
10 

Operator-product expansion 

In this chapter we will investigate two closely related problems. We work 
with ¢ 4 theory in d = 4 dimensions and consider a time-ordered product of 
two fields, T</J(x)¢(0), together with its Fourier transform 

T{fi(q)¢(0) = Jd4 xeiq-xT¢(x)¢(0). 

(It is easiest to work with time-ordered products. The methods work with 
any pair of operators T A(x) B(O) in any theory.) 

The first problem is to ask how T¢(x)¢(0) behaves as x~' --.0. If the theory 
were totally finite then the result would just be ¢ 2 (0). However, there are 
ultra-violet divergences that prevent the product from existing, so the limit 
does not exist. It was the idea of Wilson (1969) that </J(x)¢(0) should behave 
like a singular function of x times the renormalized [ ¢ 2 J operator, as x--. 0. 
The full result is that we have an expansion of the form 

T</J(x)¢(0)"' I C(l)(x~')[lD(O)] ( 1 0.0.1) 
(I) 

as x--. 0. Here the sum is over a set of local renormalized composite fields 
[lD] and the C(l)(x)'s are c-number functions. This formula, or one of its 
generalizations, is called an operator product expansion (OPE), and the 
coefficients C(l) are often called Wilson coefficients. Corrections to (10.0.1) 
are smaller by a power of x 2 than the terms given. 

The second problem we wish to treat is the behavior of T{fi(q)¢(0) as 
lq 2 1-+ oo. More precisely we will consider the momentum-space Green's 
function 

(10.0.2) 

when q~'--. oo along a fixed direction with p 1 , ... , PN fixed. In other words we 
scale the invariants q2--. K2q2, P;·q--. Kp;·q. There is an operator product 
expansion 

GN+2"' I C(l)(q)(OI TlD(O){fi(pl) ... {fi(pN)IO>. (10.0.3) 
(I) 

The relation between the coordinate-space and momentum-space expan-
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258 Operator-product expansion 

sions is elementary. Let us take the Fourier transform from x to q of a 
momentum-space Green's function of T</J(x)¢(0). Then the large-q be
havior is dominated by the singularities in x-space. The only relevant 
singularity is at x = 0. So Cl!!(q) is the large-q part of the Fourier transform of 
Cl!!(x). Conversely if one Fourier transforms GN+ 2 to get 

- - I Jd4q . -<OIT¢(x)¢(0)¢{p 1 ) ... ¢(pN) 0) = (2nfe-,q·xcN+ 2 , (10.0.4) 

then the limit x-+ 0 fails to exist if GN + 2 falls only as 1lq4 or slower as q-+ co. 
Thus knowing the large-q behavior is equivalent to knowing the singular 

small-x behavior, but the coordinate-space expansion also includes 
information on the leading non-singular part of the small-x region. 

These expansions have a number of uses, particularly in an asymptoti
cally free theory. There the perturbation theory when improved by the 
renormalization group gives an effective method of computing the Wilson 
coefficients. Among the uses are the following: 

(1) The expansion (10.0.1) in coordinate space provides a definition of 
renormalized composite operators that does not involve any reg
ularization (Brandt (1967)). 

(2) Although there is no physically important process which directly uses 
the limit taken in the momentum-space expansion (10.0.3), it is used 
indirectly for deep-inelastic scattering of a lepton on a hadron. This 
involves a matrix element of the form 

<Pij(q)j(O)IP>· 

Here q2 -+ - co, but with the ratio q2 1 q · p fixed instead of q2 I q · p2 fixed. 
A dispersion relation relates this case to the limit used in ( 1 0.0.3), so the 
OPE is used indirectly, as we will see in Chapter 14. 

(3) The form and the method of proof of short-distance operator-product 
expansion can be generalized to handle many interesting high-energy 
scattering processes. (See Buras (1981) and Mueller (1981) for a review.) 
The results in the present chapter form a prototype for these other 
results. 

10.1 Examples 

10.1.1 Cases with no divergences 

We will mainly restrict our attention to Green's functions of ¢(x)¢(0) in 
which both ¢(x) and ¢(0) are connected to other external lines. This is the 
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10.1 Examples 259 

(a) (b) 

Fig. 10.1.1. Lowest-order graphs for operator-product expansion of cj>(x)cj>(O). 

case that is relevant to most applications. Our theory will be ¢ 4 theory 

f!' = o¢ 2 /2- m2 ¢ 2 j2- g¢ 4 /24 + counterterms. (10.1.1) 

First consider the tree graphs Fig. 10.1.l(a) for 

(10.1.2) 

These give 
. . 
I I 

2 2 2 2 [exp(-ip1 ·x)+exp(-ip2 ·x)]. 
Pt-m P2 -m 

(10.1.3) 

Expansion in a power series about x = 0 gives 

This is equivalent to the replacement 

T¢(x)¢(0) = ¢ 2 (0) + !x"o"¢2 + !x"x"¢8"8,¢ + · · ·, (10.1.5) 

as illustrated in Fig. 10.1.1(b). This equation has theform of the operator
product expansion (10.0.1). 

Thus the operator-product expansion in this case (free-field theory) is 
really a Taylor expansion of ¢(x) about x = 0. The power of x in each term is 
just such that no dimensional coefficients are needed: 

C@(x) =constant x lxl", with a= dim(@)- dim [ ¢(x)¢(0)]. (10.1.6) 

This result also correctly gives the power-law behavior in the presence of 
renormalizable interactions, as we will see. But there will also be 
logarithmic corrections. 

A feature which does not appear to survive inclusion of interactions is 
that the series on the right of (10.1.4) is convergent and sums to give 
T¢(x)¢(0). 

Consider next the graphs of Fig. 10.1.2 for the four-point function of 
T ¢(x)¢(0). The important factor comes from the lines carrying momentum 
q: 
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~+~ 
'-y--/ '-y--/ 

HPA PB 

Fig. 10.1.2. Higher-order graphs for operator-product expansion of cf>(x)cf>(O). 

We now expand the integrand in powers of x to obtain 

. 2fd4q 2-i(pA+Pn)·x 
(10.1.7)"' Ig (2 )4 ( 2 2)[( )2 2] (( )2 2] + · · ·. n q - m p A - q - m q - p A - Pn - m 

(10.1.8) 

These first two terms are just those we would expect from (10.1.5). But the 
higher terms have at least two extra powers of q in the numerator and are 
therefore ultra-violet divergent. The divergences are those of the Green's 
function of the composite operators. They indicate that modification of the 
higher terms of the expansion is needed. For example, the behavior of the 
coefficient of ¢a~<av¢ is modified by a logarithm of x. 

Similar modifications will be needed for the coefficient of ¢ 2, when we 
consider higher-order corrections. Therefore we will find it convenient just 
to restrict our attention to the leading-power behavior, corresponding to 
the ¢ 2 term in (10.1.5). 

10.1.2 Divergent example 

Aside from trivial propagator corrections the contribution of order g to the 
two-point function of Tcp(x)¢(0) is given by Fig. 10.1.3(a), which gives 

i2 . fd4q e-iq·x 

2 2 2 2 Ig -- 2 2 2 2 · (10.1.9) 
(p 1 -m )(p 2 -m) (2n) 4 (q -m )[(q-p 1 -p2 ) -m] 

When x-> 0 the integral diverges logarithmically. This is a symptom of the 
fact that there are two important regions of q that contribute. The first is 

(a) (h) (c) 
I 

Fig. 10.1.3. Graph for operator-product expansion of cf>(x)cf>(O) with divergences for 
the operator. 
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where q is finite as x --+0; the contribution is correctly given by replacing 
T</J(x)</J(O) by </J 2 (0) in the graph. The second region is where q becomes 
large, up to 0(1/x) as x--+0; in this region the interaction vertex in 
coordinate space is close to x and 0. 

In the second region the loop is confined to a small region in coordinate 
space. From the point of view of p 1 and p2 the loop is a point. So we should 
be able to represent the contribution of this region by an extra term in the 
Wilson coefficient of </J 2 : 

T </J(x)<jJ(O)"' Cq,2(x)[ <!J 2 ], } 

Cq,2 = 1 + (g/16n2)c 1(x2). 
(10.1.10) 

Let us now calculate c1(x2 ). 

Now the contribution of the first region is given by replacing T <jJ(x)<jJ(O) 
by </J2(0). However, this operator has an ultra-violet divergence. So let us 
add and subtract the renormalized Green's function of [ </J 2], i.e., 

< Ol T[ </J2(0)]cb{p1)cb{p2 )IO ), (10.1.11) 

to give the equation depicted by Fig. 10.1.3. The contribution of order 1 
from the first region is entirely contained in the term (b) representing 
(10.1.11): 

iz g {fld I [m2-(Pt+P2)2x(l-x)]+} 
(pf- mz)(p~ - m2) 16n2 o x n 4nJl2 }' . 

(10.1.12) 

Here we have used minimal subtraction. The remainder, term (c), is 

1 -ig 
X 

(pf- m2)(p~- m2)(2n)4 

x {fd4q eiq·x- 1 
(q2 - m2)[(q- Pt- P2f- m2] 

- UV divergence}· (10.1.13) 

When x--+ 0 the contribution from finite q is of order I xI· But there is a 
contribution of order 1 from large q: this is the contribution to the original 
graph minus whatever is taken care of by graph (b). 

We can identify c1(x2 ) in (10.1.10) as the x--+0 behavior of the curly 
bracket factor of (10.1.13) (aside from a normalization factor), since to 
lowest order 

<OIT</J2cb{pt)cb(p2)IO>=( 2 ~(2 2 2)' 
Pt-m P2-m 

Now the leading-power behavior of the curly-bracket factor is independent 
of p 1,p2 and m. This is easily seen by differentiating with respect to any of 
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these variables. The result is a convergent integral which goes to zero like a 
power of x when x~o. So we may define c1(x) by setting m = p 1 = p2 = 0: 

1 { i f (eiq·x- 1) 2 } 
c 1 (x) = 2n2 (2n,u)d- 4 ddq (q2)2 + d- 4 . 

The integral is easily done by using 

1j(q2)2 = f~ dzze-z<-q2J 

to turn it into a Gaussian form, with the result 

c1(x) = ![y +In(- n2,u2x2)]. 

10.1.3 Momentum space 

(10.1.14) 

(1 0.1.15) 

We now Fourier transform Fig. 10.1.3 to obtain the O(g) contribution to 

<OI T¢(q)¢(0)¢(pl)¢(p2)j0). 

As q2 ~ oo we find 

Fig.10.1.3(a)"' 2 ;; 12 2 i; 2 + 0[1/(q2)3 ). (10.1.16) 
(pl-m )(p2-m )(q) 

This gives a contribution to the term in the operator-product expansion 
(10.0.3) with (!) = ¢ 2• The coefficient is 

- 2 ig 2 
C.p2(q ) = 2(q2f + O(g ), (10.1.17) 

which is just the Fourier transform of the order g term in the coordinate
space expansion, gc 1(x)/(16n 2 ). The g0 term in the coordinate-space 
coefficient is independent of x, so that it gives a J<4 l(q) in momentum space, 
and hence nothing at large q2 • 

10.1.4 Fig. 10.1.3 inside bigger graph 

The expansion (10.0.1) or (10.0.3) indicates that the same asymptotic 
behavior as x ~ 0 (or as q ~ oo) is obtained independently of the Green's 
function considered. This happens because graphs like Fig. 10.1.3 can occur 

Fig. 10.1.4. Even higher-order graph for operator-product expansion of <f>(x)¢(0). 
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as subgraphs of graphs with more external lines. An example is given in 
Fig. 10.1.4. 

10.2 Strategy of proof 

First we will make precise the limits in which the operator-product 
expansion applies. If we are in Euclidean space (i.e., with imaginary time 
and energy) then there is really only one way in which we can take x" to zero 
or q" to infinity. However, in Minkowski space we can let x2 --> 0 without 
each component going to zero, and we can let components of q" go to 
infinity without q2 --> oo. These cases are interesting physically. For 
example, the q"--> oo limit with finite q2 is the case of high-energy scattering. 
Much is known about these limits, but they are beyond the scope of this 
book. 

We will prove the coordinate-space expansion (10.0.1) in the case that all 
components of x" go to zero with their ratios fixed. The corresponding 
momentum-space expansion (1 0.0.3) we will prove in the limit that all 
components of q" go to infinity with a fixed ratio, and with q" not light-like, 
so that q2 --> oo. These limits are essentially Euclidean. 

Our proof will be in perturbation theory. The first step is to identify the 
regions of loop-momentum space that give the leading-power behavior in 
the x--> 0 or q--> oo limits. Then we generalize the arguments of the previous 
section, which applied to specific graphs. 

The region of large q which we investigate in the momentum-space 
expansion (10.0.3) is precisely the one to which Weinberg's (1960) theorem 
applies. The theorem tells us to consider all subgraphs connected to the {[J(q) 
and ¢(0) in (10.0.2). For each such subgraph we let all its loop momentum be 
of order q, and count powers just as we did for UV divergences. The 
subgraph(s) with the largest power of q2 correspond to the dominant 
regions of momentum space. Then as q2 --> oo, the complete graph is 
proportional to this power of q2 times possible logarithms of q2 . 

Corrections are smaller by a power of q2 . Although Weinberg's result also 
tells us the highest power of ln(q2 ) that appears, it is easier to determine this 
by first constructing the operator-product expansion and then applying 
renormalization-group methods (as in Section 10.5 below) to the 
coefficients. 

Essentially the same method can be applied to obtain the short-distance 
behavior, (10.0.1). For example, in Fig. 10.1.4 we have leading contri
butions with q finite or with q large (of order 1/x), but always with the lower 
loop momentum, k, finite. The leading power is (x2) 0 . The logarithm of x in 
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(10.1.15) for the corresponding Wilson coefficient comes from integrating 
over momenta intermediate between these two regions. 

Suppose we have large momentum confined to a subgraph r. Then the 
power of q (for the momentum-space expansion) is exactly the dimension of 
r, since our theory is renormalizable, with dimensionless couplings. The 
leading power of q2 comes from subgraphs with the largest dimension, i.e., 
subgraphs with the smallest possible number of external lines. This number 
is two (beyond (i>(q) and ¢(0)), so that the leading power is 1/(q2) 2 • The 
subgraphs have the form ofthe subgraph U in Fig. 10.2.1. In the ultra-violet 
subgraph U, all lines carry momentum of order q. This subgraph is 1PI in its 
lower two lines. All momenta in the infra-red subgraph I are finite. 

N 

Fig. 10.2.1. General structure of lead
ing regions of momentum space for N

point function of ¢(x)¢(0). 

Fig. 10.2.2. Factorization of Fig. 10.2.1. 

Now, to the leading power of q2 , the ultra-violet graph U is independent 
of the external momenta k and I flowing into it. Thus we may replace U by 
its value when k =I= 0 (and we may set the mass m = 0). We may also 
replace the infra-red subgraph I by an insertion of a vertex for ¢ 2/2 in anN
point Green's function. This is illustrated in Fig. 10.2.2. This has the same 
structure as the operator-product expansion. But it should be emphasized 
that we are supposing that loop momenta are restricted to certain regions. 
These regions are not defined very precisely, and it is one of the tasks of the 
proof to remedy the impreciseness. 

Schematically we have 

L GN+2(q,pl, ... ,pN) 
graphs 

--IU(q,k=O,I=O)L: I d4 kd 4 1<5(k+1-IpJl(k,l,pp···•PN). 
U I 

small k 
small! (1 0.2.1} 

To construct the expansion we generalize the technique that we applied to 
Fig. 10.1.3. We consider each graph U that could appear in Fig. 10.2.1, but 
we do not restrict its momenta. It can occur as a subgraph of some graph for 
the complete Green's function. If all momenta in U are of order q and if all 
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I' t arge momen a 

small momenta 

Fig. 10.2.3. A possible leading region for a subgraph of the form of U in Fig. 10.2.1. 

momenta outside are small, then we get a leading contribution to the cross
section. We can also have a leading contribution where the large momenta 
occur inside a proper subgraph of U- as in Fig. 10.2.3. Suppose we 
subtract off all of these contributions. Then we integrate over all loop 
momenta of U and find that the result only gives a leading contribution 
when all its momenta are large. We therefore define the contribution of U to 
the Wilson coefficient as 

C(U) = U- subtractions for regions of form Fig. 10.2.3 (10.2.2) 

all evaluated at k = l = m = 0. 
The resulting formula for C(U) is very similar to that of the formula for 

renormalizing the ultra-violet divergences of a graph. In fact, as 
Zimmermann (1970, 1973b) explains, a good way to prove the operator
product expansion is to treat it exactly as a problem in renormalization. His 
method, used in the next section, is not to compute directly the Wilson 
coefficients but to define first a quantity which is a Green's function minus 
the leading terms in its operator-product expansion: 

GN+2- L C()G().N• 
('! 

This is constructed as a sum over graphs r for G N + 2 • Each graph has 
subtracted from it not only counterterms to remove ultra-violet divergences 
but also counterterms to cancel the large-Q (or small-x) behavior. The result 
we call Rw(O. 

Now, the subtractions that remove the large-Q behavior are a sort of 
oversubtraction. So Rw(r) is simply related to R(r) in the style of a 
renormalization-group transformation. This transformation can then be 
written as the Wilson expansion, as we will see. 

A disadvantage of Zimmermann's proof is that it uses BPHZ re
normalization. He takes advantage of certain short-cuts available through 
the use of zero-momentum subtractions. We will choose not to take these 
shortcuts so that minimal subtraction can be applied to ultra-violet 
divergences. Our method of proof will be essentially the same as the one 
used for problems with large masses (Chapter 8). 

The same techniques apply to the coordinate-space expansion. Here, the 
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momentum q is integrated over. When we do power-counting, large 
momenta are regarded as of order 1/x and small momenta as finite when 
x---> 0. The leading behavior again comes from graphs of the form of U in 
Fig. 10.2.1, and the power is (x2) 0 . There is a difference in the form of the 
possible graphs U that carry large momentum. All the graphs that we use in 
the momentum-space case are also used in coordinate space. But we can 
also have the graph consisting of the vertices for ¢(x) and ¢(0) and of 

nothing else. 

10.3 Proof 

We must now prove the operator product expansion. In ¢ 4 theory we 
consider the part of the Green's function, 

GN+ 2(x,p1, ... ,pN) = <OI T¢(x)¢(O)(fi(p1)· · ·(i>(pN)IO), (10.3.1) 

in which each of ¢(x) and ¢(0) is connected to some of the other external 
lines. We will now scale x by a factor K and construct a decomposition ofthe 
form: 

GN+ 2(KX,p1, ... ,pN) 
22 ll 2 - - I = C(K x )(0 Tz[¢ ](O)¢(p1)· · ·¢(pN) 0) + rrv+2(Kx,p 1 , ••• ,pN). 

(10.3.2) 

In every order of perturbation theory, the coefficient C(K2 x2) behaves like 
(K 2)0 times logarithms, when the scaling parameter K goes to zero, while the 
remainder goes to zero like a power of K. 

Fourier transformation on x gives the result 

GN+ 2(q/K, P1, · · · ,pN) 

= C(q2 /K2)( 0 IT![ ¢ 2](fi(p1)· .. (i>(pN) I 0 > + rN + 2(q/K, p l' ... 'PN). 
(10.3.3) 

When q/K---> oo, C(q2/K2) behaves like K 4/q4 times logarithms, while 
rN+2(qjK,p1, ... ) is Smaller by a power. 

Our proof is given for a specific Green's function in a specific theory. 
However, it can easily be generalized. Features specific to a gauge theory 
will be pointed out in Chapter 12. The particular case of QCD with the 
application to deep-inelastic scattering will be treated in Chapter 14. 

1 0.3.1 Construction of remainder 

We consider the set of graphs for GN+ 2 • For each graph r, we will construct 
its contribution r(r) to the remainder rN+ 2 . Each graph r we consider to be 
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an unrenormalized (but regulated) graph containing only basic interaction 
vertices. These are derived from 

!!:' hasic = ?¢2 /2 - m2 ¢ 2/2 - p 4 - dg¢4 /24, 

where g and m are the renormalized coupling and mass. 
As usual the renormalized value of the graph is R(r), which is r, plus a 

series of counterterm graphs to cancel its ultra-violet divergences. For our 
proof we will use a renormalization prescription in which the theory is finite 
when the renormalized mass m is set to zero. The renormalized value R(r) is 
then the contribution of r to the Green's function GN+2" 

The remainder term r(r) is equal to r plus a somewhat different series of 
counterterm graphs. These counterterms will be constructed so that they 
cancel not only the ultra-violet divergences but also the leading x--+ 0 or 
q--> 00 behavior of r. 

Now r(r)is in effect a oversubtracted form ofr. The oversubtractions are 
of the form of an insertion of the operator [ ¢ 2] times a coefficient. Thus 
R(r)- r(r) is the Wilson expansion, i.e., thefirst term on the right of(10.3.2) 
or (10.3.3). \. 

The coefficient C(x2 ) (or C(q 2)) depends on the coupling g and on the 
renormalization mass fl. It must be independent of all the momenta. In 
order to be able to neglect min the ultra-violet limit x--+ Oor q--+ oo, we must 
use a renormalization prescription in which the counterterms do not 
become infinite when m--+ 0 (with fixed regulator). For concreteness we will 
use minimal subtraction in what follows. 

In order to define r(r), let us recall the definition of the ordinary renor
malization R(r). This starts from the fact that the divergences of r come 
from regions of loop momenta where all lines in some set of 1PI subgraphs 
carry a momentum that approaches infinity. We label each region by the 
subgraph consisting of all the lines carrying large momentum. Then 

(10.3.4) 

The sum is over all subgraphs y of r, and Cy(r) is essentially r with the 

subgraph y replaced by its large-momentum divergence. We define 
Cr(r) to be non-zero only if y is a disjoint union of one or more 1PI graphs 
y1 , ••. ,y". In that case each Y; is replaced by a counterterm vertex C(y;), 
which is the divergent part of r;. To avoid double-counting, the sub
divergences are subtracted off first: 

(10.3.5) 
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Here 'f!Ji' denotes 'pole part at d = 4' and the sum is over all proper 
subgraphs (> of Y;· As usual, if we use some other renormalization 
prescription than minimal subtraction the operator f!JI is replaced by the 
operator appropriate to the renormalization prescription. 

The definition of the remainder r(r) is almost identical to the definition of 
R(r). Now, the leading short-distance (i.e., x---+ 0) behavior of r comes from 
the following regions: 

(1) where the momentum q is finite, 
(2) where q gets large and the momenta in a graph of the form of U in 

Fig. 1 0.2.1 also get large. 

Further leading contributions come from regions where in addition 
momenta get infinite in some set of divergent 1PI graphs. These extra 
contributions correspond to the ultra-violet divergences. In the 
momentum-space expansion (1 0.3.3) the same regions are leading except for 
the region of finite q. 

We define r(r) to be r with all ultra-violet divergences subtracted and 
then with all the leading small-x behavior subtracted: 

r(r) = R(r)- I I Lyva(r). (10.3.6) 
a Y 

Here the sum over(> is over all graphs of the form of U in Fig. 10.2.1 and the 
sum over y is over all subgraphs y ofrthatdo not intersect f>. We use Lyva to 
symbolize a subtraction operation defined below. It is used to extract the 
contribution that comes from the region where the momenta in graph(> are 
of order 1/x and the momenta in y go to infinity. The case of finite q in 
Fig. 1 0.2.1 is covered by the case that (>consists of the vertices for </J(x) and 
</J(O) only. 

We define the subtraction Lyva{r) to be zero unless y is a disjoint union of 
1PI y1, ••• , Yn· In that case each Y; is replaced by its overall counterterm C(y;) 
defined in (10.3.5) while the graph(> is replaced by a quantity L(f>). L(f>) is to 
contain the leading behavior of (> when all internal lines have large 
momenta. This is the same idea as that C(y;) is the overall divergence of Y;· 
Now there are regions where a subgraph (>'of(> carries momenta of order q 

and other lines in (> carry small momenta. To avoid double-counting we 
subtract them first. So we write: 

(10.3.7) 

Here Tis to be an operator that picks out the leading x---+ 0 behavior of its 
argument. Now this behavior is independent of m, and of the finite external 
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momenta. (We prove this by differentiating with respect to the variables m 
and pi.) So we define T to set the values of m and the finite external 
momenta to zero. 

We now have a complete definition of r(r). 

1 0.3.2 Absence of infra-red and ultra-violet divergences in r(r). 

In Fig. 10.1.1(a) the only possible graph of the form of U is the one 
that consists of ¢(x)¢(0) alone. We call it <5 1. Its value IS e-ip 1 ·x + 
e-ip2 ·x. It has no subgraphs so that 

L(J )=(e-iPI·x+e-iP2·x) __ = 2. 
1 PI- P2 -0 (10.3.8) 

The remainder is therefore 

r(Fig. 10.1.1) =Fig. 10.1.1 -Fig. 10.1.1(b). (10.3.9) 

Here we regarded L(J 1) as a [ ¢ 2] vertex. It is manifest that this remainder is 
exactly the graph minus its Wilson expansion. 

Now we turn to Fig. 10.1.3(a).lt has <5 1 as a subgraph of form U and also 
the loop, which we call <5 2 . Then by (10.3.7) 

L(J2) ={<52- L61(J2)}m=p1=P2=o 

{
jJ.4-dj_g f d e-iq·x -1 } 

= (2n)d dq(q2-m2)[(pl+p2-q)2 -m2] m=pl=p2=0 

(10.3.10) 

Hence 

where we use r to denote Fig. 10.1.3(a). 
The following properties hold: 

(1) L62(r} is infra-red convergent even though it has zero mass and zero 
external momentum. Although <5 2 has an infra-red divergence when m, 
p1, and p2 approach zero, the subtraction term L61 (<5 2) exactly cancels 
the divergence. 
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270 Operator-product expansion 

(2) La 1(r) is ultra-violet divergent, since in replacing the vertex 
.:5 1 = e-iq·x by 1 we remove the ultra-violet cut off. However, La 2(r) 
contains all the large-q behavior of rand of subtractions for subgraphs 
of .:52. Thus La 2(r) cancels the ultra-violet divergence of La 1 (r). 

(3) When m, p1, p2 approach zero, we find that 

r(.:5 2) = R(.:5 2)- La 1 (.:52)- L(.:5 2) 

=.:52- La 1(.:5z)- L(bz) 

..... o. 
This is just the statement that L(.:5 2) is the value of .:5 2 at m = p1 = 
p2 = 0, after subtractions on subgraphs are made. 

The explanations of these properties are convoluted, but with the aim of 
demonstrating that they are true in general. Refer now to the general 
definition of r(r), viz., (10.3.6), and refer to Fig. 10.2.1 instead of Fig. 10.1.3. 
Then the above properties get replaced by: 

(1) L(.:5) is infra-red convergent for any graph of form U in Fig. 10.2.1: the 
only regions that could give infra-red problems are cancelled by 
subtractions. 

(2) r(r) is ultra-violet and infra-red convergent if m, pf and p~ are non-zero. 
The individual terms Lyva(r) are IR finite. The subtractions remove all 
ultra-violet behavior. 

(3) r(.:5) = 0 when m = p 1 = p2 = 0. 

10.3.3 R(r)- r(r) is the Wilson expansion 

Although 

W(r) = R(r)- r(r) = ~La( ~ Cy(r)) (10.3.12) 

yna=0 

contains the leading x ..... 0 behavior of R(r), it is not yet in the form of the 
operator-product expansion, which is 

W(r) = L C(b)R(r/.:5). (10.3.13) 
a 

Here C(.:5) is the contribution of a subgraph .:5 (of form U) to the Wilson 
coefficient, while r;.:5 is r with .:5 contracted to a point, i.e., replaced by a ¢ 2 

vertex. R(r/.:5) will now include pole-part subtractions for the divergent 
Green's functions of ¢ 2. 

Summing (10.3.13) over r can be done by independently summing over .:5 
and r;.:5. This gives the operator-product expansion (first term of the right-
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hand side of (10.0.1)) with 

c</>,(x2) = L C(c5). (10.3.14) 
6 

(We have used the same symbol for the complete Wilson coefficient C"',(x) 
as for the contribution from a particular graph.) Hence to prove the 
expansion (10.0.1) or (10.0.3), we have to prove that W(r) as defined by 
(10.3.12) equals the right-hand side of (10.3.13). 

Any graph r for the Green's function GN + 2 can be written in the form of 
Fig. 10.2.1. In general there will be several possibilities for the upper 
subgraph U. For the following argument we will choose U to be the biggest 
possible graph. Then, in (10.3.12) for W(r), all the subgraphs c5 are 
contained in U. So we have 

W(r) = fd4kd;l W(U)R(l) 
(2n:) 

= W(U)®R(l), (10.3.15) 

since no divergent 1PI subgraphs include parts of both U and I. Suppose we 
prove (10.3.13) when r is replaced by U. Then from (10.3.15) it follows that 

W(r)= IC(c5)R(U/c5)®R(J) 
b 

= L C(c5)R(r/c5). (10.3.16) 

The last line follows because (a) the graphs for r;c5 are of the form Ujc5 times 
I, and (b) ultra-violet divergent 1PI subgraphs are entirely within Ujc5 or 
within/. Notice that the extra divergences for r;c5 as compared with rare 
due to the presence of the ¢ 2 vertex. These divergences are confined to 
graphs of the form of Ujc5. 

Rather than prove (10.3.13) for the case r = U, we use it as a definition of 
C(U), recursive in terms of C(c5) for smaller c5: 

2C(U) = W(U)- L C(c5)R(U/c5). (10.3.17) 

The factor 2 multiplying C(U) is the lowest-order 1PI Green's function of 
the operator ¢ 2 • It is evidently much too good to be true that we have 
reduced what ought to be a deep proof to a mere definition. The important 
physics was at the previous step, (10.3.16). By implicit use of power
counting arguments, to restrict ultra-violet divergences to within Ujc5, we 
proved (10.3.13) given its truth for the case r = U. The Wilson coefficient 
C"',(x) as it occurs in the expansion (10.0.1) is then the same no matter what 
Green's function we take of T¢(x)¢(0). This universality is an important 
feature of the Wilson expansion. 
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The other important feature of the expansion is that the Wilson 
coefficient is a purely ultra-violet object. This will enable renormalization
group techniques to be useful in its calculation. For this purpose we must 
now prove that C(U) is independent of m, k and l. 

The proof is done by differentiating the right-hand side of (10.3.17) with 
respect to the mass m or with respect to one of the external momenta k or l. 
Let A represent this operation. It is applied in turn to each propagator in 
W(U) and in R(U j{J). Inductively, we assume C({J) satisfies AC({J) = 0. This is 
true for the lowest-order graph,{J 1,forwhich C({J1) = 1 follows from (10.3.8). 
In the general case AC(U) is therefore given by 

2AC(U) = AW(U)- L C({J)AR(Uj{J), (10.3.18) 

as illustrated in Fig. 10.3.1. We have a series of terms in each of which one 
particular propagator of U is differentiated. The differentiation improves 
the ultra-violet behavior, so the differentiated propagator cannot be a part 
of a leading large-momentum region connected to the vertices cp(x)cf>(O). We 
therefore factor out a maximal two-particle graph {)',just as we factored out 
U in (10.3.15). 

C(Ci) 

2.:\C(U)= 

Fig. 1 0.3.1. Differentiation of Wilson coefficient with respect to a mass or an external 
momentum. 

Now we can use the result 

W({J') = L C({J'')R({J'j{J") 
/!" 

to give zero for AC(U). (This argument is analogous to (10.3.16).) The 
operator-product expansion is now proved. 

10.3.4 Formulafor C(U) 

From the above results we may deduce 

C(U) = L[R(U)- L C({J)R(Uj{J)]. 
I!*U 

(10.3.19) 

Heuristically this says that C(U) is that part of U arising when all its internal 
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lines have momenta of order 1/x, less contributions taken care of by terms 
C(b) in the operator-product expansion with smaller graphs b contained in 
U. The term in square brackets is the unrenormalized U minus (a) all 
contributions involving momenta not all of order q, and (b) contributions 
with all momenta of order q taken care of by the subtractions under (a). This 
equation reproduces exactly the calculation performed in Section 10.1 of 
the O(g) Wilson coefficient, viz., 

C(b2)= [<52- C(bl)R(b2/J1)]m=p1 =p2=0· 

10.4 General case 

The most fundamental form of the operator-product expansion is (10.0.1), 
which is proved by obtaining its matrix elements from the Green's functions 
(10.0.2). We proved the Green's function expansion restricted to connected 
graphs in t/J4 theory, and restricted to the leading power of x2• The only 
operator that then contributes is {!) = cp 2• Our proof generalizes. We may 
take the full Green's functions in any theory and include non-leading 
powers of x. 

In the general case the operator L extracts the appropriate number of 
terms in a Taylor expansion in the mass m2 and in the external momenta. 
The result is that each Wilson coefficient C(l)(x) behaves in each order of 
perturbation theory like a power of x2 times logarithms of (x2 p_2) times a 
polynomial in x~' and m2 with dimensionless coefficients. If {!) is a tensor 
operator then the coefficient is also a tensor, as illustrated by the lowest
order example (10.1.5). 

The leading operator for cjJ 4 theory is in fact the unit operator since it has 

lowest dimension. We have 

(10.4.1) 

Operators linear in cjJ are prohibited by the cjJ--+ - cjJ symmetry. 
To compute the coefficient, C 1 (x2), of the unit operator to lowest order, 

we use the graph of Fig. I 0.4.1. We will extract terms up to O(x0 ), so that we 

(j 
Fig. 10.4.1. Lowest-order term for <OIT<t>(x)¢(0)10). 
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274 Operator-product expansion 

find: 

C 1 (x2 ) = C 1 (x2)< Oj1j0) 

={Fig. 10.4.1- c"'2(x2)<0I[</> 2(0)]jo>} 
e~f~fe1~ ~~d~w~~s 

at d = 4. (10.4.2) 

The Wilson coefficient is obtained by expanding in powers of mass and 
external momentum up to an appropriate degree, which is two here. We 
have no external momenta, so the expansion is in powers of m2 . 

In the next section, when we apply the renormalization group to compute 
the Wilson coefficients we will find that each coefficient is given as a series in 
the effective coupling with the renormalization mass 11 set to (- x 2 ) 112 . The 
main application of these methods will be to asymptotically free theories. If 
we truncate the perturbation expansion, then the error will be of the order 
of the first omitted term, and hence the fractional error is of order 

1/[ln(- x2)]P+ 1, 

where p is the number of loops in the highest-order graph. This error 
dominates any positive power of x. 

Consequently, it is difficult to use the power-law corrections to the 
leading power in a Wilson coefficient. This would suggest we cannot 
properly use anything but the coefficient of the unit operator. However, in 
applications we will normally work with connected Green's functions. For 
these the leading coefficient is of the two-particle operator ¢ 2 . 

10.5 Renormalization group 

To make calculations for a Wilson coefficient, we must use the 
renormalization group to obtain maximum information from a low-order 
calculation in the way we will now explain. 

The coefficient has the functional dependence 

C(xz,g,/1). 
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To use this we must set p.2 to be of order j1/x2 j to avoid large logarithms, 
just as in calculating Green's functions when all their external momenta get 
large (Chapter 7). The RG equations are simple, since, to the leading power, 
there is no mass dependence. (If we use non-leading powers of x then we 
have polynomial dependence on masses.) The renormalization-group 
equation for the Wilson coefficient can be derived most easily from the 
renormalization-group equations for Green's functions in the following 
fashion. 

In the </>4 theory we have the renormalization-group operator: 

d 0 0 2 0 
p.- = p.- + /3-- Ymm - 2 • (10.5.1) 

dp. op. og om 

The renormalization-group equations we need are 

p. d: G~':n~> = - (N /2 + 1)yG~':n~>, (10.5.2) 

J1. d: GN([</>2], . .. )(conn)= (Ym- iNy)GN([</>2], .. . )(conn). (10.5.3) 

Here, G~':n~> denotes the Green's function of N + 2 external ¢-fields, 
restricted to connected graphs. GN([ </> 2], •.• )<conn> denotes the connected 
Green's function of the renormalized [</> 2 ] operator with N ¢-fields. To 
derive (10.5.3) we used the fact that 

m2 [ ¢ 2 ] = m~</>~ +coefficient times 1, 

and m~ = Zmm2 • 

We apply the operator p.djdp. + (N /2 + 1)y to both sides of 

(Oj T¢(x)¢(0){fo(p1) •.. {fo(pN)jO) 

= C<1>2(x)( Oj T[ </> 2 ]{fo(p1) ••• {fo(pN)jO) + O(x2 ), (10.5.4) 

to obtain 

0 = [Jl. d~:2 + (y + Ym)C</>2 ]<oj T[ </> 2 ]{fo(p1 ) .•• {fo(pN)jO) + O(x2 ). 

(10.5.5) 

Since the O(x2 ) terms are order x 2 independently of g, m, and p., they 
remain of order x2 after p.djdp. is applied. (As usual, 'order x 2' means order 
x 2 modulo possible logarithms.) Immediately we obtain 

(10.5.6) 
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This equation can be solved- it is effectively in the m = 0 theory. The 
anomalous dimension of C q,> is the anomalous dimension of ¢(x)¢(0) minus 
the anomalous dimension of [ ¢ 2]. This is the same relation as for the 
engineering dimensions. The signs in (10.5.6) arise from peculiarities of our 
definitions of Ym and y. 
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