \leq X \leq G} \mu(Y, X) r^{\left(|G / X|+\delta_{a}(X) \cdot|B(G / X)|\right) / 2}
$$

Now for every $Y \leq G$, let $C(Y)$ denote the number of all symmetric colourings χ with $\operatorname{St}(\chi)=Y$. From Lemma 2.5,

$$
C(Y)=\sum_{a \in R(Y)} \frac{|G / Y| \cdot C_{a}(Y)}{|B(G / Y)|}
$$

Consequently,

$$
\begin{aligned}
C(Y) & =\sum_{a \in R(Y)} \sum_{Y \leq X \leq G} \frac{|G / Y| \cdot \mu(Y, X)}{|B(G / Y)|} r^{\left(|G / X|+\delta_{a}(X) \cdot|B(G / X)|\right) / 2} \\
& =\sum_{Y \leq X \leq G} \frac{|G / Y| \cdot \mu(Y, X)}{|B(G / Y)|} \sum_{a \in R(Y)} r^{\left(|G / X|+\delta_{a}(X) \cdot|B(G / X)|\right) / 2}
\end{aligned}
$$

Finally, since $C_{r}^{*}(G)=\sum_{Y \leq G} C(Y)$,

$$
\begin{aligned}
C_{r}^{*}(G) & =\sum_{Y \leq G} \sum_{Y \leq X \leq G} \frac{|G / Y| \cdot \mu(Y, X)}{|B(G / Y)|} \sum_{a \in R(Y)} r^{\left(|G / X|+\delta_{a}(X) \cdot|B(G / X)|\right) / 2} \\
& =\sum_{X \leq G} \sum_{Y \leq X} \frac{|G / Y| \cdot \mu(Y, X)}{|B(G / Y)|} \sum_{a \in R(Y)} r^{\left(|G / X|+\delta_{a}(X) \cdot|B(G / X)|\right) / 2}
\end{aligned}
$$

completing the proof.

3. Proof of Theorem 1.1

Recall that the classical Möbius function is defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k} & \text { if } n \text { is a product of } k \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

and that it is in fact the Möbius function of the lattice of natural numbers with respect to the divisibility: if $d \mid n$, then $\mu(d, n)=\mu(n / d)$. Also recall that a function $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if $f(1)=1$ and $f(m n)=f(m) f(n)$ whenever m, n are relatively prime. For example, the functions $\mu(n)$ and $f(n)=n$ are multiplicative. The product of multiplicative functions is also a multiplicative function. If f is a multiplicative function, then for every $n \in \mathbb{N}$, one has

$$
\sum_{d \mid n} \mu(d) f(d)=\prod_{p \mid n}(1-f(p))
$$

(see [4, Theorem II.3.b]). Here, p is a prime, and for $n=1$, the right-hand side of the equality is defined to be 1 .

Define the function $\delta(n)$ by

$$
\delta(n)= \begin{cases}1 & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}
$$

Both $\delta(n)$ and $1 /(2-\delta(n))$ are multiplicative functions [3, Lemma].
Proof of Theorem 1.1. For every subgroup Y of \mathbb{Z}_{n}, define $R(Y)$ by

$$
R(Y)= \begin{cases}\{0,1\} & \text { if } 2 \mathbb{Z}_{n}+Y \neq \mathbb{Z}_{n} \\ \{0\} & \text { otherwise }\end{cases}
$$

Let d, k denote the orders of subgroups X, Y of \mathbb{Z}_{n}. Then $\mu(Y, X)=\mu(d / k),|B(G / Y)|=$ $2-\delta(n / k)$,

$$
R(Y)= \begin{cases}\{0,1\} & \text { if } n / k \text { is even } \\ \{0\} & \text { otherwise }\end{cases}
$$

$\delta_{0}(X)=1, \quad \delta_{1}(X)=\delta(n / d)$, and $\delta_{1}(X) \cdot|B(G / X)|=\delta(n / d)(2-\delta(n / d))=\delta(n / d) . \quad$ It follows from Theorem 2.7 that

$$
\begin{aligned}
C_{r}^{*}(n) & =\sum_{d \mid n} \sum_{k \mid d} \frac{\frac{n}{k} \mu\left(\frac{d}{k}\right)}{2-\delta\left(\frac{n}{k}\right)}\left(r^{((n / d)+2-\delta(n / d)) / 2}+\left(1-\delta\left(\frac{n}{k}\right)\right) r^{((n / d)+\delta(n / d)) / 2}\right) \\
& =\sum_{d \mid n} \sum_{k \mid n / d} \frac{\frac{n}{k} \mu\left(\frac{n}{k d}\right)}{2-\delta\left(\frac{n}{k}\right)}\left(r^{(d+2-\delta(d)) / 2}+\left(1-\delta\left(\frac{n}{k}\right)\right) r^{(d+\delta(d)) / 2}\right) \\
& =\sum_{d \mid n} d \sum_{k \mid n / d} \frac{k \mu(k)}{2-\delta(d k)}\left(r^{(d+2-\delta(d)) / 2}+(1-\delta(d k)) r^{(d+\delta(d)) / 2}\right) .
\end{aligned}
$$

If n is odd, then $\delta(d)=\delta(d k)=1$, and so

$$
C_{r}^{*}(n)=\sum_{d \mid n} d \sum_{k \mid n / d} k \mu(k) r^{(d+1) / 2}=\sum_{d \mid n} d \prod_{p \mid n / d}(1-p) r^{(d+1) / 2}
$$

Now suppose that n is even. Write $C_{r}^{*}(n)=S_{1}-S_{2}$, where

$$
\begin{aligned}
& S_{1}=\sum_{d \mid n} d \sum_{k \mid n / d} \frac{k \mu(k)}{2-\delta(d k)}\left(r^{(d+2-\delta(d)) / 2}+r^{(d+\delta(d)) / 2}\right) \\
& S_{2}=\sum_{d \mid n} d \sum_{k \mid n / d} \frac{k \delta(d k) \mu(k)}{2-\delta(d k)} r^{(d+\delta(d)) / 2}
\end{aligned}
$$

Consider S_{1}. If d is odd, then

$$
\sum_{k \mid n / d} \frac{k \mu(k)}{2-\delta(d k)}=\sum_{k \mid n / d} \frac{k \mu(k)}{2-\delta(k)}=\prod_{p \mid n / d}\left(1-\frac{p}{2-\delta(p)}\right)=0
$$

since $f(k)=k /(2-\delta(k))$ is a multiplicative function, n / d is even and $f(2)=1$. Thus,

$$
S_{1}=\sum d \sum_{k \mid n / d} \frac{k \mu(k)}{2}\left(r^{d / 2+1}+r^{d / 2}\right)
$$

where the first sum is taken over all even $d \mid n$. Hence,

$$
S_{1}=\sum_{d \mid n / 2} d \sum_{k \mid n / 2 d} k \mu(k)\left(r^{d+1}+r^{d}\right)=\sum_{d \mid n / 2} d \prod_{p \mid n / 2 d}(1-p)\left(r^{d+1}+r^{d}\right) .
$$

Consider S_{2}. If d is odd, then

$$
\sum_{k \mid n / d} \frac{k \delta(d k) \mu(k)}{2-\delta(d k)}=\sum_{k \mid n / d} \frac{k \delta(k) \mu(k)}{2-\delta(k)}=\prod_{p \mid n / d}\left(1-\frac{p \delta(p)}{2-\delta(p)}\right)=\prod_{p \mid m / d}(1-p)
$$

since $f(k)=k \delta(k) /(2-\delta(k))$ is a multiplicative function, n / d is even and $f(2)=0$. If d is even, then

$$
\sum_{k \mid n / d} \frac{k \delta(d k) \mu(k)}{2-\delta(d k)}=0
$$

Hence,

$$
S_{2}=\sum_{d \mid m} d \prod_{p \mid m / d}(1-p) r^{(d+1) / 2}
$$

This completes the proof.
In this way one can also determine the number $N_{r}^{*}(n)$. However, in [5] it is done more simply.

References

[1] M. Aigner, Combinatorial Theory (Springer, Berlin, 1979).
[2] E. Bender and J. Goldman, 'On the applications of Möbius inversion in combinatorial analysis', Amer. Math. Monthly 82 (1975), 789-803.
[3] Y. Gryshko, 'Symmetric colorings of regular polygons', Ars Combinatorica 78 (2006), 277-281.
[4] I. Vinogradov, Elements of Number Theory (Dover Publications, Mineola, NY, 1954).
[5] Y. Zelenyuk and Yu. Zelenyuk, 'Counting symmetric bracelets', Bull. Aust. Math. Soc., to appear. Published online 22 August 2013.

YEVHEN ZELENYUK, School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
e-mail: yevhen.zelenyuk@wits.ac.za
YULIYA ZELENYUK, School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
e-mail: yuliya.zelenyuk@wits.ac.za

[^0]: Supported by NRF grants IFR2011033100072 and IFR1202220164, the John Knopfmacher Centre for Applicable Analysis and Number Theory, and the Friedel Sellschop Award.
 (c) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

