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Abstract

In this paper, we investigate the thermal evolution in a one-dimensional bagasse
stockpile. The mathematical model involves four unknowns: the temperature, oxygen
content, liquid water content and water vapour content. We first nondimensionalize
the model to identify dominant terms and so simplify the system. We then calculate
solutions for the approximate and full system. It is shown that under certain conditions
spontaneous combustion will occur. Most importantly, we show that spontaneous
combustion can be avoided by sequential building. To be specific, in a situation where,
say, a 4.7 m stockpile can spontaneously combust, we could construct a 3 m pile and
then some days later add another 1.7 m to produce a stable 4.7 m pile.

2020 Mathematics subject classification: 35Q79.
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1. Introduction

Bagasse is the residue which remains after sugar cane has been crushed and the
majority of the juice has been extracted. In the past, it was viewed as a waste
product. However, now, instead of being discarded, it is being exploited in a variety
of situations. Its role as a source of biofuel has been explored in [2, 16]. After burning,
the ash may be used in the manufacture of building materials [1]. The ash has also
recently been employed in column adsorption technologies to remove environmental
pollutants such as manganese, cobalt, copper, nickel and sulfamethoxazole from water
(see [9, 14]). An obvious use is as a fuel from which to generate electricity and
steam to run the sugar extraction process. This use of a local, readily available fuel
reduces costs and so improves competitiveness. Unfortunately, whatever the final use
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of bagasse, there is a well-known problem with its storage in that large piles are prone
to spontaneous combustion.

The work described in the current paper was proposed by the South African Sugar
Milling Research Institute (SMRI) at the 2016 and 2017 Mathematics in Industry Study
Group, and concerns the storage of bagasse for use in furnaces. Due to the safety issues,
they wished to carry out a study into the processes driving spontaneous combustion.
Three issues related to safe storage of bagasse were discussed at the meetings:

(i) calculating the maximum possible height of the bagasse heap before sponta-
neous combustion occurs;

(ii) investigating whether or not there are advantages in adjusting the moisture
content; and

(iii) investigating whether or not there is an advantage in pelletizing the bagasse.

Preliminary results from the meetings were summarised by Myers and Mitchell [12].
Spontaneous combustion has been documented for almost 2000 years, with Pliny

the Elder warning of one the many dangers associated with alcohol: “Wine-lees when
dried will catch fire, and go on burning of themselves without fuel being added” [15].
The first accepted scientific study, which led to the famous van’t Hoff equation, dates
back to 1844 [19]. Much of the mathematical background is described in the thesis [8]
which focuses specifically on bagasse.

The first recorded bagasse spontaneous combustion incident took place in the
Mourilyan stockpile in 1983. This incident motivated experiments, some of which
were made by Gray et al. [5, 6], that attempted to determine why bagasse would
spontaneously combust and which conditions favoured this phenomenon. Following
two more ignition incidents between 1983 and 1988, Dixon [3] investigated the process
of spontaneous combustion of bagasse and found that moisture content plays a very
significant role in the process. Consequently, it was suggested that the effect of
moisture content should never be neglected in the mathematical modelling of the
spontaneous combustion of bagasse stockpiles.

Spontaneous combustion has been observed in a number of other industries such
as coal mining (and the combustion of coal dust), industrial composting [11], shipping
(due to flammable cargoes such as seeds, vegetable oils, cotton and coal) and in the
waste recycling industry, which is a very topical example (an interesting article “Why
recycling plants keep catching on fire” appeared in Time magazine in 2023 [13]).
Consequently there is a rich literature on the topic. In this article, we base our work on
the one-dimensional models developed by Dixon [3] and Gray and co-workers [5–7].
In the context of chemical reactors, Fowler [4] details the basic mathematical theory of
thermal runaway. By focusing on the one-dimensional, we may be erring on the side of
caution; being one-dimensional, the model does not account for effects (in particular,
cooling) from the sides. With a narrow pile, this could result in significantly lower
temperatures than predicted by a one-dimensional model. However, the conclusion of
the two-dimensional numerical study of [10] suggested that the results were similar to
those of an earlier one-dimensional study.
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The layout of this paper is as follows. In Section 2, we give the governing equations
and nondimensionalize the problem. In Section 3, we describe the numerical solution
using the method of lines. In Section 4, we present results and, finally, we discuss the
conclusions in Section 5.

2. Governing equations

Our mathematical study is based on the following four equations taken from [7],

(ρbcb + mwcwW)
∂T
∂t
= k
∂2T
∂x2 + qdρbzdX exp

(
− Ed

RT

)
+ qwρbzwWX exp

(
− Ew

RT

)
g(T)

+ Lv

[
zcV − zeW exp

(
− Lv

RT

)]
, (2.1)

∂V
∂t
= DV

∂2V
∂x2 + zeW exp

(
− Lv

RT

)
− zcV , (2.2)

∂W
∂t
= −zeW exp

(
− Lv

RT

)
+ zcV , (2.3)

∂X
∂t
= DX

∂2X
∂x2 − fρbzdX exp

(
− Ed

RT

)
− fρbzwWX exp

(
− Ew

RT

)
g(T),

(2.4)

which represent the evolution of temperature T (K), water vapour V (mol/m)3, liquid
water content W (mol/m3) and oxygen X (mol/m3) (note that we use a more natural
notation for the variables than that prescribed in [7]). The notation is defined in
Table 1. Equation (2.1) represents conservation of energy where the exponential terms
correspond to heat sources caused by the different reactions taking place. The first
exponential corresponds to a dry oxidation reaction, the second represents hydrolysis
and requires both water and oxygen, while the term multiplied by Lv represents the
energy difference between vaporisation and condensation. A more detailed discussion
of these terms and relevant assumptions is provided in [7, 18]. The function g(T) is
a switch that reflects the fact that the wet reaction turns off at temperature T = Ts,
that is,

g(T) = 1
2 [tanh(0.6(Ts − T)) + 1],

where Ts is known through previous experimental work. Equations (2.2) and (2.3)
are simple mass balances representing the temperature-driven exchange between
vapour and liquid water. Theoretically, both should include diffusion but, since the
vapour moves more easily, the diffusion term is only retained in (2.2). According
to equations (2.2) and (2.3), vapour and water are exchanged through condensation
and evaporation, where evaporation is strongly temperature dependent. Equation (2.4)
shows that oxygen diffuses through the system and a significant amount is removed
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TABLE 1. Variables and parameter values for computations taken from [7].

Parameter Description Value Unit

Ed activation energy of dry reaction 1.08 × 105 J mol−1

Ew activation energy of wet reaction 6.5 × 104 J mol−1

R universal gas constant 8.31 J mol−1 K−1

qd exothermicity of dry reaction 1.7 × 107 J kg−1

qw exothermicity of wet reaction 6.6 × 106 J kg−1

zd pre-exponential factor of the dry reaction 2.7 × 107 m3 mol−1 s−1

zw pre-exponential factor of the wet reaction 0.204 m3 mol−1 s−1

ze pre-exponential factor of evaporation 3.41 × 104 s−1

zc pre-exponential factor of condensation 4.7 s−1

Lv latent heat of vaporisation 4.2 × 104 J mol−1

k thermal conductivity 0.5 J m−1 K−1 s−1

DV , DX water vapour and oxygen diffusivities,
respectively,

2.5 × 10−5 m2 s−1

h heat transfer coefficient 5 J m−2 K−1 s−1

hV , hX water vapour and oxygen transfer
coefficients, respectively,

5 m s−1

mw mass of water 1.8 × 10−2 kg mol−1

ρw density of water 1 × 103 kg m−3

ρb density of dry bagasse 125 kg m−3

cw specific heat capacity of water 4.19 × 103 J kg−1 K−1

cb specific heat capacity of dry bagasse 1.4 × 103 J kg−1 K−1

T temperature K
Ts switch temperature 333 K
Ta ambient temperature 303 K
V water vapour concentration mol/m)3

Va ambient water vapour concentration 1.74 mol m−3

W liquid water content mol/m3

X oxygen content mol/m3

Xa oxygen concentration in air 8.04 mol m−3

f moles of O2 consumed per kg of bagasse 33.33 mol kg−1

L height of the bagasse pile 3 − 6 m

by oxidation and hydrolysis (it is assumed that the corresponding quantity of water is
small and hence it is neglected in the mass balance (2.3), although the energy generated
is nonnegligible). The many constants and typical values, taken from [7], are described
in Table 1.

The system is subject to the following boundary conditions. At the top surface,
x = L, we impose Newton cooling conditions, stating that the exchange of heat, vapour
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and oxygen are driven by the difference between the value in the surrounding air and
the top of the pile,

−k
∂T
∂x
= h(T − Ta), −DV

∂V
∂x
= hV (V − Va), −DX

∂X
∂x
= hX(X − Xa). (2.5)

Assuming that the bagasse is placed on an impermeable surface, we impose the
following at x = 0,

T = Ta,
∂V
∂x
= 0,

∂X
∂x
= 0. (2.6)

The final two conditions in (2.6) are based on the assumption that the substrate prevents
vapour and water from passing through, and hence there is zero flux. The first condition
assumes that, since the temperature variation is slow (of the order of days), it does not
significantly affect the (infinitely large) substrate temperature and the temperatures
match there. Obviously, these conditions could be altered if more precise details of the
storage area were provided.

We assume that the pile is initially well mixed so that all values are constant: that is,

T(x, 0) = Tin, V(x, 0) = Va, W(x, 0) = Win, X(x, 0) = Xa, (2.7)

where subscript a refers to the ambient value. All except Win are known; we find this
final value from the water equation below. The initial temperature differs from the
ambient, since it comes from the process used to remove sugar from the bagasse and
the time between processing and piling.

To simplify the problem, the equations are now written in nondimensional form.
The scaling is

x′ =
x
L

, t′ =
t
Δt

, T ′ =
T

Tin
, V ′ =

V
Va

, W ′ =
W
ΔW

, X′ =
X
Xa

,

where the time and water scales are the only ones not yet specified; we determine
these below. Note that, in [18], the temperature scale is chosen from the dry reaction,
ΔT = Ed/R. With the values provided in Table 1, this leads to ΔT ≈ 13, 000 K. As
this is more than twice the temperature of the Sun, we conclude that this is not
representative of the process and, consequently, prefer the switch value Tin (which
is of the order of the ambient temperature). It must be the correct order of the pile
temperature for most of the process. This choice also allows us to focus on the range
where thermal reactions are important.

Writing equation (2.1) in nondimensional form, and immediately dropping the
primes, gives
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(ρbcb + mwcwΔWW)
Tin

Δt
∂T
∂t
=

kTin

L2

∂2T
∂x2 + qdρbzdXaX exp

(
− Ed

RTinT

)

+ qwρbzwΔWXaWX exp
(
− Ew

RTsT

)
g(TinT)

+ Lv

[
zcVaV − zeΔWW exp

(
− Lv

RTinT

)]
.

The quantity of primary interest in this study is the temperature, so we will work on
the timescale of thermal diffusion. Balancing the left-hand side with the first term on
the right-hand side leads to

Δt =
L2ρbcb

k
=

L2

DT
,

where DT = k/ρbcb. Taking values from Table 1 and a 3 m pile, we obtain
Δt = 3.15 × 106s, which is approximately 36 days.

The water equation is

ΔW
Δt
∂W
∂t
= −zeΔWW exp

(
− Lv

RTinT

)
+ zcVaV , (2.8)

which makes it clear that the water scale is linked to the vapour scale, and we set

ΔW =
zcVa

ze
exp
( Lv

RTin

)
.

Again taking values from Table 1, we find ΔW ≈ 748 mol/m 3. Assuming that the water
concentration in the material before being placed in the pile is based on the initial
temperature and vapour concentration, we choose Win = ΔW. Equation (2.8) may now
be written as

exp
( Lv

RTin

) 1
zeΔt
∂W
∂t
= −W exp

[
− Lv

RTin

( 1
T
− 1
)]
+ V .

With the time and water scales fixed, we may now write the full nondimensional
system

(1 + A0W)
∂T
∂t
=
∂2T
∂x2 + A1X exp

[
− γd

( 1
T
− 1
)]
+ A2WX exp

[
− γw

( 1
T
− 1
)]

g(T)

+ A3

{
V −W exp

[
− γv

( 1
T
− 1
)]}

, (2.9)

B0
∂V
∂t
=
∂2V
∂x2 + B1

{
W exp

[
− γv

( 1
T
− 1
)]
− V
}
, (2.10)

C0
∂W
∂t
= −W exp

[
− γv

( 1
T
− 1
)]
+ V , (2.11)
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D0
∂X
∂t
=
∂2X
∂x2 − D1X exp

[
− γd

( 1
T
− 1
)]
− D2WX exp

[
− γw

( 1
T
− 1
)]

g(T),

(2.12)

where

A0 =
mwcwWin

ρbcb
, A1 =

qdρbzdXaL2

kTin
exp(−γd),

A2 =
qwρbzwWinXaL2

kTin
exp(−γw), A3 =

LvzcVaL2

kTin
,

B0 =
L2

ΔtDV
, B1 =

zcL2

DV
, C0 =

exp
(
γv

)

zeΔt
,

D0 =
L2

ΔtDX
, D1 =

fρbzdL2

DX
exp(−γd), D2 =

fρbzwWinL2

DX
exp(−γw),

γd =
Ed

RTin
, γw =

Ew

RTin
, γv =

Lv

RTin
,

and

g(T) = 1
2 [tanh(0.6Tin(Ts/Tin − T)) + 1].

The boundary conditions from (2.5) become

−∂T
∂x
= αT (T − Ta/Tin), −∂V

∂x
= αV (V − 1), −∂X

∂x
= αX(X − 1), (2.13)

on x = 1, where

αT =
hL
k

, αV =
hVL
DV

, αX =
hXL
DX

.

On x = 0, the boundary conditions (2.6) are simply

T =
Ta

Tin
,
∂V
∂x
= 0,

∂X
∂x
= 0, (2.14)

and the initial conditions (2.7) are

T(x, 0) = V(x, 0) = W(x, 0) = X(x, 0) = 1. (2.15)

Using values from Table 1, all coefficients from the equations and conditions may
be calculated. Taking L = 3 m leads to the values presented in Table 2.

The high value of A3 could indicate a poor balance; however, it multiplies the term
representing the exchange between water and vapour. According to equation (2.3), this
is of order 10−5 and so the final term of (2.1) is of order A3C0 ≈ 0.6 and the heat
equation is well balanced. Similarly, although B1 in (2.2) is high it also multiplies a
term of order C0. The value of B1C0 is approximately equal to 50, whereas B0 ≈ 0.1
suggests the existence of a boundary layer in V. We will discuss this later.
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TABLE 2. Values of the nondimensional coefficients when L = 3 m.

Coefficient Value Coefficient Value

A0 0.32 D1 0.81
A1 0.49 D2 20.38
A2 4.80 γd 38.45
A3 1.83 × 104 γw 23.14
B0 0.11 γv 14.95
B1 1.69 × 106 αT 30
C0 2.90 × 10−5 αV 6 × 105

D0 0.11 αX 6 × 105

3. Numerical solution

We now describe the numerical solution used to provide the qualitative and
approximate results. We begin by writing (2.9)–(2.12) as

(1 + A0W)
∂T
∂t
=
∂2T
∂x2 + FT (T , V , W, X), (3.1)

B0
∂V
∂t
=
∂2V
∂x2 + FV (T , V , W), (3.2)

C0
∂W
∂t
= FW(T , V , W), (3.3)

D0
∂X
∂t
=
∂2X
∂x2 + FX(T , V , W, X), (3.4)

respectively, and solve this system using the method of lines of Schiesser [17]. We
define the spatial mesh xi = iΔx for i = 0, 1, . . . , I, where Δx = 1/I and let Ti =

T(xi, t); similarly for Vi, Wi and Xi. Then we discretize the diffusion terms in (3.1)–(3.2)
and (3.4) as

(1 + A0Wi)
dTi

dt
=

Ti+1 − 2Ti + Ti−1

Δx2 + FT (Ti, Vi, Wi, Xi),

B0
dVi

dt
=

Vi+1 − 2Vi + Vi−1

Δx2 + FV (Ti, Vi, Wi),

D0
dXi

dt
=

Xi+1 − 2Xi + Xi−1

Δx2 + FX(Ti, Vi, Wi, Xi),

for i = 1, 2, . . . , I − 1. Equation (3.3) is simply

C0
dWi

dt
= FW(Ti, Vi, Wi),

which holds for i = 0, 1, . . . , I. The first boundary condition in (2.14) on x = 0
immediately gives T0 = Tin/Ts. For the other remaining conditions in (2.14) and for
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those in (2.13) on x = 1, we obtain further ordinary differential equations (ODEs)
involving V0, X0, TI , VI and XI . These are

B0
dV0

dt
=

2(V1 − V0)
Δx2 + FV (T0, V0, W0),

D0
dX0

dt
=

2(X1 − X0)
Δx2 + FX(T0, V0, W0, X0),

(1 + A0WI)
dTI

dt
=

2
(
TI−1 − TI − ΔxαT (TI − Ta/Ts)

)
Δx2 + FT (TI , VI , WI , XI),

B0
dVI

dt
=

2
(
VI−1 − VI − ΔxαV (VI − 1)

)
Δx2 + FV (TI , VI , WI),

D0
dXI

dt
=

2
(
XI−1 − XI − ΔxαX(XI − 1)

)
Δx2 + FX(TI , VI , WI , XI).

This system of ODEs is solved, with the initial conditions in (2.15), using ode23s in
MATLAB.

3.1. Reduced model Based on the size of certain coefficients involved in the
model, we also analyse a reduced system where W is taken as steady state (this is
clearly justifiable since C0 = 2.9 × 10−5). Thus, we set

W = V exp(γv(1/T − 1)).

Consistent with this steady-state solution, the vapour equation indicates Vxx ≈ 0 which
leads to V = 1.

The numerical solution now depends purely on equations (3.1) and (3.4) where,
in keeping with the steady-state W solution, we neglect the A3 term in (3.1) and
replace W = exp(γv(1/T − 1)) in (3.4). This two-equation system is compared with
the four-equation system in the following section.

4. Results

In Figure 1(a) and (b) we show the numerical solution of the full system for the
dimensional temperature and vapour distribution in a 3 m pile after 50 days. Given
our focus on spontaneous combustion, the temperature is the quantity of primary
interest. From Figure 1(a) we can see that, so far, this pile gives no indication of
thermal runaway. The initial constant temperature, Tin = 65◦C, very quickly reduces
to a smoothly curved profile satisfying the fixed temperature condition T = 30◦C at
x = 0. The maximum temperature remains just below 60◦C for almost the whole time
period. After the initial transient period, the vapour, shown in Figure 1(b), has a central
approximately constant region, as suggested by the reduced model, but with boundary
layers at either end where it adjusts to the upper and lower boundary conditions. Liquid
water, shown in Figure 2(a), builds up slightly at the substrate, where it cannot escape,
and more so at the top surface where vapour from the air arrives and condenses.
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FIGURE 1. (a) Temperature in 3 m pile after 50 days; and (b) corresponding vapour distribution.

FIGURE 2. (a) Water distribution in 3 m pile; and (b) oxygen distribution.

Mathematically, we note that, in the steady-state approximation, W ≈ V , and then the
high value near the surface corresponds to the boundary layer of V. Finally, Figure 2(b)
shows the oxygen content, which obviously decreases away from the top surface as it
is used by the thermal reaction.

In Figure 3(a), we present a comparison between the maximum temperature profiles
(against time) for the four- and two-equation models, for three values of pile thickness.
For the 4 m, 4 m piles, the two sets of curves are very close. Crucially the models
exhibit almost identical maximum temperatures, which suggests that the two-equation
model can provide a good approximation to the full model. This is slightly surprising,
since the reduction is based on the assumption that V is constant; in dimensional
form V = Va. Yet the solution of the full model, Figure 1(b), shows clearly that V
is only close to the ambient value in the top 2 m of the pile. In the bottom metre,
it reduces by almost a factor of three. A possible reason why this error does not
affect the temperature is that heat is primarily generated away from the bottom region:
it is generated where the oxygen level is high. Consequently, although the vapour
approximation is inaccurate near the substrate, the fact that it is more accurate where
heat is generated results in a good approximation to the overall temperature profile.
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FIGURE 3. (a) A comparison of the maximum temperature profiles (against time) for the two-equation
model (in red) and for the full four-equation model (in black), for three values of L; and (b) three values
of L near runaway for the four-equation model (colour available online).

For the case L = 5 m, both solutions have blown up and no solution was found for the
two-equation system.

In Figure 3(b), we examine the region approaching blow-up in more detail using
the four-equation model (which turned out to be more stable). For the two cases
L = 4.6 m and L = 4.65 m, the temperature peaks and then slowly decreases. Switching
to L = 4.7 m, the gradient is initially high, and then reduces at around three days but
continues to slowly increase, ultimately leading to thermal runaway. If we continued
the calculation beyond 20 days this would become more apparent. Hence, in this case,
the switch in stability occurs somewhere between L = 4.65 m and L = 4.70 m and, for
piles higher than this, switch thermal runaway will occur. Note that this type of system
typically has three theoretical steady-state solutions; here we have followed the path to
the lower value, which is the most physically relevant.

Finally, in Figure 4, we focus on the crucial region with L = 4.6 m and L = 4.7 m,
and demonstrate a possible way forward for the storage of combustible materials.
Figure 4(a) shows the temperature evolution of a 4.6 m pile. The solid line corresponds
to the dashed line of Figure 3(b), which takes its maximum value just before six days.
In comparison, the dashed line here shows the result when a 3 m pile is laid down
and then, after one day, a 1.6 m layer is added on top. It appears that, at this time,
the temperature is just peaking and the reaction is slowing down. The temperature
then reduces until around day two when the interaction with the upper layer results
in a second peak. After 20 days the temperature is approximately 8◦C below that
of the single 4.6 m pile. This is more than enough to prevent thermal runaway. The
dash-dot line shows the result for a 4 m and a 0.6 m combination. In this case, no
secondary peak occurs. This results in a final reduction of around 5◦C below the single
pile temperature. Although L = 4.6 m is stable, it demonstrates that building the pile
sequentially does give a much reduced maximum temperature, because a significant
quantity of the initial heat is allowed to escape. This can provide a margin of error.
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FIGURE 4. A comparison of the maximum temperature profiles against time for a single layer and for two
layers (obtained by sequential building), for (a) L = 4.6 m; and (b) L = 4.7 m (colour available online).

With an interest in the runaway in Figure 4(b), we show results for a final height
of 4.7 m. The solid line repeats the result of Figure 3(b). The dashed line represents
the pile made through the 3 m and 1.7 m combination. Again a secondary peak occurs
and now the difference in temperatures after 20 days is almost 20◦C. Clearly, this
sequentially built pile is cooling down rather than moving towards combustion. The
dash-dot line, representing a 4 m and 0.7 m combination, results in an approximately
14◦C reduction after 20 days, also avoiding combustion. Hence, we conclude that
sequential building seems to be the answer: even if there is only a short time between
adding the second pile, it is enough to prevent thermal runaway.

5. Conclusion

In this report, we have presented a mathematical model for a one-dimensional
bagasse stockpile, coupling the effects of temperature, liquid water, water vapour and
oxygen. The numerical solution of this system shows that it is capable of predicting
thermal runaway.

The full model investigated involved four variables: temperature, water content,
vapour content and oxygen content. However, a reduced system involving solving
for only temperature and oxygen showed excellent agreement with the full model,
although, tests did show that the two-equation model would predict runaway at
slightly earlier times. Previous work suggested that the water content must be
included; our result does not contradict this, but it merely states that the water
follows a pseudo-steady state with a simple variation due to temperature changes.
This observation could be exploited to permit a more analytical examination of the
behaviour.

The most significant conclusion from this study concerns the strategy for building
large piles without leading to ignition. Specifically, if we build a pile sequentially,
we can avoid spontaneous combustion. In our calculations, we found that, under the
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prescribed conditions, thermal runaway occurred for piles greater than somewhere
between 4.65 m and 4.7 m. By first building a 3 m pile and then adding another 1.7 m
layer, the temperature around the critical point was reduced by some 10◦C when
compared with a 4.7 m pile, and after 20 days this changed to around 20◦C as the
single pile started its journey to thermal runaway. Of course, we could continue this
strategy to make larger piles, with more layers, but with this single example we have
paved the way for a more complete investigation.

This brings us to the main question proposed by the SMRI. How high can a
bagasse pile be built without spontaneous combustion occurring? The answer depends
crucially on the method of building. A 5 m pile laid down in a single go could
ignite, whereas a pile made up of a 3 m one followed by a 2 m one may not, even
if there is only a single day between adding the second layer. Multiple-layer piles
could be significantly higher than single-layer piles. So, there is no simple answer to
the question posed by the SMRI. However, there is a clear recommendation: build
sequentially, to allow the initial heat to escape, which will result in thermally stable
piles.
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