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Abstract. The /CO-cohomology ring of the symmetric space SU(2n)/SO(2n) is
computed by using the Bott exact sequence and some facts on the real and quaternionic
representation rings of SU(2n) and SO(2n).

1. Introduction and statement of result. For each integer n > l , through the natural
inclusion R c C , the rotation group SO(n) may be viewed as a closed subgroup of the
special unitary group SU(n), and we have a homogeneous space SU(n)/SO(n). It is a
symmetric space, because the complex conjugation <r = ~:SU(n)-+SU(n) is an involu-
tive automorphism of SU(n), and its fixed point subgroup is SO(n). The cohomology and
/(-theory of SU(n)/SO(n) are known (see [4] and [5]), and so is the KO-theory of
SU(2n + l)/SO(2n + 1) (see [7]). The purpose of this paper is to compute the KO-theory
of SU(2n)/SO(2n). For this we need the following result of H. Minami [5, Proposition
8.2] on the K-theory of SU(2n)/SO(2n).

We begin with some notation and terminology. There is a fibre sequence

SO(2n) -U SU(2n) -% SU(2n)/SO(2n) -U BSO(2n) ^U BSU(2n).

In general, let G be a topological group and K = R, C or H. The set of G-K-isomorphism
classes [V] of G-K-modules V corresponds bijectively to the set of equivalence classes of
homomorphisms <pv:G—»GL(dim V, K) of topological groups (see [8]). For a while we
confine our attention to the case K = C. Let R(G) be the complex representation ring of
G. C2" becomes a Sf/(2/i)-C-module in the natural manner. We put A* = [A^C2")] for
each integer k^O, where A* denotes the A>th exterior power functor. Then, as in [3,
Theorem 13(3.1)],

R(SU(2n)) = Z[A,, A2,.. . , A^2, A ^ , ]

and, as in [5, (6.2)], the induced homomorphism cr*:R(SU(2n))-* R(SU(2n)) satisfies

cr*(\k) = \2n.k for * = 1,2,.. . , 2/1-1. (1)

We put fik = [A*((R2")C)]1 where (R2")c is the complexification of the 50(2«)-R-module
R2". Then, as in [3, Theorem 13(10.3)],

R(SO(2n)) =

where

rn = GC + Mn-2 + • • -KM* + Mn-2 + • • • ) - (Mn-l + Mn-3 + • • -f

and elements /A^, fx~ are given as follows. By the definitions of \k and (xk, the induced
homomorphism i*:R(SU(2n))-+ R(SO(2n)) satisfies

i*(A*) = /i* (* = l , 2 , . . . , 2 n - l ) . (2)

Since v°i = i, it follows from (1) and (2) that fik = ti-^-k for each k = 1 ,2 , . . . , 2« - 1.
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There is an 5O(2«)-C-isomorphism f: Ak((R2"^)^ A2"-*^2")0) that gives rise to the
equation and satisfies/ °f = (-i)*'2"-*). In particular, for k = n, we have an isomorphism
/:A"((R2")c)-*A"((R2n)c) w i t h / ° / = (-1)". If n is odd,/has two eigenvalues i V ^ l ; if
n is even,/has two eigenvalues ±1. Let ^ denote the 5O(2n)-C-isomorphism class of
the eigenspace belonging to V - I if n is odd or to 1 if n is even, and /x~ that of the
eigenspace belonging to - V - I if n is odd or to - 1 if n is even. Then

fiH = J C + p- (3)

2n\
1/2.

n I
Let (G, O-) be a symmetric pair (see [4]). That is, roughly speaking, G is a Lie group

and (j is an involutive automorphism of G. Let Ga denote the fixed point subgroup of a.
Then we have a map £:GIGa^>G defined by

£(xG") = xcrix)-' (4)

forxGa e GIG". For (G,<r) = (SU(2n),~) we have g:SU(2n)/SO(2n)-*SU(2n).

The element A* may be regarded as a homomorphism S£/(2n)—»i/i I )) of
\ \ AC / /

topological groups. Let U be the infinite unitary group and ty: L/11 I) -* U the

canonical injection. Then we have an element

On the other hand, let a:R(G)-+ K°(BG) be the homomorphism of Atiyah-
Hirzebruch [2]. More precisely, the restriction of a to the augmentation ideal /(G) is
given by

a([V] - dim V) = [Biy ° B<pv] e [BG, BU] = K°(BG), (5)

where Bt,u:BU(d\m V)-+BU is the canonical injection. We denote by a(fi^) the image

of /it - f j / 2 e I(SO(2n)) under the composite

) ̂ * K°(SU(2n)/SO(2n)).

That is,

With the above notation, Minami [5] showed that

K*(SU(2n)/SO(2n))

= K*(pt) ® AZ(/3(A, - A2n_])> i3(A2 - A ^ ) , . . . , ̂ (An_, - An+1), a(^J)) . (6)

Let g e K'\pt) be the Bott generator and c:/CO*(A')^/C*(Ar) the complexification.
Our main result is as follows.
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THE KO-COHOMOLOGY RING OF SU{2n)/SO(2n)

THEOREM 1. There exist elements

\k2n.k e KO\SU(2n)/SO(2n))Jor k = 1,2,... ,n - 1,

/V+ e KO2(SU(2n)/SO(2n)), if n is odd, or

/V+ e KO°(SU(2n)/SO(2n)), if n is even,

such that

93

and

w even,

l_1, A
2,2n_2).

The author would like to thank K. Morisugi and H. Oshima for their valuable
suggestions.

2. Proof of main result. This section is devoted to proving Theorem 1. Let RO(G)
and RSp(G) be the real and quaternionic representation rings of G, respectively. As in [1,
p. 26], there are five homomorphisms between representation rings in the following
diagram, which is not commutative.

R(G)

RO(G) RSp(G)

R(G)

Their properties which we shall use are

q°c' = 2, (7)

(8)

Corresponding to these homomorphisms, there are five maps between (infinite) classical
Lie groups. We shall use the same letters to denote them. For example, f.U-^U is
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defined to be the limit of the complex conjugations / = :U(n)-+U(n), so that the
diagram

U(n) —^ U

t t

U(n) —^-> U

is commutative. In this way we have maps c:O—*U and q:U—>Sp, which yield fibre
sequences

and

U -U Sp -5t» Sp/U -i* BU,

respectively. We also have a map £c: i//<9—> U defined analogously to (4). Recall that an
Q-spectrum KO = {KO^J^z representing KO-theory is given by

KO* = BO X Z, U/O, Sp/U, Sp, BSp x Z, t//5p, 01V, O

according as k = 0, 1, 2, 3, 4, 5, 6, 7(mod8). It would seem that the following result is
implicitly shown in a topological proof of the Bott periodicity.

LEMMA 2. A map c = {ck}keZ of Q-spectra that represents the complexification
c: KO*{X)->K*(X) is given by the following:
(0) C0 = B
(1) tl = £c:
(2) c2 = (jq,0):Sp/U-*BUxZ;
and so on.

The following lemma, which is due to Seymour [6], is an exercise on Bott's exact
sequence

+ KO*+2(X)-+... ,

where 8(gx) = r(x) for x e K*+\X).

LEMMA 3. Let X be a space such that
(1) K*(X) is free as a K*(pt)-module, and so, as a K*(pt)-algebra, we may write

= K*(pt)®A(bub2,...,bm)

for some algebra A(bu b2,..., bm) over Z with generators bub2,... ,bms K*(X);
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(2) There exist uniquely determined au a2, • • • , am e KO*(X) such that c{a,) = b, for
each i.

Then KO*(X) is a free KO*(pt)-module. Moreover

KO*(X) = KO*(j>t)®A(au a2,..., am)

as a KO*(pt)-algebra.

By (6) the first assumption of Lemma 3 is satisfied for X = SU(2n)/SO(2n). We will
show that the second assumption of Lemma 3 is also satisfied for X = SU(2n)/SO(2n).

Let (G,(T) and (G',a-') be symmetric pairs, and let A:G —*G' be a homomorphism
of topological groups such that A ° a = a' ° A. Then we have a map X:G/G"-+G'/G'"
defined by \(xG'r) = \(x)G"T' for xG'reG/Ga, which makes the following square
commute.

GIG

Does there exist an element in KO 2i \SU(2n)/SO(2n)) such that its image under c
is g'/3(Afr - \2n-k) for some i e Z and k = 1 , 2 , . . . , « - 1? Let us consider the element
A* e R(SU(2n)). By (2), /*(AAr) = /i* in R(SO(2n)). By definition, /x* is real. That is, there
exists an element ^ s RO(SO(2n)) such that c(fTk) = fik. (Since c:flO(S0(2n))->
R(SO(2n)) is injective [1, Proposition 3.27], such a ^ is unique.) Hence i*(\k) = cCjj^).
This implies that the left square in the following diagram is commutative.

SO(2n) — ^ SU(2n) —^ SU(2n)/SO(2n) —^U SO(2n)

Since cr*(AA.) = A2«-* = f(A )̂ by (1) and [1, Theorem 7.4], we see that not only
the middle square but also the right square is commutative. Therefore, if
Luio- V\ ( ))/O[ ( ))-* U/O is the canonical injection, we have an element

\\ k I) Wk II

such that &..(A*.2«-*) = bu ° A*« f]. Since gc.:[X, U/O]-^[X, O] is just c:KO\X)^>
K\X) by Lemma 2(1), this implies that c(A*,n-*) = g"1/3(A* - A2n_*).

Does there exist an element in KO~Zi(SU(2n)lSO(2n)) such that its image under c is
g'aiHn) for some i e Z? Let us consider the element ^ s R(SO(2n)). Our argument is
divided into two cases.

Consider first the case that n is even. By [1, Theorem 7.9], /x+ e R(SO(2n)) is real.
That is, there exists an element /t+ e RO(SO(2n)) such that c(/x+) = n+. Let
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aR:RO(G)—>KO°(G) be the homomorphism defined analogously to (5). Then there is a
commutative diagram

« RRO(G) —5-> [BG, BO x Z] = KO°(BG)

(Be x l ) ,

R(G) —^U> [BG,BUxZ] =

by [3, p. 191]. Therefore, if Bt,0:BO[[ 1/2 I —> BO is the canonical injection, we havean
element

2n
n

= [BLO ° Btf »/] e KCP{SU(2n)ISOQn)),

and by Lemma 2(0), c(/xn,+) = 5c#(/in>+) = [5iy « fl/i.^ °/] = a(/iT)-
Consider next the case that n is odd. In this case, by [1, p. 179], the relation

(9)

holds in R(SO(2n)). On the other hand, by [1, Theorem 7.4], the element An e R(SU(2n))
is quaternionic. That is, there exists an element kn s RSp(SU(2n)) such that

c'(An) = An. (10)

(Since c':RSp(SU(2n))^>R(SU(2n)) is injective [1, Proposition 3.27], such a An is
unique.) Then

2/*(An) = (q ° c')(/*(An)), by (7),

(q

by (10),

by (2),

by (3),

by (9),

by (8),
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in RSp(SO(2n)), which is a free abelian group by [1, Definition 3.26]. Hence /*(An) =
n)- This implies that the left square in the following diagram is commutative.

SO{2n) • > SU(2n) - > SU(2n)/SO(2n) }- > BS0(2n)

*((*)/ «C
The middle and right squares are clearly commutative. Therefore, if ispiu'-

Sp[[ )/2]/L/(( )/2 )^>Sp/U is the canonical injection, we have an element
\\ n I I \\n I I

K] z[SU(2n)/SO(2n),Sp/U] = KO2(SU(2n)/SO(2n))

such that/,.(/u,n,+) = [Biy<»fl/i» °;]- Since jq.:[X, SplU]^ [X, BU] is just c:KO\X)^
K2(X) by Lemma 2(2), this implies that c(/Ltn-+) = g~1a(/x^r).

Thus all the assumptions of Lemma 3 are satisfied for X = SU(2n)/SO(2n). Now we
can apply Lemma 3 to X = SU(2n)/SO(2n). Then Theorem 1 follows.
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