K. B. Reid

(received July 23, 1968)

1. A tournament T_{n} with n nodes is a complete asymmetric digraph [2]. A set S of arcs of a tournament is called consistent if the tournament contains no oriented cycles composed entirely of arcs of S [1]. The object of this note is to provide a new lower bound for $f(n)$, the greatest integer k such that every tournament with n nodes contains a set of k consistent arcs. Erdös and Moon [1] showed that $\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right] \leqq f(n) \leqq\left(\frac{1+\epsilon}{\epsilon}\right)\binom{n}{2}$, where $[x]$ denotes the largest integer not exceeding x, and the second inequality holds for any fixed $\epsilon>0$ and all sufficiently large n.

Consistent arcs are of interest, for example, in consistency of paired comparison experiments [3]. The problem of finding largest sets of consistent arcs in a tournament is an extension of the problem of finding largest transitive subtournaments [4].
2. A $\mathrm{T}_{2 \mathrm{~m}+1}$ is regular if the outdegree of each node is m . A $T_{2 m}$ is almost regular if m of the nodes have outdegree $m-1$ and m of the nodes have outdegree m.

LEMMA 1. If T_{n} is neither regular nor almost regular and S is a consistent set of arcs in T_{n} such that $|S|$ is a maximum, then $|S| \geq f(n-1)+\left[\frac{n}{2}\right]+1$.

Proof. Since T_{n} is neither regular nor almost regular, T_{n} has a node v with outdegree not less than $\left[\frac{n}{2}\right]+1$ or a node w with indegree not less than $\left[\frac{n}{2}\right]+1$. The T_{n-1} obtained from T_{n} by deleting v (or w) and its adjacent arcs contains a consistent set of at least

[^0]Canad. Math. Bull. vol. 12, no. 3, 1969
$f(n-1)$ arcs, which with the $\left[\frac{n}{2}\right]+1$ arcsin T_{n} directed away from v (or directed towards w) forms a consistent set of at least $f(n-1)+\left[\frac{n}{2}\right]+1 \operatorname{arcs}$ in T_{n}. Thus, if S is as stated, $|S| \geqq f(n-1)+\left[\frac{n}{2}\right]+1$.

LEMMA 2. Every almost regular $T_{2 m}$ contains two nodes u and v such that the outdegree of u is $m-1$, the outdegree of v is m , and $\mathrm{T}_{2 \mathrm{~m}}$ contains an arc from u to v.

Proof. For $m=1$, the result is clear. If there were m^{2} arcs directed from the m nodes of outdegree. m to the m nodes of outdegree $\mathrm{m}-1$, then there could be no arc joining any two nodes of outdegree m for then one of these nodes would have outdegree greater than m. This is impossible when $m \geq 2$. Thus, such $a \quad u$ and v are guaranteed in every almost regular $\mathrm{T}_{2 \mathrm{~m}}$.

LEMMA 3. If S is a consistent set of arcs in an almost regular $\mathrm{T}_{2 \mathrm{~m}}(\mathrm{~m} \geqq 2)$ such that $|\mathrm{S}|$ is a maximum, then $|\mathrm{S}| \geqq \mathrm{f}(2 \mathrm{~m}-2)+2 \mathrm{~m}$.

Proof. Let u and v be as in Lemma 2. Let A be the m arcs directed away from v, and let B be the m arcs directed towards u. Then $A \cap B=\phi$ since u is directed towards v. The $\mathrm{T}_{2 \mathrm{~m}-2}$ obtained from $\mathrm{T}_{2 \mathrm{~m}}$ by deleting nodes u and v and all
their adjacent arcs contains a consistent set of at least $f(2 m-2)$ arcs, which with $A \cup B$ forms a consistent set of at least $f(2 m-2)+2 m$ arcs in $T_{2 m}$. Thus, if S is as stated, $|S| \geqq f(2 m-2)+2 m$.

THEOREM 1. $f(n) \geqq\left[\frac{n}{2}\right]\left[\frac{n+3}{2}\right]-1$ for all integers $n \geqq 2$.

Proof. It is easy to see that equality holds for $2 \leqq n \leqq 4$. Let $n \geqq 5$ and assume $f(k) \geqq\left[\frac{k}{2}\right]\left[\frac{k+3}{2}\right]-1$ for all k such that $4 \leqq k \leqq n-1$. Let S be a consistent set of arcs in T_{n} such that $|S|$ is a maximum. If T_{n} is neither regular nor almost regular, then by Lemma 1 and the induction hypothesis, $|S| \geqq f(n-1)+\left[\frac{n}{2}\right]+1 \geqq$ $\left[\frac{n-1}{2}\right]\left[\frac{n+2}{2}\right]-1+\left[\frac{n}{2}\right]+1=\left[\frac{n}{2}\right]\left(\left[\frac{n-1}{2}\right]+1\right)+\left[\frac{n-1}{2}\right]=\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]+\left[\frac{n+1}{2}\right]-1=$ $\left[\frac{n+1}{2}\right]\left[\frac{n+2}{2}\right]-1 \geqq\left[\frac{n}{2}\right]\left[\frac{n+3}{2}\right]-1$. If T_{n} is regular (i.e. $n=2 m+1$ some $m \geqq 2$) and v is a node of T_{n}, then the T_{n-1} obtained from T_{n} by deleting v and its adjacent arcs contains a consistent set of at least $f(n-1)=f(2 m)$ arcs, which with the m arcs in T_{n} directed
away from v forms a consistent set of at least $f(2 m)+m$ arcs in T_{n}. Thus, if T_{n} is regular $|S| \geqq f(2 m)+m \geqq m(m+2)-1=\left[\frac{n}{2}\right]\left[\frac{n+3}{2}\right]-1$, by the induction hypothesis. If T_{n} is almost regular (i.e. $\mathrm{n}=2 \mathrm{~m}$ for some $m \geqq 3$), then by Lemma 3 and the induction hypothesis, $|S| \geqq f(2 m-2)+2 m \geqq m(m+1)-1=\left[\frac{n}{2}\right]\left[\frac{n+3}{2}\right]-1$. Thus, $f(n) \geqq\left[\frac{n}{2}\right]\left[\frac{n+3}{2}\right]-1$. By induction, the result follows.
3. For $2 \leqq n \leqq 7, f(n)=\left[\frac{n}{2}\right]\left[\frac{n+3}{2}\right]-1$ as can be seen by considering "extremal" tournaments where the lower bound in Theorem 1 is assumed for each such n. This is done in [5], but the arguments are very special for each case so that only the results are given here. To show $f(2)=1, f(3)=2$, and $f(4)=5$ simply consider the one T_{2}, the strong T_{3}, and the strong T_{4}. To show $f(5)=7$, consider the regular T_{5}. To show $f(6)=11$, consider the unique T_{6} containing no transitive T_{4} as a subtournament [4]. To show $f(7)=14$, consider the unique T_{7} containing no transitive T_{4} as a subtournament [4].

While Theorem 1 yields $f(8) \geq 19$, the exact value of $f(8)$ is 20 [5]. To show $f(8) \geq 20$, the fol $\overline{\bar{I}}$ owing result given in [5] is of help: any T_{8} without a consistent set of 20 arcs is almost regular, contains no regular T_{7} as a subtournament, but for every pair of nodes x and y with outdegrees 4 , the T_{6} obtained from T_{8} by deleting x and y and all their adjoining arcs is almost regular. But, on the other hand, among the four nodes of outdegree 4 of such a T_{8} there is a transitive T_{3}, so that deleting from T_{8} the transmitter and carrier [2] of this T_{3} results in a T_{6} which is not almost regular. Thus, $\mathrm{f}(8) \leqq 19$, is impossible so that $f(8) \geqq 20$. To show $f(8) \leqq 20$, consider the T_{8} obtained from the unique T_{7} containing no transitive T_{4} by adding a new node x and seven new arcs adjacent to x such that the nodes joined by arcs directed towards x form a strong T_{3}.

While $f(9) \geq 23$ by Theorem 1, the exact value of $f(9)$ is 24 . That $f(9) \geqq 24$ follows easily from $f(8)=20$; to show $f(9) \leqq 24$, a certain regular T_{9} (the composition or lexicographic product of the two strong $\mathrm{T}_{3}{ }^{\prime} \mathrm{s}$) has no consistent set of 25 arcs.

Since $f(8)=20$, we can use Lemmas 1 and 3 to proceed as in Theorem 1 to obtain

THEOREM 2. $\mathrm{f}(\mathrm{n}) \geqq\left[\frac{\mathrm{n}}{2}\right]\left[\frac{\mathrm{n}+3}{2}\right]$ for integers $\mathrm{n} \geqq 8$.

Acknowledgement. The author would like to thank
Professor E.T. Parker of the University of Illinois for his advice in the preparation of this paper.

REFERENCES

1. P. Erdós and J. W. Moon, On sets of consistent arcs in a tournament. Can. Math. Bull. 8 (1965) 269-271.
2. F. Harary, R.Z. Norman and D. Cartwright, Structural models: An introduction to the theory of directed graphs. (New York, John Wiley and Sons, 1965).
3. M. G. Kendall and B.B. Smith, On the method of paired comparisons. Biometrika 31 (1939) 324-345.
4. K.B. Reid and E.T. Parker, Disproof of a conjecture of Erdös and Moser on tournaments. J. Combinatorial Theory (to appear).
5. K.B. Reid, Structure in finite graphs. Ph.D. Thesis, University of Illinois, 1968.

University of Illinois, Urbana

Louisiana State University, Baton Rouge

[^0]: *Partial support for this paper was received by Office of Naval
 Research Contract N00014-67A 03050008.

