Canad. Math. Bull. Vol. 48 (4), 2005 pp. 601-606

On the Regularity of the *s*-Differential Metric

Javad Mashreghi and Mohamad R. Pouryayevali

Abstract. We show that the injective Kobayashi–Royden differential metric, as defined by Hahn, is upper semicontinous.

1 Introduction

Let *M* be a connected complex manifold and *TM* its holomorphic tangent bundle. A *differential metric* on *M* is a function $f_M: TM \to \mathbb{R}$ satisfying the following conditions:

(i)
$$f_M(X_p) \ge 0$$
,
(ii) $f_M(aX_p) = |a| f_M(X_p), \ \forall X_p \in T_pM, \ \forall a \in \mathbb{C}.$

If in addition f_M is upper semicontinuous on TM, then we call f_M a Finsler-type metric. A Finsler-type metric is called a Finsler metric if it satisfies the convexity condition

(iii)
$$f_M(X_p + Y_P) \leq f_M(X_p) + f_M(Y_p), \ \forall X_p, Y_p \in T_pM.$$

For example, if *h* is a Hermitian metric on a complex manifold *M*, then the function $\tilde{h}: TM \to \mathbb{R}_{>0}$ given by

$$\tilde{h}(X_x) := h(X_x, X_x)^{1/2}, \quad \forall X_x \in T_x M,$$

is a Finsler metric.

The indicatrix (at p) of a differential metric f_M is the set

$$I_{f_M}(p) = \{ X_p \in T_p M : f_M(X_p) < 1 \}.$$

If we consider the integrated form of a Finsler-type metric f, *i.e.*, the function $F: M \times$

Received by the editors November 20, 2003.

This work was supported by NSERC (Canada) and FCAR (Québec), and by the project no. 800415, University of Isfahan (Iran).

AMS subject classification: Primary: 32F45; secondary: 32Q45.

Keywords: Invariant metric, Kobayashi-Royden metric, Hahn metric, s-metric.

[©]Canadian Mathematical Society 2005.

 $M \to \mathbb{R}_{\geq 0}$ defined by

$$F(x, y) = \inf_{\gamma} \left\{ \int_0^1 f(\gamma'(t)) \, dt \right\},\,$$

where the infimum is taken with respect to set of piecewise differentiable curves $\gamma : [0, 1] \rightarrow X$ with $\gamma(0) = x$ and $\gamma(1) = y$, then *F* is a *pseudo-distance*.

On a complex manifold *M* the Kobayashi–Royden metric is defined by

$$k_M(X_p) := \inf\{a > 0 : \exists \varphi \in \mathcal{H}(\mathbb{D}, M) \ni \varphi(0) = p \text{ and } \varphi'(a(\partial/\partial z)_0) = X_p\},\$$

where $\mathcal{H}(\mathbb{D}, M)$ is the set of holomorphic mappings of the unit disc \mathbb{D} to M. Royden showed that this metric is a Finsler-type metric [6]. A complex manifold M is called K-hyperbolic if the pseudo-distance K induced by k_M is a distance. Equivalently, Mis K-hyperbolic if for every Hermitian metric h on TM and for every $p \in M$ there is a neighbourhood U of p and a constant C > 0, such that $k_M(X_q) \ge Ch(X_q)$, for all $X_q \in T_q M$ with $q \in U$. Kobayashi [4] originally defined the pseudo-distance K by considering the analytic chains of holomorphic mappings from the unit disc \mathbb{D} to M. K-hyperbolic manifolds form a large class, *e.g.*, every compact Riemann surface of genus ≥ 2 and every bounded domain in \mathbb{C}^n is K-hyperbolic.

Let *M* and *N* be complex manifolds and let $f: M \to N$ be holomorphic. Then, for each $X_p \in TM$, we have

$$k_N(f'(p)X_p) \le k_M(X_p).$$

In particular, if *f* is biholomorphic, then $k_N(f'(p)X_p) = k_M(X_p)$.

K. T. Hahn considered the family $\mathcal{J}(\mathbb{D}, M)$ of injective holomorphic mappings of the unit disk \mathbb{D} into M and, analogous to k_M , he defined the differential metric s_M on a complex manifold M [1]; S-hyperbolicity is defined similarly. This differential metric is invariant under biholomorphic maps, and

$$k_M(X_p) \leq s_M(X_p), \quad \forall X_p \in T_pM.$$

Vesentini showed that the domain $\mathbb{C}^* \times \Omega$ is not *S*-hyperbolic if Ω is a domain of dimension two or larger [8]. Moreover, Vigué proved that $G_1 \times G_2$ ($G_1, G_2 \subset \mathbb{C}$) is *S*-hyperbolic if and only if G_1 and G_2 are *K*-hyperbolic [9]. Finally, Overholt showed that $s_G = k_G$ on every domain $G \subset \mathbb{C}^n$, $n \ge 3$ [5].

Despite many similarities between s_M and k_M , they behave differently on certain domains. For example \mathbb{C}^* is not *K*-hyperbolic, but Hahn proved that it is *S*-hyperbolic [1], which means $S_{\mathbb{C}^*} \neq k_{\mathbb{C}^*}$.

The validity of $s_G = k_G$ on domains $G \subset \mathbb{C}^2$ is still an *open* problem. If equality holds s_G would be upper semicontinuous. In this paper we show that s_G is upper semicontinuous on the tangent bundle of each domain G in \mathbb{C}^n , $n \ge 1$. This is a positive answer to the question raised in [7].

602

2 Regularity

The following result is a step forward toward proving that $s_G = k_G$ on domains $G \subset \mathbb{C}^2$.

Theorem 2.1 Let $n \ge 1$ and $G \subset \mathbb{C}^n$ be a domain. Then the differential metric s_G on *G* is upper semicontinuous.

Proof Without loss of generality, instead of $\mathcal{I}(\mathbb{D}, M)$ in the definition of s_G -differential metric, we will consider $\mathcal{I}(\overline{\mathbb{D}}, M)$. For n = 1, by applying condition (i) we can ignore the tangent vector ξ . In this case it is sufficient to prove the function $s_G: G \to \mathbb{R}_{>0}$, defined by

$$s_G(z) = \inf \left\{ \frac{1}{|\varphi'(0)|} : \varphi \in \mathfrak{I}(\overline{\mathbb{D}}, G), \varphi(0) = z
ight\},$$

is upper semicontinuous. For $z^0 \in G$, let $s_G(z^0) < A$, then there exists $\varphi \in \mathfrak{I}(\overline{\mathbb{D}}, G)$ with $\varphi(0) = z^0$ and $1/|\varphi'(0)| < A$. Since $\varphi \in \mathfrak{I}(\overline{\mathbb{D}}, G)$, an ϵ -neighbourhood of $\varphi(\overline{\mathbb{D}})$ remains inside G. For $z \in G$ such that $|z - z^0| < \epsilon/2$, we consider the function $\psi : \mathbb{D} \to \mathbb{C}$, defined by

$$\psi(\xi) := \varphi(\xi) + (z - z^0).$$

The function ψ is injective, its image is inside G, $\psi(0) = z$ and $\psi'(0) = \varphi'(0)$, which implies that

$$s_G(z) \le \frac{1}{|\psi'(0)|} < A,$$

and shows that s_G is upper semicontinuous at z^0 .

As we mentioned, Overholt [5] proved that for $n \ge 3$ the Kobayashi–Royden differential metric k_G coincides with s_G and since k_G is upper semicontinuous [6]. It remains to consider n = 2. However our proof is different from Royden's proof and works for $n \ge 2$.

Let $z^0 \in G, 0 \neq X^0 \in \mathbb{C}^n, \alpha > 0$ and let $\varphi : \overline{\mathbb{D}} \to G$ be an injective holomorphic mapping with $\varphi(0) = z^0, \alpha \varphi'(0) = X^0$. Also, let (z_n, X_n) be a sequence in $G \times \mathbb{C}^n$ which converges to (z^0, X^0) . We can choose $v_2, \ldots, v_n \in \mathbb{C}^n$ such that $\{X^0, v_2, \ldots, v_n\}$ is a basis of \mathbb{C}^n . For sufficiently large *m* so that $\{X_m, v_2, \ldots, v_n\}$ is still a basis of \mathbb{C}^n , we define the mapping $\Phi_{(z_m, X_m)} : \mathbb{C}^n \to \mathbb{C}^n$ by,

$$\Phi_{(z_m,X_m)}(z^0 + \zeta_1 X^0 + \zeta_2 v_2 + \dots + \zeta_n v_n) := z_m + \zeta_1 X_m + \zeta_2 v_2 + \dots + \zeta_n v_n$$

The mapping $\Phi_{(z_m,X_m)}$ is biholomorphic and converges uniformly to $\mathrm{id}_{\mathbb{C}^n}$ when $m \to \infty$. Moreover,

$$\Phi_{(z_m,X_m)}(z^0) = z_m$$
 and $\Phi'_{(z_m,X_m)}(z^0)(X^0) = X_m$.

If we define $\varphi_{(z_m,X_m)} := \Phi_{(z_m,X_m)} \circ \varphi$, then $\varphi_{(z_m,X_m)}$ is an injective holomorphic mapping,

$$\varphi_{(z_m,X_m)}(0) = \Phi_{(z_m,X_m)}(z_0) = z_m,$$

and

$$\alpha \varphi'_{(z_m,X_m)}(0) = \alpha \Phi'_{(z_m,X_m)}(z^0) \varphi'(0) = X_m$$

Since $\Phi_{(z_m,X_m)}$ converges uniformly to $\mathrm{id}_{\mathbb{C}^n}$, for sufficiently large *m*, the mapping $\varphi_{(z_m,X_m)}$ maps $\overline{\mathbb{D}}$ to *G*. This shows that

$$\limsup_{n\to\infty} s_G(z_n,X_n) \le s_G(z^0,X^0).$$

Hence, s_G is upper semicontinouos on $G \times (\mathbb{C}^n \setminus \{0\})$.

Let $\overline{\mathbb{B}}_r(z^0) \subset G$ where $\mathbb{B}_r(z^0)$ denotes the Euclidean ball with center z^0 and radius r, and let

$$K:=\max_{\overline{\mathbb{B}}_r(z^0)\times\partial\mathbb{B}_1(0)}s_G.$$

Since s_G is upper semicontinuous on $G \times (\mathbb{C}^n \setminus \{0\})$, K is finite. It follows that $s_G(z,X) \leq \varepsilon K$ for $(z,X) \in \mathbb{B}_r(z^0) \times \mathbb{B}_{\varepsilon}(0)$, which shows that S_G is continuous at $(z^0, 0)$.

3 The Metric \hat{s}_M

Let *M* be a complex manifold and let

$$\hat{s}_M(\zeta) := \inf\{t > 0 : t^{-1}\zeta \in \hat{I}_{s_M}(p)\}, \quad \forall \zeta \in T_p M,$$

where $\hat{I}_{s_M}(p)$ is the convex hull of $I_{s_M}(p)$. The following result shows that \hat{s}_M behaves better than s_M on a complex manifold M.

Theorem 3.1 Let M be a complex manifold. Then \hat{s}_M is a differential metric and satisfies the convexity condition (iii). In particular, when $M \subset \mathbb{C}^n$ is a domain, then \hat{s}_M is a Finsler metric on TM.

Proof Following Kobayashi [3], we define a function s_M^* on the cotangent space T_p^*M . We set

$$s^*_M(\lambda) := \sup \|f^*\lambda\|, \quad \forall \lambda \in T^*_p M,$$

where supremum is taken over all $f \in \mathcal{I}(\mathbb{D}, M)$ with f(0) = p and

$$||f^*\lambda|| = \sup\{|(f^*\lambda)(\zeta)| : \zeta \in T_0\mathbb{D}, ||\zeta|| < 1\}$$

and where $\|\zeta\|$ denotes the Poincaré norm of $\zeta \in T_0 \mathbb{D}$. We have

$$s_M^*(a\lambda) = |a|s_M^*(a) \quad \forall \lambda \in T_p^*M, \ \forall a \in \mathbb{C},$$
$$s_M^*(\lambda + \mu) \le s_M^*(\lambda) + s_M^*(\mu), \quad \forall \lambda, \mu \in T_p^*M.$$

This means that s_M^* is a semi-norm on T_p^*M . Dual to s_M^* , we consider

$$\hat{s}_M(\zeta) = \sup_{\lambda \in I_{s^*_{\epsilon}(p)}} |\lambda(\zeta)|, \quad \forall \zeta \in T_p M,$$

https://doi.org/10.4153/CMB-2005-055-5 Published online by Cambridge University Press

604

where,

$$I_{s_{M}^{*}(p)} = \left\{ \lambda \in T_{p}^{*}M : s_{M}^{*}(\lambda) < 1 \right\}$$

Let $\mathbb{J}_p(\mathbb{D}, M)$ denote the subset of $\mathbb{J}(\mathbb{D}, M)$ consisting of mappings f with f(0) = p, then we have,

$$I_{s_M}(p) = \{f_*\zeta : \zeta \in T_0\mathbb{D}, \|\zeta\| < 1, f \in \mathcal{I}_p(\mathbb{D}, M)\}.$$

Therefore, for each $\lambda \in T_p^*M$,

$$s^*_M(\lambda) = \sup_f \|f^*\lambda\| = \sup_{f, \ \|\zeta\| < 1} |\lambda(f_*(\zeta))| = \sup_{s_\mathcal{M}(\xi) < 1} |\lambda(\xi)|.$$

Hence the first part of the proof is complete. By Theorem 2.1, when $M \subset \mathbb{C}^n$ is a domain, s_M is upper semicontinuous, and by the same technique as [2, Proposition 3.6.2] we can complete the proof of second part.

Now, the two pseudo-distances S_G and \hat{S}_G induced by s_G and \hat{s}_G , respectively, can be considered on G. Since s_G is upper semicontinuous, for any compact subset K and any domain G of \mathbb{C}^n , there exists a constant C > 0 such that

$$s_G(z,X) \le C||X|| \quad \forall z \in K, \quad \forall X \in \mathbb{C}^n.$$

Thus by the same argument as [2, Theorem 3.6.4], the following theorem can be proved.

Theorem 3.2 Let $G \subset \mathbb{C}^n$ be a domain. The pseudo-distance S_G coincides with \hat{S}_G .

Acknowledgements The authors are grateful to Professor M. Jarnicki for his valuable help in preparing this paper.

References

- [1] K. T. Hahn, Some remarks on a new pseudodifferential metric. Ann. Polon. Math. **39**(1981), 71–81.
- [2] M. Jarnicki and P. Pflug, *Invariant Distances and Metrics in Complex Analysis*. de Gruyter Expositions in Mathematics 9, de Gruyter, Berlin, 1993.
- [3] S. Kobayashi, A new invariant infinitesimal metric. Internat. J. Math. 1(1990), 83–90.
- [4] _____, Hyperbolic Manifolds and Holomorphic Mappings. Pure and Applied Mathematics 2, Marcel Dekker, New York (1970).
- [5] M. Overholt, Injective hyperbolicity of domains. Ann. Polon Math. 62(1995), 79–82.
- [6] H. Royden, *Remarks on the Kobayashi metric*. Lecture Notes in Math. 185, Springer-Verlag, Berlin, 1971, pp. 125–137.
- [7] S. Venturini, Pseudodistances and pseudometrics on real and complex manifolds. Ann. Mat. Pura. Appl. 154(1989), 385–402.

- [8] E. Vesentini, Injective hyperbolicity. Ricerche. Mat. 36(1987), 99–109.
- [9] J. P. Vigué, Une remarque sur l'hyperbolicité injective. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83(1989), 57–61.

Département de mathématiques et de statistique Université Laval Québec, QC G1K 7P4 e-mail: Javad.Mashreghi@mat.ulaval.ca Department of Mathematics University of Isfahan P.O. Box 81745-163 Isfahan, Iran e-mail: pourya@sci.ui.ac.ir

606