1. Introduction. By a von Neumann algebra \(M \) we mean a weakly closed, self-adjoint algebra of operators on a Hilbert space \(\mathcal{H} \) which contains \(I \), the identity operator. A factor is a von Neumann algebra whose centre consists of scalar multiples of \(I \).

In all that follows \(\phi: M \rightarrow N \) will be a one to one, *-linear map from the von Neumann factor \(M \) onto the von Neumann algebra \(N \) such that both \(\phi \) and \(\phi^{-1} \) preserve commutativity. Our main result states that if \(M \) is not of type \(I_2 \) then \(\phi = \phi_0 + \lambda \theta \) where \(\theta \) is an isomorphism or an anti-isomorphism, \(c \) is a non-zero scalar, and \(\lambda \) is a *-linear map from \(M \) into \(Z_N \), the centre of \(N \).

Our interest in this problem was aroused by several recent results. In [1], Choi, Jafarian, and Radjavi proved that if \(S \) is the real linear space of \(n \times n \) matrices over any algebraically closed field, \(n \geq 3 \), and \(\psi \) a linear operator on \(S \) which preserves commuting pairs of matrices, then either \(\psi(S) \) is commutative or there exists a unitary matrix \(U \) such that

\[
\psi(A) = cU^*AU + f(A)I \quad \text{or} \quad \psi(A) = cUA^*U + f(A)I
\]

for all \(A \) in \(S \). They proved an analogous result for the collection of all bounded self-adjoint operators on an infinite dimensional Hilbert space when \(\psi \) is one to one. Subsequently, Omladic [7] proved that if \(\psi:L(X) \rightarrow L(X) \) is a bijective linear operator preserving commuting pairs of operators where \(X \) is a non-trivial Banach space, then

\[
\psi(A) = cUAU^{-1} + f(A)I \quad \text{or} \quad \psi(A) = UA^*U^{-1} + f(A)I
\]

where \(U \) is a bounded invertible operator on \(X \) and \(A' \) is the adjoint of \(A \).

We viewed this problem as one involving mappings between the Lie algebras \(M \) and \(N \) which preserve the zero brackets. Our technique is to show, as in [6] where bracket preserving maps were studied, that on projections \(P \) in \(M \),

\[
\phi(P) = \theta(P) + \lambda(P)I \quad \text{or} \quad \phi(P) = -\theta(P) + \lambda(P)I
\]
where θ is a projection orthoisomorphism. This representation is harder to achieve than in [6], but once having it the techniques of [6] are applied together with results concerning the linear span of projections in a factor to give the result. A key tool used in [6] is a theorem of Dye [3] relating projection orthoisomorphisms to C^*-isomorphisms.

The techniques of this paper give the result as long as the dimension of the underlying Hilbert space is >4. However, since the Choi, Jafarian, Radjavi theorem implies our theorem for all type I_n factors, $n > 2$, and since we would have to invoke their theorem for $n = 3, 4$, we shall assume that M is not a finite factor of type I. We use [2] as a general reference for the theory of von Neumann algebras.

2. The decomposition $\phi = \theta + \lambda$.

Lemma 1. N is a factor.

Proof. Let Z_M, Z_N be the centers of M, N respectively. Since $\phi(Z_M) = Z_N$ and Z_M is 1-dimensional, Z_N is 1-dimensional.

Lemma 2. We can assume, by dividing by an appropriate constant, that $\phi(I) = I$.

Proof. Since $Z_N = CI$ and since ϕ is one to one, $\phi(I) = \beta I$ for $\beta \neq 0$. Replace ϕ by $(1/\beta)\phi$.

Definition. A von Neumann subalgebra $M_0 \subseteq M$ is normal in M if

$$M_0 = (M_0' \cap M)' \cap M$$

where, for any subset $S \subseteq \mathcal{B}(H)$,

$$S' = \{ Y \in \mathcal{B}(H) \mid XY = YX \forall X \in S \}.$$

Lemma 3. If M_0 is a normal subalgebra of M, then $N_0 = \phi(M_0)$ is a normal subalgebra of N with the same linear dimension.

Proof. If S is any subset of M, $\phi(S' \cap M') = \phi(S)' \cap N$. Since M_0 is normal, $M_0 = (M_0' \cap M)' \cap M$ so that

$$\phi(M_0) = (\phi(M_0)' \cap \phi(M))' \cap \phi(M) = (\phi(M_0)' \cap N)' \cap N.$$

Since M_0 is a self-adjoint collection, so is $\phi(M_0)$ which implies that $(\phi(M_0)' \cap N)' \cap N$ is a von Neumann algebra. Hence $N_0 = \phi(M_0)$ is a von Neumann algebra and is normal in N.

Lemma 4. If P is a non-central projection in M, then $\phi(P) = \alpha Q + \lambda I$ where Q is a non-central projection in N and $\alpha \neq 0$.

Proof. By [5, Theorems 1 and 4], a finite-dimensional subalgebra of a factor is normal. Let $M_0 = \text{lin.sp.}\{I, P\}$. M_0 is a 2-dimensional subalgebra of M and is thus normal in M. By Lemma 3, $\phi(M_0) = N_0$ is a 2-dimensional von Neumann subalgebra of N, say
$\phi(M_0) = \text{lin.sp.}\{I, Q\}$

where Q is a non-central projection. We have $\phi(P) \in \phi(M_0)$ so $\phi(P) = \alpha Q + \lambda I$. If $\alpha = 0$ then P would be central by the commutativity preserving property of ϕ.

Lemma 5. If P is a non-central projection and

$$\phi(P) = \alpha Q + \lambda I = \alpha' Q' + \lambda' I$$

with $\alpha, \alpha' \neq 0$, Q and Q' non-central projections in N, then either (i) $Q = Q'$ and $\alpha = \alpha'$, or (ii) $Q = I - Q'$ and $\alpha = -\alpha'$.

Proof. For an operator $A \in B(H)$, let $\sigma(A)$ be its spectrum. We have

$$\{\alpha + \lambda, \lambda\} = \sigma(\alpha Q + \lambda I) = \sigma(\alpha' Q' + \lambda' I) = \{\alpha' + \lambda', \lambda'\}.$$

If $\alpha + \lambda = \alpha' + \lambda'$ then $Q = Q'$. If $Q = Q'$ then clearly $\lambda = \lambda'$ so that $\alpha = \alpha'$. If $\alpha + \lambda = \lambda'$ and $\alpha' + \lambda' = \lambda$ then $\alpha = -\alpha'$ and $\lambda \neq \lambda'$ since $\alpha \neq 0$. We would then have

$$Q + Q' = \left(\frac{\lambda - \lambda'}{\alpha}\right)I.$$

This forces

$$\frac{\lambda - \lambda'}{\alpha} = 1.$$

If $Q = I - Q'$ it is easy to see that $\alpha = -\alpha'$.

Lemma 6. Let P_1, P_2 be non-central orthogonal projections in M with $P_1 + P_2 \neq I$ There exist orthogonal non-central projections Q_1, Q_2 in N and non-zero scalars α_1, α_2, such that

$$\phi(P_i) = \alpha_i Q_i + \lambda_i I \quad i = 1, 2.$$

Proof. Let $M_0 = \text{lin.sp.}\{I, P_1, P_2\}$. M_0 is a 3-dimensional abelian subalgebra of M so that $N_0 = \phi(M_0)$ is a 3-dimensional abelian subalgebra of N. We claim that

$$N_0 = \text{lin.sp.}\{I, Q_1, Q_2\}$$

where $\phi(P_i) = \alpha_i Q_i + \lambda_i I$ as in Lemma 4. Clearly $Q_1, Q_2 \in N_0$ since $I \in N_0$, $\phi(P_i) \in N_0$, and $\alpha_i \neq 0$. Suppose

$$\alpha I + \beta Q_1 + \gamma Q_2 = 0.$$

Since

$$\phi(I) = I \quad \text{and} \quad Q_i = \phi\left(\frac{1}{\alpha_i}P_i - \lambda_i I\right). \quad i = 1, 2.$$

https://doi.org/10.4153/CJM-1988-011-1 Published online by Cambridge University Press
we have
\[0 = aI + \beta Q_1 + \gamma Q_2 = \phi\left((\alpha - \beta\lambda_1 - \gamma\lambda_2)I + \frac{\beta}{\alpha_1} P_1 + \frac{\gamma}{\alpha_2} P_2 \right). \]

This implies
\[\frac{\beta}{\alpha_1} P_1 + \frac{\gamma}{\alpha_2} P_2 \in Z_M \]

since \(\phi \) is one to one. Since \(P_1 P_2 = 0 \) and the \(P_i \) are non-central we have \(\beta = \gamma = 0 \). This forces \(\alpha = 0 \). Thus \(\{I, Q_1, Q_2\} \) is a linearly independent subset of the three-dimensional algebra \(N_0 \).

Case (1). \(Q_1 Q_2 = 0 \), and we need do no more.
If \(Q_1 P_2 \neq 0 \) then, since \(Q_1 Q_2 \in N_0 \) we have
\[(\ast) \quad Q_1 Q_2 = aI + \beta Q_1 + \gamma Q_2 \]

where not all of \(\alpha, \beta, \gamma \) are zero. Multiplying \((\ast) \) by \(Q_1 Q_2 \) we get \(\alpha + \beta + \gamma = 1 \). Multiplying by \(Q_1 \) we see that
\[(1 - \gamma)Q_1Q_2 = (1 - \gamma)Q_1. \]

Case (2). \(1 - \gamma \neq 0 \). Then \(Q_1 = Q_1 Q_2 \) or \(Q_1 \subseteq Q_2 \). If \(Q_1 = Q_2 \) then \(\{I, Q_1, Q_2\} \) would span a two-dimensional subalgebra so we must have \(Q_1 \cong Q_2 \). In this case we replace \(Q_2 \) by \(I - Q_2 \) and note that
\[\alpha_2 Q_2 + \lambda_2 I = \alpha_2 (I - Q_2) + (\lambda_2 - \alpha_2) I. \]

If \(\gamma = 1 \) then \((\ast) \) becomes \(Q_1 Q_2 = aI + \beta Q_1 + Q_2 \) so that
\[(1 - \beta)Q_1Q_2 = (1 + \alpha)Q_2. \]

Case (3). \(\beta \neq 1 \). Then \(1 - \beta = 1 + \alpha \) and \(Q_1 Q_2 = Q_2 \). As in (2), \(Q_1 \neq Q_2 \), and we replace \(Q_1 \) by \(I - Q_1 \).

Case (4). \(\beta = 1 \). Then \(\alpha = -1 \) and \(Q_1 Q_2 = -I + Q_1 + Q_2 \). That is, \(I - Q_1 \perp I - Q_2 \) so we replace both \(Q_1 \) and \(Q_2 \) by \(I - Q_1 \) and \(I - Q_2 \) respectively.

Lemma 7. If \(P_1, P_2, Q_1, Q_2 \) and \(\alpha_1, \alpha_2 \) are as in Lemma 6 then \(\alpha_1 = \alpha_2 \).

Proof. Let \(M_0 = \text{lin.sp.}\{I, P_1 + P_2\} \). Then \(M_0 \) is a 2-dimensional subalgebra of \(M \), so that \(\phi(M_0) = N_0 \) is a two-dimensional subalgebra of \(N \), say \(N_0 = \text{lin.sp.}\{I, Q\} \). Thus
\[\phi(P_1 + P_2) = \alpha_1 Q_1 + \alpha_2 Q_2 + (\lambda_1 + \lambda_2) I = \alpha Q + \lambda I \]

where the \(\alpha_i \) and \(\lambda_i, i = 1, 2 \) are as in Lemma 6. Since \(\alpha \neq 0 \) and \(Q \) not central, the spectrum of \(\alpha Q + \lambda I \) consists of two points. Thus if
\[A = \alpha_1 Q_1 + \alpha_2 Q_2 + (\lambda_1 + \lambda_2) I, \]

\(\sigma(A) \) consists of two points. Since \(Q_1 \perp Q_2 \) and \(Q_1 + Q_2 \neq I \) we have
\[\sigma(A) = \{ \alpha_1 + \lambda_1 + \lambda_2, \alpha_2 + \lambda_1 + \lambda_2, \lambda_1 + \lambda_2 \} \]

and so two of these points coincide. Now \(\alpha_1, \alpha_2 \neq 0 \) so we must have
\[\alpha_1 + \lambda_1 + \lambda_2 = \alpha_2 + \lambda_1 + \lambda_2 \]
and so \(\alpha_1 = \alpha_2 \).

Lemma 8. If \(P_1, P_2 \) are non-central, orthogonal, equivalent projections in \(M \) with \(P_1 + P_2 \neq I \) there exist non-central, orthogonal, equivalent projections \(Q_1, Q_2 \) in \(N \) and \(\alpha \neq 0 \) such that \(\phi(P_1) = \alpha Q_1 + \lambda I \).

Proof. Let the \(Q_i \) and \(\alpha \) be chosen as in Lemma 7, let \(V \) be a partial isometry in \(M \) such that \(V^*V = P_1, VV^* = P_2 \), and let \(\mathcal{A} \) be the non-commutative 5-dimensional von Neumann subalgebra of \(M \) generated by \(\{ I, P_1, P_2, V, V^* \} \). Then \(\mathcal{B} = \phi(\mathcal{A}) \) is a 5-dimensional von Neumann subalgebra of \(N \) generated by
\[\{ I, \alpha Q_1 + \lambda_1 I, \alpha Q_2 + \lambda_2 I, X, X^* \} \]
where \(X = \phi(V) \). We have that
\[Z_{\mathcal{B}} = \text{lin.sp.} \{ I, Q_1 + Q_2 \} \]
since
\[Z_{\mathcal{A}} = \text{lin.sp.} \{ I, P_1 + P_2 \} . \]
Since \(\mathcal{B} \) is a non-commutative 5-dimensional von Neumann algebra,
\[\mathcal{B} = M_1 \oplus M_2 \cong \mathbb{C} \oplus M_2(\mathbb{C}) \]
where \(M_2(\mathbb{C}) \) is the algebra of \(2 \times 2 \) matrices over \(\mathbb{C} \). Let \(I_1 \) and \(I_2 \) be the central projections of \(\mathcal{B} \) which are the identities of \(M_1 \) and \(M_2 \) respectively. We have \(I_1 + I_2 = I \). Now \(Q_1 + Q_2 \) is a non-zero central projection in \(\mathcal{B} \) so either \(Q_1 + Q_2 = I_1 \) or \(Q_1 + Q_2 = I_2 \). But \(I_1 \) is not the sum of non-zero orthogonal projections so we have \(Q_1 + Q_2 = I_2 \). This implies that \(Q_1 \) and \(Q_2 \) are in \(M_2 \) and so are equivalent since they are non-central.

Lemma 9. Let \(M \) be a factor of type \(\Gamma_{\infty} \), II, or III and let \(P \in M \) be a non-central projection. There exists \(\alpha \in \mathbb{C}, \alpha \neq 0 \), independent of \(P \) and a non-central projection \(Q \in N \) such that \(\phi(P) = \alpha Q + \lambda I \).

Proof. Let \(P = P_1 \) and let \(P_2 \neq P_1 \) be any other non-central projection in \(M \). One of \(P_1 \vee P_2, (I - P_1) \vee P_2, P_1 \vee (I - P_2) \) or \((I - P_1) \vee (I - P_2) \) has codimension \(\geq 2 \). Suppose it is \(P_1 \vee P_2 \), the other cases being similar. Thus \(I - (P_1 \vee P_2) \) is the sum of two orthogonal projections. (In the type II and III cases we need only that \(I - (P_2 \vee P_2) \neq 0 \) and then could “halve” \(I - (P_1 \vee P_2) \) to get equivalent orthogonal projections. In the type I case the codimension \(\geq 2 \) as long as the dimension of \(\mathcal{A} \geq 5 \).) Let \(P_3 \) be one of them. Then \(P_1 \perp P_3 \) and \(P_1 + P_3 \neq I \). Applying Lemma 7 to \(P_1 \) and \(P_3 \) we get
\[\phi(P_1) = \alpha Q_1 + \lambda_1 I, \quad \phi(P_3) = \alpha Q_3 + \lambda_3 I. \]

Applying Lemma 7 to \(P_2 \) and \(P_3 \) we get
\[\phi(P_2) = \alpha' Q_2' + \lambda_2' I, \quad \phi(P_3) = \alpha' Q_3' + \lambda_3' I. \]

Applying Lemma 5 to the two representations of \(\phi(P_3) \) we get \(\alpha' = \pm \alpha \). If \(\alpha' = -\alpha \), write
\[\phi(P_2) = \alpha(I - Q_2') + (\lambda_2' - \alpha) I. \]

We now replace \(\phi \) by \((1/\alpha)\phi\).

Lemma 10. Let \(M \) be a factor of type I\(_{\infty} \), II, or III, and \(P \) a non-central projection. Then \(\phi(P) \) can be expressed uniquely in one of two ways

(i) \(\phi(P) = \theta(P) + \lambda(P) I, \) or

(ii) \(\phi(P) = -\theta'(P) + \lambda'(P) I \)

where \(\theta(P), \theta'(P) \) are non-central projections in \(N \), and \(\lambda(P), \lambda'(P) \) are scalars.

Proof. With the above normalization
\[\phi(P) = Q + \lambda I = -(I - Q) + (1 + \lambda) I \]
so we let \(\theta(P) = Q, \lambda(P) = \lambda, \theta'(P) = I - Q, \lambda'(P) = 1 + \lambda \). If
\[Q + \lambda I = Q' + \lambda' I \]
where \(Q \) commutes with \(Q' \) then
\[(\lambda - \lambda')^2 I = (Q' - Q)^2 = Q' + Q - 2QQ'. \]
This happens if and only if \(Q = Q' \).

3. The C*-isomorphism theorem.

Lemma 11. \(\theta(I - P) = I - \theta(P), \theta'(I - P) = I - \theta'(P) \).

Proof. See [6, Lemma 4].

Lemma 12. If \(P \) and \(Q \) are orthogonal projections in \(M \) then either
\[\theta(P) \perp \theta(Q) \quad \text{or} \quad I - \theta(P) \perp I - \theta(Q). \]

Proof. This follows from Lemma 5 and Lemma 9.

Definition. If \(M \) is a von Neumann algebra let \(M_p \) be the collection of projections in \(M \). A projection orthoisomorphism between von Neumann algebras \(M \) and \(N \) is a map \(\theta: M_p \to N_p \) which is one to one, onto, and such that if \(P, Q \in M_p \) with \(PQ = 0 \) then \(\theta(P)\theta(Q) = 0 \).
Lemma 13. If \mathcal{A} is an abelian von Neumann subalgebra of M of dimension ≥ 3 then either θ or φ is an orthoisomorphism on \mathcal{A}_p, and these possibilities are mutually exclusive. If θ is an orthoisomorphism then both θ and λ are additive on mutually orthogonal projections in \mathcal{A}_p. A similar statement holds for φ' and λ'.

Proof. See [6, Lemma 6].

Lemma 14. Let P_1, \ldots, P_n, $n \geq 3$ be mutually orthogonal equivalent projections in M. If the $\theta(P_i)$ are orthogonal then they are equivalent in N. If the $\theta'(P_i)$ are mutually orthogonal then they are equivalent in N.

Proof. Applying Lemma 8 we have that if $\theta(P_1) \perp \theta(P_2)$ then $\theta(P_1) \sim \theta(P_2)$ in N, etc.

Theorem 1. Let $\phi : M \to N$ be a commutativity preserving map of the infinite factor M onto the von Neumann algebra N. Then N is an infinite factor and if $P \in M_p$, $\phi(P) = \theta(P) + \lambda(P)$ where θ is an orthoisomorphism, or

$$
\phi(P) = -\theta'(P) + \lambda'(P)
$$

where θ' is an orthoisomorphism. If M is a finite factor, so is N and a similar conclusion holds for ϕ.

Proof. If M is infinite choose mutually orthogonal equivalent projections P_i, $i = 1, 2, 3, 4$ such that

$$
\sum_{i=1}^{4} P_i = I
$$

and assume the $\theta(P_i)$ are orthogonal. Then the $\theta(P_i)$ are equivalent. Since $P_1 \sim P_3 \sim P_1 + P_2$ we have, from Lemma 8 and the additivity of θ, that $\theta(P_1) \sim \theta(P_1) + \theta(P_2)$ so that N is infinite. Now

$$
I = \phi(I) = \sum_{i=1}^{4} \phi(P_i) = \sum_{i=1}^{4} \theta(P_i) + \left(\sum_{i=1}^{4} \lambda(P_i) \right) I
$$

which implies

$$
\sum_{i=1}^{4} \theta(P_i) = I \quad \text{and} \quad \sum_{i=1}^{4} \lambda(P_i) = 0
$$

since the $\theta(P_i)$ are orthogonal. Thus $\theta(I) = I$. In the θ' case, $\theta'(I) = -I$. The proof in the infinite case now follows [6, Theorem 2].

If M is finite, and hence of type II_1 since we are ruling out the type II_n case, then so is N since the above reasoning could be applied to ϕ^{-1} if N were infinite. N cannot be of type II_n since ϕ^{-1} preserves linear dimension.
Hence N is also of type II_1. The proof for M and N being II_1-factors now follows [6, Theorem 3].

Theorem 2. Let $\phi: M \to N$ be a commutativity preserving map from the factor M onto the von Neumann algebra N. Then $\phi = c\bar{\theta} + \lambda$ where $c \in \mathbb{C}$, $c \neq 0$, $\bar{\theta}$ is an isomorphism or an anti-isomorphism of M onto N, and λ is a \ast-linear map from M into $Z_N = \text{Cl}$.

Proof. On projections

$$\phi(P) = \theta(P) + \lambda(P)I \quad \text{or} \quad \phi(P) = -\theta'(P) + \lambda'(P)I$$

as in Theorem 1. Taking the case where θ is an orthoisomorphism there is, by a theorem of Dye [3, Theorem 1], a C^*-isomorphism $\bar{\theta}$ of M on N which agrees with θ on M_P. By [8, Theorem 6] every self-adjoint operator in a properly infinite von Neumann algebra is a real linear combination of eight projections, and it was proved in [4] that every operator in a II_1-factor is a linear combination of projections. Thus for any factor M, if $A \in M$ then

$$A = \sum_{i=1}^{n} \alpha_i P_i.$$

We have

$$\phi(A) = \phi\left(\sum_{i=1}^{n} \alpha_i P_i\right) = \sum_{i=1}^{n} \alpha_i \left(\theta(P_i) + \lambda(P_i)I\right)$$

$$= \sum_{i=1}^{n} \alpha_i \bar{\theta}(P_i) + \left(\sum_{i=1}^{n} \alpha_i \lambda(P_i)\right)I$$

$$= \bar{\theta}(A) + (\sum \alpha_i \lambda(P_i))I.$$

That is, $\phi(A) - \bar{\theta}(A) \in Z_N = \text{Cl}$ for each $A \in M$. Setting $\phi(A) - \bar{\theta}(A) = \lambda(A)$ we see that $\lambda(A)$ is a \ast-linear map from M into Z_N, and

$$\phi(A) = \bar{\theta}(A) + \lambda(A).$$

A similar argument applies in the θ' case to give

$$\phi(A) = -\bar{\theta}(A) + \lambda(A).$$

We recall that ϕ was normalized in Lemma 2 and after Lemma 9 so what we have really proved is

$$\frac{1}{c^\ast} \phi = \pm \bar{\theta} + \lambda$$

where $\bar{\theta}$ is a C^*-isomorphism. Since a C^*-isomorphism on a factor is either an isomorphism or an anti-isomorphism we have the result.
Acknowledgement. The author would like to thank the referee for suggestions which substantially improved an earlier version of this paper.

REFERENCES

University of Victoria,
Victoria, British Columbia