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ABSTRACT. As simulations of 21st-century climate start to include components with longer timescales,
such as ice sheets, the initial conditions for those components will become critical to the forecast.
This paper describes an algorithm for specifying the initial state of an ice-sheet model, given spatially
continuous observations of the surface elevation, the velocity at the surface and the thickness of the
ice. The algorithm can be viewed as an inverse procedure to solve for the viscosity or the basal drag
coefficient. It applies to incompressible Stokes flow over an impenetrable boundary, and is based upon
techniques used in electric impedance tomography; in particular, the minimization of a type of cost
function proposed by Kohn and Vogelius. The algorithm can be implemented numerically using only the
forward solution of the Stokes equations, with no need to develop a separate adjoint model. The only
requirement placed upon the numerical Stokes solver is that boundary conditions of Dirichlet, Neumann
and Robin types can be implemented. As an illustrative example, the algorithm is applied to shear flow
down an impenetrable inclined plane. A fully three-dimensional test case using a commercially available
solver for the Stokes equations is also presented.

INTRODUCTION
We consider a new approach to initializing simulations of
ice sheets. Our focus is on simulations used for prediction of
21st-century climate and sea level.
A close analogy can be drawn between ice-sheet pre-

diction and weather forecasting. For a short-term weather
forecast, the initial state of the atmosphere is a critical
piece of information and must be derived from observations;
the model equations are then integrated numerically to
predict how the state will evolve. By contrast, in longer-term
simulations of 21st-century climate, the precise specification
of the initial state has so far been considered relatively
unimportant. This is because only the statistics of future
climate are sought, not details of the actual storms and
weather events that will occur decades from now. Taking
this statistical point of view, errors in the initial state of the
atmosphere decorrelate and become unimportant after a few
days or weeks.
Because ice sheets change more slowly than the atmos-

phere, predicting their behaviour over the coming century
has more in common with short-term weather prediction:
small errors in the initial state of an ice sheet could
systematically affect a climate forecast throughout the 21st
century, perhaps even growing unstably to dominate the
predicted sea-level contribution. The ocean circulation in
any coupled simulation that includes ice sheets would also
be affected. Without a realistic initial configuration, models
will not simulate the evolution of the ice sheets accurately,
and will give poor predictions of freshwater forcing of ocean
circulation and sea-level rise over the coming century.
Initializing an ice-sheet model by a period of ‘spin-

up’ over many thousands of years takes little account
of the available observations, and is therefore unlikely
to represent the current geometry and flow adequately.
The present-day geometry of the ice sheets is known
fairly accurately from satellite and airborne remote-sensing
methods. The horizontal component of the surface velocity
can be estimated from satellite radar interferometry and

other methods (e.g. Goldstein and others, 1993). The
vertical component of velocity can be inferred from the
downslope motion combined with satellite radar altimetry
(e.g. Wingham and others, 2006) and observations of the
rate of snow accumulation on the ice sheet (e.g. Arthern and
others, 2006). Here, we propose a simple algorithm that can
make use of these data to initialize an ice-sheet model.
An initialization scheme, based around a linearized

shallow-ice model, has been described previously (Arthern
and Hindmarsh, 2006). One motivation for this study is to
take advantage of better measurements and interpolation
methods by improving the description of ice flow. Basal
drag caused by sliding is considered, and all components of
the stress tensor are retained, including membrane stresses
caused by lateral extension, compression and shearing
(e.g. Hindmarsh, 2006).
Throughout this paper we assume that continuous fields

of surface elevation, ice thickness and surface velocity are
available at the time of model initialization. Methods for
the spatio-temporal interpolation of scattered observations of
this type have been developed (e.g. Arthern and Hindmarsh,
2003). In this context, continuous approximations to the
required fields can be estimated, albeit subject to some level
of measurement and interpolation error.
Despite the available observations, several sources of

uncertainty remain in specifying the initial state of the
ice sheet. Chief among these is the drag coefficient that
determines the slipperiness of the lubricating sediment
beneath the ice. This relates the basal stress to the basal
velocity. Another source of uncertainty is the relationship
between velocity and stresses near the grounding line,
where ice becomes afloat as it reaches the ocean: forces
imposed by laterally confined, floating ice shelves, or poorly
mapped sediment wedges, are not accurately known. A third
significant source of uncertainty, despite useful information
from laboratory experiments, is the viscosity of the ice sheet.
This depends upon the temperature of the ice, and its crystal
fabric, and these are not well defined from observations. The
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Fig. 1. Geometric depiction of the problem. The ice volume, Ω, has
known shape. Measurements of the surface velocity and the stress
are available on Γs (red dotted). On the rest of the boundary, Γb (blue
dashed), including the impenetrable part, Γi, stresses are defined by
a Robin-type boundary condition, with unknown Robin coefficient,
β. The viscosity, μ, within Ω is also unknown. We seek solutions for
β on Γb, and μ within Ω, so that velocities and stresses on Γs are
consistent with the observational data.

temperature can also affect basal drag enormously, especially
when the bed makes the transition from melted to frozen, or
vice versa.
In this paper, we treat the drag coefficient as an

undetermined coefficient in a Robin (or ‘third kind’)
boundary condition (Gustafson and Abe, 1998; Gustafson,
1999). The Robin condition may be viewed as a linear
combination of Dirichlet (velocity) and Neumann (stress)
boundary conditions; each is related to the other via the
drag coefficient. Here we present a new algorithm to
solve for the basal drag coefficient, β, and the viscosity,
μ. More generally, the approach solves for any spatially
variable Robin coefficient, and could perhaps be used to
parameterize stresses near the grounding line.
The algorithm can be viewed as a generalization of the

inverse method proposed by MacAyeal (1992, 1993), which
has been applied successfully to many ice streams and
ice shelves. However, the new algorithm should address
a wider class of problems than either the shallow-ice or
other asymptotically approximated models (e.g. Muszynski
and Birchfield, 1987; MacAyeal, 1989), including the
initialization of higher-order models of ice flow (e.g. Pattyn
and others, 2008), and the full system of Stokes equations.
A practical advantage of the new approach is that it can

be implemented numerically using only the forward solver
of the Stokes equations, with no need to develop a separate
adjoint model. The only requirement placed upon the solver
is that boundary conditions of Dirichlet, Neumann and Robin
types (i.e. fixed velocity, fixed stress and linearly related
stress and velocity) can be implemented in the momentum-
conservation equation. In this respect it is similar to a recent
algorithm proposed by Maxwell and others (2008), which
has been applied to a transverse cross section of a glacier.
Our algorithm differs from that of Maxwell and others

(2008) in several respects. The problem is viewed as an
‘inverse Robin problem’ (Chaabane and Jaoua, 1999). This
is translated into a variational problem through the use of a

particular form of cost function, first introduced by Kohn and
Vogelius (1984). We provide an explicit expression for the
gradient of this cost function, and show that this gradient
can be calculated efficiently. An analogous problem, in
the context of electric impedance tomography, has been
studied by Chaabane and Jaoua (1999) for the Laplace
equation. The analysis and notation used in this paper closely
follows theirs.
Here, we formulate an inverse Robin problem for Stokes

flow as commonly encountered in glaciological applications.
We also describe an algorithm for the numerical solution of
the problem. As a proof of concept, we describe synthetic
inversion of basal properties: first for an illustrative one-
dimensional (1-D) example; second for a more realistic,
three-dimensional (3-D) example, with nonlinear ice and
till rheology. In the latter example we use a commercially
available solver for the Stokes equations.

THEORY
Assume the ice sheet occupies a volume, Ω, of known shape,
as shown in Figure 1, bounded by a surface, Γs, where we
have observations, and a surface, Γb, where we wish to
solve for the coefficient that linearly relates stresses on the
boundary to velocities there, i.e. the parameter in a Robin-
type boundary condition. Using Cartesian coordinates,
(x, y , z), denote the outward normal vector on both surfaces
by n̂, the material velocity by v, strain-rate tensor by ė ≡
1
2

[
(∇v) + (∇v)∗], stress tensor by σ, and pressure by p ≡

−Trace(σ) /3. For now, assume an incompressible material,
so that∇·v = 0, and a linear viscous rheology, so deviatoric
stress is given by σ + pI = 2μė, with identity I, and
viscosity μ. Further assuming a constant density, ρ, and
gravitational field, g, the momentum-conservation equation
corresponding to force balance can be written∇·σ+ρg = 0.
To begin with, consider a simplified problem, in which

the force per unit area on the boundary, Γb, acts in the
opposite direction to the velocity, and in proportion to it,
so that σ · n̂ + βv = 0, with β > 0, a scalar that may
vary spatially; this relationship defines the Robin boundary
condition. Later we can adapt this to the more realistic case
of sliding past an impenetrable boundary, Γi, that supports
normal and tangential stresses, such as the base of the ice
sheet, but for now we ignore the distinction between Γi and
the rest of Γb.
For the simplified problem the initialization consists of

selecting viscosity, μ, in the interior of the domain, and the
Robin parameter, β, on the boundary. The inverse Robin
problem (IP) can be stated as follows:

(IP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given the prescribed boundary stress, τ,
and velocity measurements, f, on Γs,
find functions β on Γb, and μ in Ω,
such that the solution, v, of

(NP)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

[
(∇v) + (∇v)∗] = ė in Ω,

σ+ pI = 2μė in Ω,
Trace(σ) + 3p = ∇ · v = 0 in Ω,

∇ ·σ + ρg = 0 in Ω,
σ · n̂ = τ on Γs,

σ · n̂+ βv = 0 on Γb,
also satisfies v = f on Γs.

(1)
We assume the availability of an ice-sheet model,

optimized for the efficient solution of the Neumann problem
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(NP), and that this model can also be used to solve
a Dirichlet problem (DP), forced by the surface velocity
measurements, f:

(DP)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

[
(∇v) + (∇v)∗

]
= ė in Ω,

σ+ pI = 2μė in Ω,
Trace(σ) + 3p = ∇ · v = 0 in Ω,

∇ ·σ+ ρg = 0 in Ω,
v = f on Γs,

σ · n̂+ βv = 0 on Γb.

(2)

Writing the solutions of the Dirichlet and Neumann problems
DP and NP as

[
vD, ėD,σD, pD

]
and

[
vN, ėN,σN,pN

]
,

respectively, the Appendix shows that the inverse problem
(IP) can be solved by minimizing the Kohn and Vogelius
(1984) cost function

J(μ,β) =
∫
Ω
2μ

∣∣∣ėN − ėD
∣∣∣2
F
+
∫
Γb

β
∣∣∣vN − vD

∣∣∣2
F
, (3)

in which the subscript ‘F’ denotes the Frobenius norm, as
defined in the Appendix. Furthermore, the gradient of this
cost function, with respect to the parameters μ and β, can
be expressed as a Gâteaux, or directional, derivative (e.g.
Zorn, 1946), defined by dJ ≡ dμJ + dβJ, with

dμJ(μ,β,μ′) ≡ lim
ε→0+

J(μ+ εμ′,β)− J(μ,β)
ε

=
∫
Ω
2μ′

(∣∣∣ėD∣∣∣2
F
−
∣∣∣ėN∣∣∣2

F

)
;

dβ J(μ,β,β′) ≡ lim
ε→0+

J(μ,β + εβ′)− J(μ,β)
ε

=
∫
Γb

β′
(∣∣∣vD

∣∣∣2
F
−
∣∣∣vN

∣∣∣2
F

)
,

(4)

where ε is a small parameter that tends to zero in the limit.
A more realistic case is that some part of the boundary, Γb,
is impenetrable, such as the base of the ice sheet. On the
impenetrable part, Γi, conditions of zero normal velocity,
and tangential shear stress proportional to velocity, can be
applied:

v · n̂ = 0 on Γi,(
I− n̂n̂) ·σ · n̂+ βv = 0 on Γi.

(5)

Repeating the analysis with this boundary condition, the
product of normal forces and normal velocities vanishes in
surface integrals over Γi, and the results are identical to
Equations (3) and (4). Thus, the inverse Robin problem for
the case of sliding past an impenetrable boundary can be
solved by minimizing J, defined by Equation (3), subject
to constraints DP and NP, as modified by Equation (5).
Furthermore, Equation (4) continues to provide the Gâteaux
derivative of J in that case.

METHODS
By analogy with the investigation of the Laplace equation,
described by Chaabane and Jaoua (1999), the above theory
suggests an iterative descent algorithm for minimizing J, and
hence selecting μ and β:

Algorithm 1

1. Given initial estimates μ0 and β0.

2. Solve NP to obtain vN and ėN.
3. Solve DP to obtain vD and ėD.
4. For stepsize parameters αμ > 0 and αβ > 0.

n

(
2

5. Update μn+1 → μ − αμ

∣ 2
ėD

F
−

βn

∣ ∣
ėN

2

∣
F
2

)
in Ω.

6. Update βn+1 → − Dαβ

∣ ∣(∣
v

∣∣
F −

∣
vN

∣∣
F

7. Return to Step 2 unless converged.

)∣ ∣ ∣ ∣ on Γb.

(6)

To clarify the above notation, at Step 5 the estimated
viscosity, μ, is reduced by an amount D 2 N 2αμ |ė |F − |ė |F ,
where the strain-rate tensors, ėD and ėN, are

(
available from

)

the Dirichlet and Neumann simulations, respectively.

RESULTS
For the purpose of illustration, consider the following
simple application of Algorithm 1, estimating the basal drag
coefficient, β, and viscosity, μ, for an infinite slab of constant
thickness, h, sliding down an impenetrable, inclined plane
at angle α from the horizontal. Define tilted rectangular
coordinates so the x- and y-axes are within the plane (in the
down- and across-slope directions, respectively) and the z-
axis is normal to the plane, increasing upwards. Then neglect
all variation in x and y . For observational constraints, specify
the downslope surface velocity, f , in the x direction and
that the shear stress, σxz = μ∂zv , vanishes at the surface.
For this problem the Neumann and Dirichlet problems are
second-order, 1-D, boundary-value problems, and can be
written in nondimensional form by defining scales |z| = h,
|v | = f , |τ| = ρgh sinα, |μ| = |τ| h/f , |β| = |τ| /f . In
these units, conservation of momentum in the x direction
gives

(IP )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find μ and β, such that:
∂zv = σxz/μ in 0 < z < 1,

∂zσxz = −1 in 0 < z < 1,
−σxz + βv = 0 on z = 0,

(NP) σxz = 0 on z = 1,
(DP) v = 1 on z = 1,

(7)

where unlabelled equations correspond to both Dirichlet
(DP) and Neumann (NP) problems. Further assuming no
variation of μwithin the slab, so the parameter space defined
by μ and β is two-dimensional, the cost function, J, can be
plotted. Figure 2 shows the cost function. This was obtained
by numerically solving the boundary-value problems NP
and DP (Equation (7)) for regularly spaced μ and β (using
MATLAB routine bvp4c; Kierzenka and Shampine, 2001),
then evaluating J using Equation (3). The figure also shows the
result of applying Algorithm 1, from various initial estimates,
with the boundary-value problems solved numerically at
each step of the algorithm.
In a more realistic application, with multiple dimensions,

it would be impractical to plot the cost function, and
specialized numerical algorithms for solving the full Stokes
system, or some approximation to it, would be employed
in the descent algorithm. Nevertheless, this simple example
illustrates the main features of the method.
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Fig. 2. Results of applying Algorithm 1 to retrieve the viscosity, μ,
and basal drag coefficient, β, for shear flow down an inclined plane.
Crosses show the iterative path taken to minimize the cost function,
J(μ,β), from various initial estimates. The coloured contours show
log10 J. The white dashed curve shows the analytical solution
β = 2μ/(2μ− 1). In general, no unique solution is obtained unless
an independent estimate of μ or β is available. Circles show two
such examples, constrained by prior estimates μ = 1.8 and β = 1.7.

In fact, the above example can be integrated directly, to
reveal that there is no unique solution for nondimensional
μ and β which solves the inverse problem IP, but rather a
locus of solutions defined by β = 2μ/(2μ− 1). This locus is

shown as a white dashed curve in Figure 2. As anticipated
from the theory, it corresponds closely to the minimum of
the cost function, and to the solutions converged upon by
Algorithm 1.
Figure 2 illustrates that to solve for the drag coefficient,

β, prior information about the viscosity, μ, is required.
Similarly, to solve for μ requires prior information about
β. Nevertheless, if μ (or β) is already known, perhaps
from laboratory experiments, Algorithm 1 can be used to
determine the other, by setting the initial estimateμ0 (or β0) to
the known value, and the corresponding descent parameter
αμ (or αβ ) to zero: examples are shown in Figure 2.
A more realistic test of the algorithm is shown in Figure 3.

This shows a synthetic inversion in a 3-D setting, with
nonlinear viscosities for both ice and basal sediment (till).
Synthetic data were generated using a commercial Stokes
solver to simulate flow down an ice stream 100 km long,
30 km wide and 1.6 km thick, over an isolated patch of low-
viscosity till (Fig. 3a). The slope was 0.01 with elevation
decreasing in the x direction, driving flow from left to right
in Figure 3.
Ice rheology was prescribed by a nonlinear Glen flow law

(σ + pI = A− 1
n
∣∣ 1
2 ė
∣∣( 1n−1)
F ė) with n = 3 and rate constant

A = 4.6×10−10 d−1 kPa−3. The upper surface was stress-free
in all Neumann computations. Periodic boundary conditions
were applied at the horizontal boundaries. At the base,
a Weertman-type nonlinear sliding law, vb = Cτmb , with
m = 3 was used, with τb representing basal shear stress
and vb the basal flow speed.
The coefficient C was specified by adding a Gaussian

perturbation to a constant background level (Fig. 3a).

Fig. 3. Results of applying Algorithm 1 to retrieve the rate coefficient for a nonlinear sliding law in a 3-D simulation. A commercial solver
for the Stokes equations was used in this inversion. Each panel represents an ice stream (100 km × 30 km) flowing from left to right over a
patch of lower-viscosity sediment. (a) The specified rate coefficient (md−1 kPa−3); (b) the rate coefficient recovered from noise-free synthetic
observations that would be available at the surface; (c) the rate coefficient recovered from synthetic surface observations with random noise
added to represent measurement errors after 9 iteration steps and (d) after 19 iterations.
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This perturbation, centred on x = 50km, y = 15km,
had amplitude equal to the background value (5.3 ×
10−7 md−1 kPa−3), so that C is double the background value
at its peak, with an e-fold decay radius of 5 km.
The rate coefficient, C , was then recovered by applying

Algorithm 1, using only those data available at the surface.
In this experiment, A is assumed known, and no attempt
is made to recover a spatially varying viscosity in the
interior. The initial guess for C was spatially uniform at
the unperturbed background value. The rate coefficient at
each location was updated iteratively, from Cn to Cn+1, by
adding a contribution in the direction that reduces the cost
function. Because an increase in C in effect corresponds to
a reduction in β, a change of sign was made to Step 6 of
Algorithm 1, replacing it as follows: Cn+1 → Cn+αC (|vDb |2F−
|vNb |2F), with αC > 0. The basal velocity vectors, vDb
and vNb , were from the Dirichlet and Neumann computa-
tions, respectively, and their Frobenius norms are simply
their magnitude.
If the step-size parameter, αC , is too large, there is a risk

of overshooting the minimum, even if the search direction
points locally downhill. We set αC = 10−7 m−1 day kPa−3,
but if a step failed to reduce the cost function, αC was halved
and another trial step taken. If this second step failed, the
value of αC minimizing J in the current search direction
was estimated from a quadratic fit, and Cn+1 updated using
this value.
The extension of our theory to the nonlinear sliding

law is heuristic, since we have not differentiated the
cost function appropriate to the nonlinear case. Despite
this, it works well in practice. Results of the inversion
are shown in Figure 3b. The close match to Figure 3a
demonstrates the successful convergence of the algorithm,
even for a 3-D problem with nonlinear rheologies of ice
and till.
We investigated the effect of measurement errors upon the

algorithm by perturbing the synthetic surface observations
with randomly generated noise, before applying the inver-
sion algorithm. Comparing Figure 3a with Figure 3c shows
that the recovered rate coefficients suffer some degradation
when measurement errors are present. Nevertheless, the
inversion is still able to detect the presence of the low-
viscosity sediment.
Comparison of Figure 3c with Figure 3d shows that

broad-scale features are recovered first. As iterations are
continued, the inversion produces sharper features with
higher amplitude. Figure 3d shows that this can eventually
produce spurious features, by overfitting to measurement
errors.
To avoid overfitting, a stopping criterion is needed. For

a similar problem Maxwell and others (2008) propose
a heuristic criterion based upon the mismatch between
Neumann and observed velocities at the surface. Our
calculations provide support for this approach. Figure 4
shows the root-mean-square (rms) mismatch between the
surface velocity data, f, and the surface velocities computed
from the Neumann problem (NP). For the noise-free test
case, the mismatch decreases iteration by iteration. However,
when noise is added, the mismatch stagnates at a level
consistent with the rms noise level (dashed horizontal line).
Thus, a conservative estimate of the observational error on
f can serve to define a stopping criterion. As an example,
the first iteration to reach the rms noise level is plotted in
Figure 3c.

Fig. 4. Convergence for synthetic inversions shown in Figure 3.
The plot shows the rms mismatch (md−1) between Neumann
and observed surface velocities. Without measurement errors,
convergence continues throughout. When measurement errors are
introduced, by adding noise to the synthetic data, the convergence
stagnates and a stopping criterion is needed. The horizontal dashed
line shows the rms of the added noise. Large symbols show the
iterations plotted in Figure 3.

DISCUSSION AND CONCLUSIONS
For the purpose of initializing ice-sheet forecasts, we have
described a simple algorithm to invert for the basal drag
coefficient and ice viscosity.
If Algorithm 1 is used to estimate the basal drag coefficient

and/or refine the ice viscosity, the ice-sheet forecast will
begin in a state of force balance, with present-day geometry
and surface velocities. This is preferable to a state beginning
with present geometry, but with unrealistic viscosity or drag
coefficient, since this would produce an ‘initialization shock’
at the beginning of the forecast and a spurious contribution
to the sea-level forecast.
Use of Algorithm 1 is also preferable to selecting an initial

state for a 21st-century simulation simply by ‘spinning up’ the
ice-sheet model over many thousands of years. An ice-sheet
model may have more than a million variables describing its
geometry and flow. Without the constraint of observations,
there is slim chance of obtaining initial conditions close
enough to the present-day values to be useful for prediction.
A practical advantage of Algorithm 1 is its ease of

implementation. It only uses the forward solver of the Stokes
equations, so there is no requirement to develop and test
a separate adjoint model. This also means that Algorithm 1
benefits automatically from any parallelization, adaptive grid
refinement or asymptotic approximations employed by the
forward model. Conveniently, the terms in Equation (4) are
proportional to deformational and frictional heating rates,
which are routinely evaluated in many ice-sheet models.
This preliminary investigation does not present an exhaus-

tive test of the ability of Algorithm 1 to recover viscosity
and basal drag coefficient from realistic glaciological data. In
particular, we have assumed that continuous fields of surface
elevation, surface velocity and thickness are available. For
some applications, error-prone surface velocity data could
be incompatible with incompressibility, perhaps leading the
Dirichlet problem to be ill-posed unless this constraint is
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enforced. If the geometry of the bed is poorly known it
would be preferable to solve for bed elevation and drag
coefficient simultaneously (Gudmundsson and Raymond,
2008; Raymond and Gudmundsson, 2009). This would
require modification of our algorithm, and it may be
necessary to take account of prior knowledge of the spatial
statistics for bed elevation and its uncertainty (Raymond and
Gudmundsson, 2009).
To speed convergence, a more sophisticated algorithm,

such as conjugate gradients, could be used to minimize
the cost function. Deriving the precise derivative of the cost
function appropriate for the nonlinear sliding law may also
improve the performance. The sensitivity to the stopping
criterion suggests that it would be helpful to optimize this
aspect further.
Chaabane and others (1999) present a more complete

theoretical analysis for the Laplace equation. It would be
worth considering which of their results transfer to the
glaciological situation considered here. The application to a
vector velocity field represents a qualitative difference from
the scalar Laplace equation. In particular, further theoretical
and numerical work is needed to establish the resolving
power of the method, the sensitivity to measurement
errors and whether additional regularization is needed.
Nevertheless, we hope the inverse Robin problem specified
above, the descent algorithm and the preliminary results, will
motivate further numerical and theoretical calculations of
this kind, so that simulations of 21st-century climate can be
undertaken with properly initialized ice-sheet models.
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APPENDIX
This appendix relates the inverse problem (IP) to the
variational problem of minimizing the Kohn and Vogelius
(1984) cost function. To identify the minimum of the cost
function we write it as an integral over Γs, the surface of the
ice sheet, perturb this expression, and apply the fundamental
lemma of the calculus of variations. The resulting expression
solves the inverse problem (IP). Finally we outline the steps
used to derive Equation (4), the gradient of the cost function
with respect to small changes in viscosity and basal drag.
Velocities, stresses and parameters are implicitly assumed
continuous and differentiable throughout.
To simplify notation, define the Frobenius product

ė : σ ≡ Trace
(
ė∗σ

)
, and the Frobenius norm |σ|2F ≡

σ:σ. Generalized superscripts (A,B) ∈ (D,N,D’,N’) denote
solutions from either the Neumann (N) or Dirichlet (D)
problems, or their first-order perturbations (N’ and D’,
respectively, defined later in this appendix). Here are two
useful identities: the first, from Leibniz’s product rule for
differentiation, is

∇ · vA ·σB = vA · ∇ ·σB + ėA : σB; (A1)

the second, from the divergence theorem applied to the
volume, Ω, is

∫
Ω∇ · vA ·σB =

∫
Γs+Γb

vA ·σB · n̂. (A2)

Equations (A1) and (A2), and substitutions from theNeumann
and Dirichlet problems (NP and DP) allow the cost
function, J, to be written as a surface integral.
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J(μ,β) =
∫
Ω 2μ

∣∣ėN − ėD∣∣2
F
+
∫
Γb

β
∣∣vN − vD∣∣2

F

=
∫
Ω∇ ·

(
vN − vD) · 2μ (

ėN − ėD)
− ∫

Ω

(
vN − vD) · ∇ · (σN + pNI−σD − pDI)

+
∫
Γb

β
∣∣vN − vD∣∣2F

=
∫
Γs

(
vN − vD) · (σN −σD) · n̂

+
∫
Γb

(
vN − vD) · (σN −σD) · n̂

+
∫
Γb

β
∣∣vN − vD∣∣2

F

=
∫
Γs

(
vN − vD) · (σN −σD) · n̂.

(A3)

Small perturbations, μ′ and β′, to μ and β will affect the
solutions vN and vD by small amounts vN

′
and vD

′
. These

changes will perturb the cost function, J, by an amount dJ.
To first order:

dJ = dμJ + dβJ =
∫
Γs

(
vN

′ − vD′) · (σN −σD) · n̂
+
∫
Γs

(
vN − vD) · (σN′ −σD′) · n̂

=
∫
Γs
vN

′ · (σN −σD) · n̂
− ∫

Γs

(
vN − vD) ·σD′ · n̂ .

(A4)

Minimizing J subject to the constraints DP andNP requires
dJ = 0 for arbitrary vN

′
and vD

′
(and hence σD′

). This
requires vN = vD = f, and σD · n̂ = σN · n̂ = τ on Γs.
In that case J is zero from Equation (A3) while elsewhere
it is positive, so the stationary point must be a minimum.
The variational problem of minimizing J, subject to the
constraints of DP and NP, solves the inverse problem IP.
To derive Equation (4), introduce the first-

order perturbations of the Neumann and Dirichlet
problems by substituting perturbed quantities
(μ + μ′, β + β′, vN + vN

′
, etc.) into DP and NP,

subtracting the unperturbed equations, then neglecting

terms that involve products of perturbations:

(DP ′)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[(∇v′)+ (∇v′)∗] = ė′ in Ω,

σ′ + p′I = 2μė′ + 2μ′ėD in Ω,
Trace(σ′) + 3p′ = ∇ · v′ = 0 =in Ω,

∇ ·σ′ = 0 in Ω,
v′ = 0 on Γs,

σ′ · n̂+ βv′ + β′vD = 0 on Γb;
(A5)

(NP ′)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[(∇v′)+ (∇v′)∗] = ė′ in Ω,

σ′ + p′I = 2μė′ + 2μ′ėN in Ω,
Trace(σ′) + 3p′ = ∇ · v′ = 0 in Ω,

∇ ·σ′ = 0 in Ω,
σ′ · n̂ = 0 on Γs,

σ′ · n̂+ βv′ + β′vN = 0 on Γb,
(A6)

with solutions
[
vD

′
, ėD

′
,σD′

,pD
′]
and

[
vN

′
, ėN

′
,σN′

,pN
′]
,

respectively.
The following useful result, with (A,B) ∈ (D,N), uses

Equations (A1) and (A2), and the relationship ėA : σB′ =
σA : ėB

′
+ 2μ′ėA : ėB, derived from DP, NP , DP ′ and

NP ′:

∫
Γs
vA ·σB′ · n̂ =

∫
Ω∇ · vA ·σB′ − ∫

Γb
vA ·σB′ · n̂

=
∫
Ω v

A · ∇ ·σB′ +
∫
Ω ė

A : σB′

− ∫
Γb
vA ·σB′ · n̂

=
∫
Ω v

A · ∇ ·σB′ +
∫
Ω∇ · vB

′ ·σA

− ∫
Ω v

B′ · ∇ ·σA +
∫
Ω 2μ

′ėA : ėB

− ∫
Γb
vA ·σB′ · n̂

=
∫
Ω v

A · ∇ ·σB′ − ∫
Ω v

B′ · ∇ ·σA

− ∫
Γb
vA ·σB′ · n̂+ ∫

Γb
vB

′ ·σA · n̂
+

∫
Γs
vB

′ ·σA · n̂+ ∫
Ω 2μ

′ėA : ėB .

(A7)

Applying Equation (A7) to each term in Equation (A4), and
making substitutions from NP , DP, DP ′ and NP ′ (i.e.
Equations (1), (2), (A5) and (A6)) provides Equation (4), after
some algebra and cancellation of terms.
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