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A NOTE ON GRAPHS WITH A
PRESCRIBED ADJACENCY PROPERTY

W. ANANCHUEN AND L. CACCETTA

Let m and n be nonnegative integers and it be a positive integer. A graph G
is said to have property P(m, n, k) if for any set of m + n distinct vertices of
G there are at least k other vertices, each of which is adjacent to the first m
vertices of the set but not adjacent to any of the latter n vertices. The problem
that arises is that of characterising graphs having property P(m, n, k). This
problem has been considered by several authors and a number of results have been
obtained. In this paper, we establish a lower bound on the order of a graph having
property P(m, n, A:). Further, we show that all sufficiently large Paley graphs
satisfy properties P(l, n, k) and P{n, 1, Jb).

1. INTRODUCTION

For our purposes graphs are finite, loopless and have no multiple edges. For the
most part our notation and terminology follows that of Bondy and Murty [7]. Thus G
is a graph with vertex set V(G), edge set E(G), v(G) vertices, e(G) edges, minimum
degree 6{G) and maximum degree A(G). However, we denote the complement of G
by G.

In the application of graph theory to problems arising in network design and anal-
ysis, the requirements of the network (such as efficiency and reliability) can often be
translated into adjacency restrictions on the graph representing the network. Here we
consider graphs having a prescribed adjacency property.

More specifically, a graph G is said to have property P(m, n, k) if for any set of
m + n distinct vertices there are at least k other vertices, each of which is adjacent to
the first m vertices but not adjacent to any of the latter n vertices. The class of graphs
having property P(m, n, k) is denoted by G{m, n, k). Observe that if G 6 G(m, n, Jb),
then G E G(n, m, k). The cycle Cv of length v is a member of Q{\, 1, 1) for every
i / ^ 5 . The well-known Petersen graph is a member of Q(l, 2, 1) and also of <7(1, 1,2).
Despite these relatively simple examples, few members of G(m, n, k) have been found.
Recently [3] we constructed several classes of graphs in £(1, n, k).
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6 W. Ananchuen and L. Caccetta [2]

The problem that arises is that of characterising the class Q(m, n, k). Two par-
ticularly interesting problems that arise concern the functions

p(m, n, Jfe) = min{i/(G) : G G Q{m, n, k)}

and

q(l, (m, n, k)) = min{e(G): v(G) = £ and G G Q{m, n, k)}.

The only result concerning the latter function is due to Erdos and Moser [8] who
determined q(£, (m, 0, 1)). Exoo [9], established bounds on p(n, n, 1). Blass and
Harary [5] established, using probabilistic methods, that almost all graphs have property
P{n, n, 1). From this it is not too difficult to show that almost all graphs have property
P[rn, n, Jfe).. Despite this result, few graphs have been constructed which exhibit the
property P(m, n, k).

Properties of graphs in G{m, n, k) were given in [1, 2, 9]. In particular, in [2] we
proved that

{ 34, for jfe = 1,

8ife + 25, for odd k ^ 3,

8Jfe + 21, otherwise.

In Section 2, we prove thatp(n, n, k) > 4 - 1 [2(» + *) + \ (3 + (-[ \ (3 + ( l ) ) + | ] \.

This generalises a result of Exoo [9].

An important graph in the study of the class £7(m, n, k) is the so-called Paley

graph Gq denned as follows. Let q = 1 (mod 4) be a prime power. The vertices of Gq

are the elements of the finite field (Galois field) Wq. Two vertices a and b are joined
by an edge if and only if their difference is a quadratic residue, that is a — b = y2 for
some y E ¥q .

For a prime p = 1 (mod 4), Blass, Exoo and Harary [4] showed that Gp G
G(n, n, 1) for p > n 2 2 4 n . In [2] we improved this result by showing that for a
prime power q = 1 (mod 4), Gq G £(n, n, ife) for every q > {(2n - 3)22n~1 + 2}^/q +
(n + 2k - l ) 2 2 n ~ 1 - 2n2 - 1. Further, we proved that Gq € G{m, n, Jfe) for every
q > {(t - 3)2*-J + 2}y/q + (t + 2k- 1)2*-1 - 1, where t> m + n; and Gq G G(l, 2, k)

for every q > (1 + 2\/2k j . Computational results were also presented to establish the

smallest Paley graphs in £7(2, 2, Jfe) for small k.

In Section 3, we prove that Gq G G{h n, Jfe)n£(n, 1, Jfe) for every q > {(n - 2)2n +
2}y/q + (n + 2k— l ) 2 n — 2n — 1. Computational results show that this result is best
possible for n = 1 (all k) and for n — 2 (most k), and close to best possible for n = 3.
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2. LOWER BOUND ON p(m, n, Jfe)

We begin with some notation and terminology. For disjoint subsets A and
B of V(G) we denote by N(A/B) the set of vertices of G not in A U B which
are adjacent to each vertex of A and not adjacent to any vertex of B. When
A = {oi, a2, . . . , om} and B = {&i, 62, •••, &n} we write for convenience N(A/B)

as iV(ai, 02, . . . , Om/&i, &2> • • • j &n)- Where appropriate, lower case letters will denote
the cardinality of the set defined by the corresponding upper case letters. Thus for
example, n(a/b) = |JV(a/6)|. Finally, for X C V(G) we let G[X] denote the subgraph
of G induced by X,

An r-regular graph of order u is called strongly regular with parameters (i/, r, A, (i)
if G has the property that any two adjacent vertices have exactly A common neighbours
and any two non-adjacent vertices have exactly /x common neighbours.

We make use of the following results:

LEMMA 2 . 1 . (Exoo [9]). If G e £7(1, 1, Jfe), then u(G) ^ 4Jfe + 1, with equal-
ity holding if and only if there exists a strongly regular graph with parameters
(4Jfe + 1, 2k, Jfe - 1, Jfe).

LEMMA 2 . 2 . (Ananchuen and Caccetta [l]). For 1 < j ^ n, G(m,n, k) C

G{rn,n-j, k+j).

The following is a useful lemma in our work.

LEMMA 2 . 3 . Let G G G(n, n, Jfe) and {tii, u2, . . . , wn_i, «i, vi, ..., i>n-i} be a
set of In — 2 vertices of G. Then the subgraph

H - G[N(ui,U2, . . . , U n _ i / « i , V2, . . . , Vn-l)]

has S(H) ^ n + Jfe.

PROOF: Suppose to the contrary that d}j(x) = d ^n + k — 1. Let j / i , j/2, • •., yd
be the neighbours of x in H. First we prove that d ^ n . Suppose d < n. Since
G £ Q(n, n,k), there exists to G iV(i/i, t/2, . . . , j /d/ui, u2, • • •, «n - i ) and a y G
JV(ui, u2, . . . , u n _ i , a;/«i, t»2, . . . , u n - i , w)- Thus y G V(H) and, since j / is adjacent
to x, j / = jfc for some i. Hence, y is adjacent to w, a contradiction. Therefore d ^ n
as required. Now consider a vertex z G JV(yi, y2, . . . , yn/ui> «2, • • • > «n-i> * ) ! such
a z exists since G € £/(n, n, Jfe). Clearly n(ui , u2, .. •, Un-ii */"i) f2» • • • > vn-i, 2) ^
jfc — 1, a contradiction. This proves that 6(H) ^ n + Jfe. Q

We are now ready to prove the main result in this section.

T H E O R E M 2 . 1 .

(2.1) p(«, n, k) > 4""1 [2(n + fc) + i
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PROOF: Let G e G(n, n,k). For 1 ̂  i ^ n define

Ii = {A : AC V(G) and \A\ = i}.

Clearly for disjoint sets A and B in I<, N(A/B) ^ 0. Thus the subgraph H =

G[N(A/B)] has vertices; in fact u(H) ^ ife. For 1 < t ^ n, let

AJ = min{n(A/B) : A D B = 0, A, B £ !<}.

Suppose that fej = n(A*/B*) and let

Observe that G G ̂ (1, 1, ftj). We show that ff?eg(l,l, fcj+1) for each 1 ^ t ^

n-2.

Consider the graph J ? = G[N(A*/B*)]. Then for any o, 6 G F ( J f ) , the number

n*(a/b) of vertices of JJ,* joined to a but not joined to b satisfies

n*(a/b) = n(A* U {a}/B* U {6})

Thus, as a and 6 are arbitrary, £Tt* £ Q(l, 1, AJ+i) • Now, by Lemma 2.1,

Consequently, since G € S(l, 1, h.*), we have

(2.2)

; + 1) + 1

4(4(4fcJ + 1) + 1) + 1

We next prove that

(2.3) h*n_x Z 2(T

By Lemma 2.3, ^(.ff*^) ^ n + k. Further, since G £ Q{n,n, k) we also have

^ n+ k. Consequently, fc*., ^ 2(n + Jfc) + 1, proving (2.3) when n + k
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is even. When n + k is odd, then at least one of H^_x or Hn_1 contains a vertex of
degree at least n + k + l and thus (2.3) also holds. Now (2.2) and (2.3) together yield
(2.1). This completes the proof of the theorem. U

COROLLARY. Let t - min{m, n} and *' = Jfe + |m - n | . Then

p(m, n, k) > 4'-1 [2(< + k') + i{3 + (-l)t+fc'+1} +

PROOF: Since G £ G(jn, n, k) implies that G G G{n, rn, k), we have p(m, n, k) =
p(n, m, k). Hence

p(n, m, k) = p(t, t+\m-n\,k)

^ p(t, t, k') (by Lemma 2.2)

as required. D

REMARK. A consequence of the proof of Theorem 2.1 is that £/(n, n, k) C Q (n — 1,
n - 1, fc*_j). For the particular case n = 2, k - 1, we have £(2, 2, 1) C 0(1, 1, 8).
Thus, by Lemma 2.1, p(2, 2, 1) ̂  33 with equality possible only if there exists a strongly
regular graph with parameters (33, 16, 7, 8). It is well-known that such a graph does
not exist. Hence, p(2, 2, 1) ̂  34. To date, the smallest graph in G(2, 2, 1) constructed
is the Paley graph on 61 vertices.

3. PALEY GRAPHS

The Paley graph Gq of order q = 1 (mod 4), q a prime power, was defined in the
introduction. Observe that Gq is self-complementary. Further, see [6], it is strongly
regular with parameters (4t + 1, 2t,t — l,t) when q = At + 1. In [2] we proved that
Gq 6 G(m, n, k) for all q > {(t - 3)2t~1 + 2}^/q + (t + 2k - 1)2<~1 - 1, where t is an
integer satisfying t ^ m + n. In this section we prove a sharper result for the case when
one of m or n is 1.

We make use of the following basic notation and terminology. Let Fg be a finite
field of order q, where q is a prime power.

A character x o n f j , the multiplicative group of the non-zero elements of F, , is
a map from F^ to the multiplicative group of complex numbers with Ixfa)! = 1 for all
x and with

= x(x)x{y)

for any x, y £ F! . Since X(l) = x(l)x(l), we have x(l) = 1.
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Among the characters of FJ we have the principal character Xo defined by Xo(*) =
1 for all x € F£ ; all other characters of F£ are called non-principal.

It will be convenient to extend the definition of non-principal character x to the

whole F , by putting x(0) = 0.

If X is a non-principal character on ¥q, it is well-known (see [10]) that

(3.1)

It follows that, for a G F,

(3.2) £ X(* - a) = 0.

The following lemma, due to Schmidt [11], is very useful in our work.

LEMMA 3 . 1 . Let x t>e 3 non-principal character on Fg . If a j , a2, . . . , a, are

distinct elements of Fq , then

~ai)(x-a2)...{x- a,)} (s - l)y/q.

Let q be a power of an odd prime. We define a quadratic (residue) character r\ on

F» by
r,(a) = a<-"-1^2, for all a e F, .

Equivalently, 77 is 1 on squares, 0 at 0, and - 1 otherwise. Therefore, T) is a non-

principal character.

The following lemma was proved in [2],

LEMMA 3 . 2 . If ai, 0,2, ..., a, are distinct elements of Wq and s is even, then

V{{x - ax)(x - a2) ... Or - a.)} = -1 ± £ »K(* + M(* + 62) . . .(* + 6.-1)}
16F,

/or some distinct elements bi, b2, ..., b,-\ of F, .

Using (3.2) and Lemma 3.1 we have the following corollaries to Lemma 3.2.

C O R O L L A R Y 1 . For a,be¥q with a^b
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COROLLARY 2 . Let a i , a2, .. •, a, be distinct elements of Wq . Then for even a

- oj)... (z - a,)}

In addition to the above, we need the following lemma.

LEMMA 3 . 3 . Let a e V(Gq) and B = {bi,b2i ..., bn} a subset of n vertices of

G-a. Put

- a
t = l

As usual, an empty product is defined to be 1. Then

9>q~{(n- 2)2n + 2>V? - {2n - 2n - 1}.

PROOF: We can write

36F, i€F, «=1

»=1 ;=»+! t = l

t = l

Observe that the first term of the expression is equal to q and from (3.2) the second
term is 0. Using Corollary 1 of Lemma 3.2 the third term of the above expansion is
equal to n - (J) = (3n - n2)/2. Hence,

-§<•

xEF,

3 n -

n - 2

E
t = i

n2)

n - l

£

n—1 n

Z-/ /—( Z->
16F, i=l j=i+

n n+1

E E «̂a
A=i+l/=Jfe+l

n+1

i fc=i+i

(3.3)

n+1n
t=i

DIN-*)
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where {a, c2, . . . , cn+1} = B I) {a}.
Now Lemma 3.1 and Corollary 2 of Lemma 3.2 together imply that

(3.4)
( j i8 - !)\/9i ^ 8 is °dd,

is even.

Making
(3.5)

9-

use of (3.4)

q - - (3ra -

we get

n2)

from

n + l

«=s
*odd

(3.3)

/n + 1\
( )^""
V a /

n+1
1)v/9+ 5Z

>=4
• even

Hence

= {(n - 2)2" + 2} V? + 2" - - (n2 + n) - 1.

9 > q + \ (3n - n2) - {(n - 2)a" + 2}^ - {2n-\ (n2 + n) - 1}

= g - {(n - 2)2" + 2)^9 - {2n - 2n - 1},

as required. Q

Before stating and proving our main result of this section we make the following
observation. If a and 6 are any vertices of Gq, q = 1 (mod 4) a prime power, then

{ 1, if a adjacent to b,

0, if a = b,

—1, otherwise.

Further, r)(—a) = rj(a) for any a £ F, .

THEOREM 3 . 1 . Let 9 = 1 (mod 4) be a prime power and k be a positive integer.
If

(3.6) g > {(n - 2)2" + 2}^9 + (n + 2Jb - 1)2" - 2n - 1,
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[9] Graphs with a prescribed adjacency property 13

<*en Gq 6 0(1, n, Jb) n G{n, 1, k).

PROOF: Since Gq is a self-complementary graph, it is sufficient to prove that
Gq € £7(1, n, k). Let a be any vertex of Gq and B = {6i, 62, . . . , bn} a set of n
vertices of Gq so that a (fc B. Then n(o/6i, 62, • • . , bn) ^ A; if and only if

To show that / ^ Jb2n+1, it is clearly sufficient to establish that f > (k - l ) 2 n + 1 . Let

9 =

From Lemma 3.3 we have

9 > q - {(» - 2)2n + 2)^9 - {2n - 2n - 1}.

Now consider

(3.7) g-f=
at€{o}uB

li g — f ^ 0, then for some 1/ the product

(3.8) {1+»?(!/-«)} f t * 1 -
t = i

If j/ = o, then for (3.8) to hold we must have 77(0 — 6<) = —1 for all t. Hence, the term
in (3.7) with x = b{ contributes zero to the sum. Therefore, g — f = 2 n , since each
factor is 2 and one factor is 1. If y = bj for some j , then for (3.8) to hold we must
have t)(bj — a) — 1. Hence, the term in (3.7) with x = a contributes zero to the sum
and the term with x = bj contributes 2 n . Thus we conclude that g — / ^ n2 n . So

/ > 9 ~ n2n

> q - {(n - 2)2n + 2 } ^ - {2n - 2n - 1} - n2n

= « - { ( » - 2)2" + 2}v^ - {(n + l)2n - 2n - 1}.

Now if inequality (3.6) holds, then f > (k — l ) 2 n + 1 as required. Since a and B are
arbitrary, this completes the proof. u

We have the following three corollaries to Theorem 3.1.
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COROLLARY 1 . Let g = 1 (mod 4) be a prime power and k a positive integer.

Then Gq G £(1, 1, Jfe) for every q > 4Jfe +1.

PROOF: Inequality (3.6) shows that q satisfies q > 4k — 3. Since q = 1 (mod 4),
q^4k + l. D

COROLLARY 2 . Let q = l (mod 4) be a prime power and k be a positive integer.

U q > (l + 2\/2lfe) , then Gq G G(l, 2, k) n G(2, 1, Jfe).

COROLLARY 3 . Let q = 1 (mod 4) be a prime number and k be a positive

integer. H q > (5 + v/ loT+34)2 , tien G, G 0(1, 3, Jfe) n Q{3, 1, Jfe).

REMARK 1. From Lemma 2.1 and Corollary 1 it follows that Theorem 3.1 is best
possible for n — 1.

REMARK 2. We have verified, by computer, that if q = 1 (mod 4) is a prime power

less than or equal to 1009 and k is a positive integer with q < ll + 2v2fcJ , then

Gq £ 0(1,2, k). We conjecture that this is true for all q. We can choose o, b\ and 62

in the proof of Theorem 3.1 so that g — f = 8 and hence, by (3.5)

f = g-S^q+ 2y/^ + 1 - 8 .

Consequently, / < 8Jfe for q < (-1 + 2y/2(k + 1)J . So the problem is to look at
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