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1. A tournament T with n nodes is a complete asymmetric 
n 

digraph [2] . A set S of arcs of a tournament is called consistent if 
the tournament contains no oriented cycles composed entirely of a rcs 
of S [1] . The object of this note is to provide a new lower bound for 
f(n), the greatest integer k such that every tournament with n nodes 
contains a set of k consistent a rcs . Erdos and Moon [ l] showed that 
[ T ] [~~5~ -I = "^n^ = ( / \ ?l ' w ^ e r e [x] denotes the largest integer 

not exceeding x, and the second inequality holds for any fixed e > 0 
and all sufficiently large n . 

Consistent a rcs are of interest , for example, in consistency of 
paired comparison experiments [3] , The problem of finding largest 
sets of consistent arcs in a tournament is an extension of the problem 
of finding largest transitive subtournamsnts [4] . 

2. A T M is regular if the outdegree of each node is m . 
2m+l —fi 5 

A T^ is almost regular if m of the nodes have outdegree m - 1 and 
2m 

m of the nodes have outdegree m . 
LEMMA, 1. If T is neither regular nor almost regular and 

a consistent set of ; 

|S| > f (n- l ) + [f] + 1 

n 
S is a consistent set of arcs in T such that Isl is a maximum, then 

n — , i 

, n . 

Proof. Since T is neither regular nor almost regular, T has 
n n 

a node v with outdegree not less than [ —] + 1 or a node w with indegree 

not less than [ — ] + 1 . The T obtained from T by deleting 
L 2 J n-1 n y B 

v (or w) and its adjacent arcs contains a consistent set of at least 
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f ( n - l ) a r c s , which with the [~] + 1 a r c s in T d i r e c t e d away f rom 
2 n 

v (or d i r ec t ed t owards w) f o r m s a c o n s i s t e n t se t of at l eas t 

f ( n - l ) + [ - ] + 1 a r c s in T . Thus , if S is as s ta ted , 
2 n 

I S f > f ( n - l ) + [ | ] + 1 . 

LEMMA 2. E v e r y a l m o s t r e g u l a r T conta ins two nodes u 
L a 2 m 

and v such that the o u t d e g r e e of u _is_ m - 1 , the o u t d e g r e e of v _is_ 
m , and T conta ins an a r c f r o m u to v . 

2m — 

Proof . F o r m = 1 , the r e s u l t is c l e a r . If t h e r e w e r e m a r c s 
d i r ec t ed f rom the m nodes of ou tdeg ree . m to the m nodes of o u t d e g r e e 
m - 1 , then t h e r e could be no a r c joining any two nodes of o u t d e g r e e m 
for then one of t he se nodes would have o u t d e g r e e g r e a t e r than m . This 
is i m p o s s i b l e when m > 2 . Thus , such a u and v a r e gua ran t eed in 
eve ry a l m o s t r e g u l a r T_ 

2m 

LEMMA 3 . Jf S is a c o n s i s t e n t s e t of a r c s in an a l m o s t r e g u l a r 
T (m > 2) such that S is a m a x i m u m , then | s | > f (2m-2) + 2 m . 

2m = = 

Proof . Let u and v be as in L e m m a 2 . Let A be the m 
a r c s d i r ec t ed away f rom v, and let B be the m a r c s d i r e c t e d 
t owards u . Then A O B = 0 s ince u is d i r e c t e d t o w a r d s v . The 
T ^ obtained f rom T by dele t ing nodes u and v and a l l 

2 m - 2 2m & 

the i r adjacent a r c s con ta ins a c o n s i s t e n t se t of at l ea s t f (2m-2) a r c s , 
which with A LJ B f o r m s a c o n s i s t e n t s e t of at l e a s t f (2m-2) + 2m a r c s 
in T . Thus , if S is as s ta ted , \ s\ > f (2m-2) + 2 m . 

2m = 

THEOREM 1. f(n) > [ ^ ] [ ^ y ^ ] - 1 for a l l i n t e g e r s n > 2 . 

Proof . It is e a sy to s e e that equal i ty holds for 2 < n < 4 . 
k k+3 *~ 

Let n > 5 and a s s u m e f(k) > ["r]["~r~] - 1 for a l l k such that 
4 < k < n-1 . Let S be a c o n s i s t e n t se t of a r c s in T such that Is l 

= = n ' ' 

is a m a x i m u m . If T is ne i t he r r e g u l a r nor a l m o s t r e g u l a r , then 

by L e m m a 1 and the induct ion hypo thes i s , | s | > f (n - l ) + [— ] + 1 > 

r-f-ir-f]-1 + [ f ] + i = [ f ] ( [ a § i ] + i> + [ ^ J M f H ^ + t 2 ? ] - i 
r n + l 1 r n + 2 T J r n 1 r n + 3 n ,„ „, , 
[~7"][ ~T"] " 1 > i~J[ ~T~] - 1 . If T is r e g u l a r ( i . e . n = 2m + 1 

s o m e m > 2) and v is a node of T , then the T , obtained f r o m 
= n n -1 

T by dele t ing v and its adjacent a r c s conta ins a c o n s i s t e n t se t of at 

l eas t f ( n - l ) = f(2m) a r c s , which with the m a r c s in T d i r e c t e d 
n 

2 6 2 
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away f rom v f o r m s a cons i s t en t set of at l eas t f(2m) + m a r c s in 

T . Thus, if T is r e g u l a r | s | > f(2m) + m > m (m +2) - 1 = [ ^ ] [ ^ ] - 1 
n n = = 2 2 

by the induct ion hypo thes i s . If T is a l m o s t r e g u l a r ( i . e . n = 2m for 

s o m e m > 3) , then by L e m m a 3 and the induct ion hypo thes i s , 

[ S | > f ( 2 m - 2) + 2m > m ( m + l ) - 1 = [^][^] -1 . Thus, 

f(n) > [ T " ] [ "~T" ] - 1 • By induction, the r e s u l t fol lows. 

3 . F o r 2 < n < 7 , f(n) = [—" ] [ ~z~ ] - 1 as can be seen by 

cons ide r ing " e x t r e m a l " t o u r n a m e n t s where the lower bound in T h e o r e m 1 
is a s s u m e d for each such n . This is done in [5], but the a r g u m e n t s a r e 
v e r y s p e c i a l for each c a s e so that only the r e s u l t s a r e given h e r e . To 
show f(2) = 1, f(3) = 2, and f(4) = 5 s imply cons ider the one T , the 

s t rong T , and the s t rong T . To show f(5) = 7 , cons ide r the 

r e g u l a r T . To show f(6) = 11 , cons ide r the unique T containing 
5 6 

no t r a n s i t i v e T as a sub tou rnamen t [4] . To show f(7) = 1 4 , cons ide r 

the unique T containing no t r a n s i t i v e T as a sub tou rnamen t [4] . 

While T h e o r e m 1 y ie lds f(8) > 19 , the exact value of f(8) is 
20 [5] . To show f(8) > 20 , the following r e s u l t given in [5] is of he lp : 
any T without a cons i s t en t se t of 20 a r c s is a l m o s t r e g u l a r , conta ins 

o 
no r e g u l a r T as a sub tournamen t , but for every pa i r of nodes x and 

y with o u t d e g r e e s 4, the T. obtained f rom T by delet ing x and y 
6 8 

and a l l the i r adjoining a r c s is a l m o s t r e g u l a r . But, on the o ther hand, 
among the four nodes of ou tdegree 4 of such a T t h e r e is a t r a n s i t i v e 

o 
T , so that dele t ing f rom T the t r a n s m i t t e r and c a r r i e r [2] of this 

3 o 
T r e s u l t s in a T which is not a l m o s t r e g u l a r . Thus, f(8) < 19 , 

3 6 = 
is i m p o s s i b l e so that f(8) > 20 . To show f(8) < 20 , cons ide r the 
T obtained f rom the unique T containing no t r a n s i t i v e T by 

adding a new node x and seven new a r c s adjacent to x such that the 
nodes joined by a r c s d i r ec ted towards x fo rm a s t rong T . 

While f(9) > 23 by T h e o r e m 1, the exact value of f(9) is 24 . 
That f(9) > 24 follows eas i ly f rom f(8) = 2 0 ; to show f(9) < 2 4 , a 
c e r t a i n r e g u l a r T (the compos i t ion or l ex icographic produce of the 

two s t rong T ' s) has no cons i s t en t se t of 25 a r c s . 

Since f(8) = 20, we can use L e m m a s 1 and 3 to p roceed as in 
T h e o r e m 1 to obtain 
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THEOREM 2. f(n) > [ ^ ] [ ^ ] for i n t e g e r s n > 8 . 
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