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BMO-Estimates for Maximal Operators via
Approximations of the Identity with
Non-Doubling Measures

Dachun Yang and Dongyong Yang

Abstract. Let µ be a nonnegative Radon measure on R
d that satisfies the growth condition that there

exist constants C0 > 0 and n ∈ (0, d] such that for all x ∈ R
d and r > 0, µ(B(x, r)) ≤ C0rn, where

B(x, r) is the open ball centered at x and having radius r. In this paper, the authors prove that if f

belongs to the BMO-type space RBMO(µ) of Tolsa, then the homogeneous maximal function ṀS( f )

(when R
d is not an initial cube) and the inhomogeneous maximal function MS( f ) (when R

d is an

initial cube) associated with a given approximation of the identity S of Tolsa are either infinite every-

where or finite almost everywhere, and in the latter case, ṀS and MS are bounded from RBMO(µ) to

the BLO-type space RBLO(µ). The authors also prove that the inhomogeneous maximal operator MS

is bounded from the local BMO-type space rbmo(µ) to the local BLO-type space rblo(µ).

1 Introduction

In recent years, it has been shown that many results on the Calderón–Zygmund the-

ory remain valid for non-doubling measures; see, for example, [3–7] and their ref-

erences. Recall that a non-doubling measure µ on R
d means that µ is a nonnegative

Radon measure that only satisfies the following growth condition: there exist con-

stants C0 > 0 and n ∈ (0, d] such that for all x ∈ R
d and r > 0,

µ (B(x, r)) ≤ C0rn,

where B(x, r) is the open ball centered at x and having radius r. Such a measure

µ is not necessarily doubling, which is a key assumption in the classical theory of

harmonic analysis. One of main motivations for extending the classical theory to

the non-doubling context was the solution of several questions related to analytic

capacity, like Vitushkin’s conjecture or Painlevé’s problem; see [8, 9, 11] or survey

papers [10, 12, 13] for more details.

In particular, Tolsa [6] constructed a class of approximation of the identity, and

as applications, Tolsa developed a Littlewood–Paley theory with non-doubling mea-

sures for functions in Lp(µ) when p ∈ (1,∞) and established some T(1) theorems.

In [15], the authors introduced the homogeneous and inhomogeneous maximal op-

erators ṀS and MS associated with a given approximation of the identity S of Tolsa
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in [6], and proved that both ṀS and MS are bounded on Lp(µ) for p ∈ (1,∞),

that ṀS is bounded from the Hardy space H1(µ) of Tolsa [5] to L1(µ), and that

MS is bounded from a local version of the Hardy space h
1,∞
atb (µ), which was intro-

duced in [2], to L1(µ). The main purpose of this paper is to consider the BMO-

boundedness of ṀS and MS at another extremal case, namely, when p = ∞. To

be precise, we first prove that if f belongs to the BMO-type space RBMO(µ) of

Tolsa [5], then ṀS( f ) (when R
d is not an initial cube) and MS( f ) (when R

d is an

initial cube) are either infinite everywhere or finite almost everywhere, and in the lat-

ter case, ṀS and MS are bounded from RBMO(µ) to the BLO-type space RBLO(µ) of

Jiang [3]. We also prove that MS is bounded from the local BMO-type space rbmo(µ)

to the local BLO-type space rblo(µ), which were introduced in [2]. It is known that

rblo(µ) ⊂ rbmo(µ) and RBLO(µ) ⊂ RBMO(µ). On the other hand, even in the

case that µ is the d-dimensional Lebesgue measure, a BMO(R
d) function with essen-

tial lower bound is not necessary to belong to BLO(R
d); for example, consider the

function (log |x|)χ{x∈Rd : |x|≥1}(x), where and in what follows, for any D ⊂ R
d, χ

D

denotes the characteristic function of D. An interesting open problem is whether ṀS

(or MS) can characterize the Hardy space H1(µ) (or h
1,∞
atb (µ)). Recall that the dual

spaces of H1(µ) and h
1,∞
atb (µ) are proved, respectively, to be the spaces RBMO(µ) and

rbmo(µ) in [5] and [2].

The organization of this paper is as follows. In Section 2, we recall some necessary

notions and notation. In Section 3, we prove that if f belongs to RBMO(µ), then

ṀS( f ) (when R
d is not an initial cube) and MS( f ) (when R

d is an initial cube) are

either infinite everywhere or finite almost everywhere, and in the latter case, ṀS( f )

and MS( f ) are bounded from RBMO(µ) to RBLO(µ). In this section, we also estab-

lish the boundedness of MS from rbmo(µ) to rblo(µ). Differently from the homoge-

neous case, for any f ∈ rbmo(µ), MS( f )(x) < ∞ for µ-almost everywhere x ∈ R
d.

The results in this paper are also new even when µ is the d-dimensional Lebesgue

measure.

Throughout the paper, we always denote by C a positive constant that is indepen-

dent of the main parameters, but it may vary from line to line. Constants with sub-

scripts such as C1, do not change in different occurrences. The symbol Y . Z means

that there exists a positive constant C such that Y ≤ CZ. For any f ∈ L1
loc (µ) and

cube Q, mQ( f ) denotes the mean of f over Q, namely, mQ( f ) ≡ 1
µ(Q)

∫
Q

f (y) dµ(y).

2 Preliminaries

In this section, we recall some necessary notions and notation. By a cube Q ⊂ R
d, we

mean a closed cube whose sides are parallel to the axes and centered at some point of

supp(µ), and we denote its side length by l(Q) and its center by xQ. If µ(R
d) < ∞,

we also regard R
d as a cube. Let α, β be two positive constants, α ∈ (1,∞) and

β ∈ (αn,∞). A cube Q is said to be an (α, β)-doubling cube if it satisfies µ(αQ) ≤
βµ(Q), where and in what follows, given λ > 0 and any cube Q, λQ denotes the

cube concentric with Q and having side length λl(Q). It was pointed out by Tolsa

(see [5, pp. 95-96] or [6, Remark 3.1]) that if β > αn, then for any x ∈ supp(µ) and

any R > 0, there exists some (α, β)-doubling cube Q centered at x with l(Q) ≥ R,

and that if β > αd, then for µ-almost everywhere x ∈ R
d, there exists a sequence
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of (α, β)-doubling cubes, {Qk}k∈N, centered at x with l(Qk) → 0 as k → ∞. Let

ρ ∈ (1,∞). Throughout this paper, we always take βρ ≡ ρd+1. For any cube Q, let

Q̃ρ be the smallest (ρ, βρ)-doubling cube that has the form ρkQ with k ∈ N ∪ {0}.

We denote Q̃2 simply by Q̃. Moreover, by a doubling cube Q, we always mean a

(2, 2d+1)-doubling cube.

Given two cubes Q, R ⊂ R
d, let xQ be the center of Q, and QR be the smallest

cube concentric with Q containing Q and R. The following coefficients were first

introduced by Tolsa in [5]; see also [6, 7].

Definition 2.1 Given two cubes Q, R ⊂ R
d, we define

δ(Q, R) ≡ max

{∫

QR\Q

1

|x − xQ|n
dµ(x),

∫

RQ\R

1

|x − xR|n
dµ(x)

}
.

We may treat points x ∈ R
d as if they were cubes (with side length l(x) = 0). So,

for x, y ∈ R
d and some cube Q, the notations δ(x, Q) and δ(x, y) make sense.

The following useful properties of δ(·, ·), which were proved in [7, pp. 320-321]

(see also [6, Lemma 3.1]), play important roles throughout the paper.

Lemma 2.2 There exists a positive constant C, which only depends on C0, n, d, and ρ,

such that the following properties hold:

(i) If l(Q) ∼ l(R) and dist(Q, R) ≤ Cl(Q), then δ(Q, R) ≤ C. Moreover, for any

η ∈ (1,∞), δ(Q, ηQ) ≤ C02nηn.

(ii) Let ρ ∈ (1,∞) and Q ⊂ R be concentric cubes such that there exist no

(ρ, βρ)-doubling cubes of the form ρkQ, k ≥ 0, with Q ⊂ ρkQ ⊂ R. Then

δ(Q, R) ≤ C.
(iii) If Q ⊂ R, then δ(Q, R) ≤ C[1 + log l(R)

l(Q)
].

(iv) There exists a positive ǫ0 such that if P ⊂ Q ⊂ R, then

|δ(P, R) − [δ(P, Q) + δ(Q, R)]| ≤ ǫ0.

In particular, δ(P, Q) ≤ δ(P, R) + ǫ0 and δ(Q, R) ≤ δ(P, R) + ǫ0. Moreover, if P

and Q are concentric, then ǫ0 = 0.
(v) For any P, Q, R ⊂ R

d, δ(P, R) ≤ C + δ(P, Q) + δ(Q, R).

We now recall the notion of cubes of generations; see [6, 7] for more details.

Definition 2.3 We say that x ∈ R
d is a stopping point (or stopping cube) if

δ(x, Q) < ∞ for some cube Q ∋ x with l(Q) ∈ (0,∞). We say that R
d is an ini-

tial cube if δ(Q, R
d) < ∞ for some cube Q with l(Q) ∈ (0,∞). The cubes Q such

that l(Q) ∈ (0,∞) are called transit cubes.

Remark 2.4 In [6, p. 67], it was pointed out that if δ(x, Q) < ∞ for some transit

cube Q containing x, then δ(x, Q ′) < ∞ for any other transit cube Q ′ containing x.

Also, if δ(Q, R
d) < ∞ for some transit cube Q, then δ(Q ′, R

d) < ∞ for any transit

cube Q ′.
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Let A be some big positive constant. In particular, we assume that A is much bigger

than the constants ǫ0, ǫ1, and γ0, which appear, respectively, in [6, Lemmas 3.1–3.3].

Moreover, the constants A, ǫ0, ǫ1, and γ0 depend only on C0, n, and d.

Definition 2.5 Assume that R
d is not an initial cube. We fix some doubling cube

R0 ⊂ R
d. This will be our “reference” cube. For each j ∈ N, let R− j be some doubling

cube concentric with R0, containing R0, and such that |δ(R0, R− j)− jA| ≤ ǫ1 (which

exists because of [6, Lemma 3.3]). If Q is a transit cube, we say that Q is a cube

of generation k ∈ Z if it is a doubling cube, and for some cube R− j containing

Q, we have |δ(Q, R− j) − ( j + k)A| ≤ ǫ1. If Q ≡ {x} is a stopping cube, we say

that Q is a cube of generation k ∈ Z if for some cube R− j containing x, we have

δ(Q, R− j) ≤ ( j + k)A + ǫ1.

We remark that the definition of cubes of generations is proved in [6, p. 68] to

be independent of the chosen reference cubes R− j in the sense modulo some small

errors.

Definition 2.6 Assume that R
d is an initial cube. Then we choose R

d as our “refer-

ence” cube: If Q is a transit cube, we say that Q is a cube of generation k ≥ 1, if Q is

doubling and |δ(Q, R
d) − kA| ≤ ǫ1. If Q ≡ {x} is a stopping cube, we say that Q is a

cube of generation k ≥ 1 if δ(x, R
d) ≤ kA + ǫ1. Moreover, for all k ≤ 0, we say that

R
d is a cube of generation k.

Using [6, Lemma 3.2], it is easy to verify that for any x ∈ supp(µ) and k ∈ Z,

there exists a doubling cube of generation k; see [6, p. 68]. Moreover, from [14,

Proposition 2.1] and Definition 2.6, it follows that for any x ∈ supp(µ), l(Qx, k) → ∞
as k → −∞. Throughout this paper, for any x ∈ supp(µ) and k ∈ Z, we denote by

Qx, k a fixed doubling cube centered at x of generation k.

Remark 2.7 We should point out that when R
d is an initial cube, cubes of genera-

tions in [6] were not assumed to be doubling. However, by using [6, Lemma 3.2], it

is easy to check that doubling cubes of generations exist even in this case.

In [6], Tolsa constructed a class of approximation of the identity {Sk}
∞
k=−∞ related

to {Qx, k}x∈Rd, k∈Z, which are integral operators given by kernels Sk(x, y) on R
d × R

d

satisfying the following properties:

(A-1) Sk(x, y) = Sk(y, x) for all x, y ∈ R
d;

(A-2) for any k ∈ Z and any x ∈ supp(µ), if Qx, k is a transit cube, then

∫

Rd

Sk(x, y) dµ(y) = 1;

(A-3) if Qx, k is a transit cube, then supp(Sk(x, ·)) ⊂ Qx, k−1;

(A-4) if Qx, k and Qy, k are transit cubes, then there exists a constant C > 0 such that

0 ≤ Sk(x, y) ≤
C

[l(Qx, k) + l(Qy, k) + |x − y|]n
;
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(A-5) if Qx, k, Qx ′, k, and Qy, k are transit cubes, and x, x ′ ∈ Qx0, k for some x0 ∈
supp(µ), then there exists a constant C > 0 such that

|Sk(x, y) − Sk(x ′, y)| ≤ C
|x − x ′|

l(Qx0, k)

1

[l(Qx, k) + l(Qy, k) + |x − y|]n
.

Moreover, Tolsa [6] pointed out that properties (A-1)–(A-5) also hold if any of Qx, k,

Qx ′, k, and Qy, k is a stopping cube, and that (A-1) and (A-3)–(A-5) also hold if any

of Qx, k, Qx ′, k, and Qy, k coincides with R
d, except that (A-2) is replaced by (A-2)’:

if Qx, k = R
d for some x ∈ supp(µ), then Sk = 0. In what follows, without loss of

generality, for any x ∈ supp(µ), we may always assume that Qx, k is not a stopping

cube, since the proofs for stopping cubes are similar.

For any k ∈ Z, f ∈ L1
loc (µ), and x ∈ supp(µ), define

Sk f (x) ≡

∫

Rd

Sk(x, y) f (y) dµ(y).

Let Dk ≡ Sk−Sk−1 for k ∈ Z, and we also use Dk to denote the corresponding integral

operator with kernel Dk.

We next recall the notions of the space RBMO(µ) in [5] and RBLO(µ) in [3].

Definition 2.8 Let η, ρ ∈ (1,∞) and βρ ≡ ρd+1. A function f ∈ L1
loc (µ) is said to

be in the space RBMO(µ) if there exists some nonnegative constant C̃ such that for

any cube Q centered at some point of supp(µ),

1

µ(ηQ)

∫

Q

∣∣∣ f (y) − meQρ ( f )
∣∣∣ dµ(y) ≤ C̃,

and for any two (ρ, βρ)-doubling cubes Q ⊂ R,

|mQ( f ) − mR( f )| ≤ C̃[1 + δ(Q, R)].

Moreover, the minimal constant C̃ as above is defined to be the norm of f in the

space RBMO(µ) and denoted by ‖ f ‖RBMO(µ).

Remark 2.9 It was proved by Tolsa [5] that the definition of RBMO(µ) is indepen-

dent of the choices of η and ρ. As a result, unless explicitly pointed out, we always

assume η = ρ = 2 in Definition 2.8.

Definition 2.10 We say that f ∈ L1
loc (µ) belongs to the space RBLO(µ) if there

exists some nonnegative constant C̃ such that for any doubling cube Q,

(2.1) mQ( f ) − essinfx∈Q f (x) ≤ C̃,

and for any two doubling cubes Q ⊂ R,

(2.2) mQ( f ) − mR( f ) ≤ C̃[1 + δ(Q, R)].

Moreover, the minimal constant C̃ as above is defined to be the norm of f in the

space RBLO(µ) and denoted by ‖ f ‖RBLO(µ).
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Remark 2.11 It was proved in [2] that we obtain an equivalent norm of RBLO(µ) if

(2.1) in Definition 2.10 is replaced by: for fixed η ∈ (1,∞) and any cube Q centered

at some point of supp(µ),

(2.3)
1

µ(ηQ)

∫

Q

[
f (x) − essinfeQ f (y)

]
dµ(x) ≤ C̃.

Moreover, we obtain an equivalent norm of RBLO(µ) if the (2, 2d+1)-doubling cubes

in (2.2) and (2.3) are replaced by (ρ, ρd+1)-doubling cubes for any fixed ρ ∈ (1,∞).

To recall the notions of the local spaces rbmo(µ) and rblo(µ), we need first to

recall the set D of cubes with “large size”, which was introduced in [2]. If R
d is not

an initial cube, letting {R− j}
∞
j=0 be as in Definition 2.5, we then define the set

D ≡
{

Q ⊂ R
d : there exists a cube P ⊂ Q and j ∈ N ∪ {0} such that

P ⊂ R− j with δ(P, R− j) ≤ ( j + 1)A + ǫ1

}
.

If R
d is an initial cube, we define the set

D ≡
{

Q ⊂ R
d : there exists a cube P ⊂ Q such that δ(P, R

d) ≤ A + ǫ1

}
.

In [2], it was pointed out that if Q ∈ D, then any R containing Q is also in D and the

definition of the set D is independent of the chosen reference cubes {R− j} j∈N∪{0}

in the sense modulo some small error (the error is no more than 2ǫ1 + ǫ0); see also

[6, p. 68]. Moreover, it was also proved in [2] that if µ is the d-dimensional Lebesgue

measure on R
d, then for any cube Q ⊂ R

d, Q ∈ D if and only if l(Q) & 1.

The following spaces rbmo(µ) and rblo(µ) were introduced in [2]. It is not dif-

ficult to see that rblo(µ) ⊂ rbmo(µ) ⊂ RBMO(µ) and rblo(µ) ⊂ RBLO(µ) ⊂
RBMO(µ); see [2].

Definition 2.12 Let η ∈ (1,∞), ρ ∈ [η,∞), and βρ ≡ ρd+1. A function f ∈
L1

loc (µ) is said to be in the space rbmo(µ), if there exists a nonnegative constant C̃

such that for any cube Q /∈ D,

1

µ(ηQ)

∫

Q

∣∣∣ f (y) − meQρ ( f )
∣∣∣ dµ(y) ≤ C̃,

that for any two (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

|mQ( f ) − mR( f )| ≤ C̃[1 + δ(Q, R)],

and that for any cube Q ∈ D,

1

µ(ηQ)

∫

Q

| f (y)| dµ(y) ≤ C̃.

Moreover, the minimal constant C̃ as above is defined to be the norm of f in the

space rbmo(µ) and denoted by ‖ f ‖rbmo(µ).
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Remark 2.13 It was proved in [2] that the definition of rbmo(µ) is independent

of the choices of η ∈ (1,∞) and ρ ∈ [η,∞). Therefore, in what follows, we always

assume η = ρ = 2 in Definition 2.12.

Definition 2.14 A function f ∈ L1
loc (µ) is said to belong to the space rblo(µ) if

there exists a nonnegative constant C̃ such that for any cube Q /∈ D,

1

µ(2Q)

∫

Q

[
f (x) − essinfeQ f

]
dµ(x) ≤ C̃,

that for any two doubling cubes Q ⊂ R with Q /∈ D,

mQ( f ) − mR( f ) ≤ C̃[1 + δ(Q, R)],

that for any cube Q ∈ D,

1

µ(2Q)

∫

Q

| f (y)| dµ(y) ≤ C̃,

and that for any cube Q ∈ D, ∣∣∣∣essinf
eQ

f

∣∣∣∣ ≤ C̃.

Moreover, the minimal constant C̃ as above is defined to be the norm of f in the

space rblo(µ) and denoted by ‖ f ‖rblo(µ).

In what follows, for any cube R and x ∈ R ∩ supp(µ), let Hx
R be the largest integer

k such that R ⊂ Qx, k. The following properties on Hx
R, which were established in [2],

are useful in applications.

Lemma 2.15 The following properties hold:

(i) For any cube R and x ∈ R ∩ supp(µ), Qx, Hx
R+1 ⊂ 3R and 5R ⊂ Qx, Hx

R−1.

(ii) For any cube R, x ∈ R ∩ supp(µ), and k ∈ Z with k ≥ Hx
R + 2, Qx, k ⊂

7
5
R.

(iii) For any cube R and x ∈ R ∩ supp(µ), Hx
R ≥ 0 when R /∈ D; moreover, Hx

R ≤ 1

when R
d is not an initial cube and R ∈ D, and 0 ≤ Hx

R ≤ 1 when R
d is an initial

cube and R ∈ D.

(iv) When k ≥ 2, for any x ∈ supp(µ), Qx, k /∈ D.

(v) For any cube R and x ∈ R ∩ supp(µ), there exists a positive constant C such that

δ(R, Qx,Hx
R
) ≤ C and δ(Qx,Hx

R+1, R) ≤ C.

3 Main Results and their Proofs

Let S ≡ {Sk}k∈Z be an approximation of the identity as in Section 2. We then consider

the following maximal operators: for any locally integrable function f and x ∈ R
d,

define

ṀS( f )(x) ≡ sup
k∈Z

|Sk( f )(x)| and MS( f )(x) ≡ sup
k∈N

|Sk( f )(x)|.

https://doi.org/10.4153/CJM-2010-065-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-065-7


1426 Da. Yang and Do. Yang

These two operators were introduced in [15]. Moreover, ṀS was proved to be

bounded on Lp(µ) for p ∈ (1,∞) and from H1(µ) to L1(µ), and MS was proved

to be bounded on Lp(µ) for p ∈ (1,∞) and from h
1,∞
atb (µ) to L1(µ); see [15]. In this

section, we consider their boundedness in RBMO(µ) and rbmo(µ), respectively.

Theorem 3.1 If R
d is not an initial cube, for any f ∈ RBMO(µ), ṀS( f ) is either

infinite everywhere or finite almost everywhere, and in the latter case, there exists a

positive constant C independent of f such that ‖ṀS( f )‖RBLO(µ) ≤ C‖ f ‖RBMO(µ).
If R

d is an initial cube, the same conclusions as above are true if ṀS is replaced by

MS.

Proof We use some basic ideas from [1]. By homogeneity, we may assume that

‖ f ‖RBMO(µ) = 1.

Moreover, when R
d is an initial cube, by the convention, we have Sk = 0 when k ≤ 0.

Thus, using this convention, we can also write MS into ṀS.

We first claim that if there exists a point x0 ∈ R
d such that ṀS( f )(x0) < ∞, then

for any doubling cube Q ∋ x0,

(3.1)
1

µ(Q)

∫

Q

[
ṀS( f )(x) − inf

Q
ṀS( f )

]
dµ(x) . 1.

In fact, for any cube Q and f ∈ L1
loc (µ), define

ṀS, Q, 1( f )(x) ≡ sup
k≥Hx

Q+1

|Sk( f )(x)| ,(3.2)

ṀS, Q, 2( f )(x) ≡ sup
k≤Hx

Q

|Sk( f )(x)| ,(3.3)

Q1 ≡ {x ∈ Q : ṀS, Q, 1( f )(x) ≥ ṀS, Q, 2( f )(x)} and Q2 ≡ Q \ Q1. We then have that

ṀS( f ) = max(ṀS, Q, 1( f ), ṀS, Q, 2( f )). Write f1 ≡ [ f − mQ( f )]χ 4
3

Q and

f2 ≡ [ f − mQ( f )]χ
Rd\ 4

3
Q.

Since ṀS, Q, 1 is sublinear, we see that

1

µ(Q)

∫

Q

[
ṀS( f )(x) − inf

Q
ṀS( f )

]
dµ(x)

≤
1

µ(Q)

∫

Q1

[ṀS, Q, 1( f1)(x) + ṀS, Q, 1( f2)(x)] dµ(x) +
[
|mQ( f )| − inf

Q
ṀS( f )

]

+
1

µ(Q)

∫

Q2

[
ṀS, Q, 2( f )(x) − inf

Q
ṀS( f )

]
dµ(x) ≡ E1 + E2 + E3.

To estimate E1, recall that there exists a positive constant C such that for any f ∈
RBMO(µ) with ‖ f ‖RBMO(µ) = 1 and doubling cubes Q and R,

(3.4) |mQ( f ) − mR( f )| ≤ C + 2δ(Q, R)
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(see [7, Proposition 2.6]). On the other hand, by [15, Lemma 4.1], ṀS is bounded

on L2(µ).

From this fact, the Hölder inequality, the doubling property of Q, Lemma 2.2,

(3.4), and [5, Corollary 3.5], it follows that

1

µ(Q)

∫

Q1

ṀS, Q, 1( f1)(x) dµ(x)

.
{ 1

µ(Q)

∫

4
3

Q

| f (x) − mQ( f )|2 dµ(x)
} 1/2

.
{ 1

µ(Q)

∫

4
3

Q

∣∣ f (x) − mf4
3

Q
( f )

∣∣ 2
dµ(x)

} 1/2

+
∣∣mQ( f ) − mf4

3
Q

( f )
∣∣ . 1.

By this inequality, the estimate for E1 is reduced to showing that

(3.5)
1

µ(Q)

∫

Q1

ṀS, Q, 1( f2)(x) dµ(x) . 1.

From the construction of {Qx, k}k∈Z, it is easy to see that for any k ∈ Z and x ∈
supp(µ), δ(Qx, k, Qx, k−1) . 1. Then by applying [14, Lemma 3.1], we see that

(3.6)

∫

Qx, k−1

| f (z) − mQx, k
( f )|

[|z − x| + l(Qx, k)]n
dµ(z) . [1 + δ(Qx, k, Qx, k−1)]2 . 1.

Moreover, if k ≥ Hx
Q + 4, then Qx, k−1 ⊂ 4

3
Q. This can be seen by applying Lemma

2.15(ii) together with the fact that l(Qx, k−1) ≤ 1
10

l(Qx, k−2) for any x ∈ supp(µ) and

k ∈ Z (see [6, p. 69]). Then from this fact, (A-2)– (A-4), (3.6), (3.4), Lemma 2.2(iv),

and Lemma 2.15(v), it follows that for any x ∈ Q1,

ṀS, Q, 1( f2)(x) = sup
Hx

Q+1≤k≤Hx
Q+3

|Sk( f2)(x)|

≤ sup
Hx

Q+1≤k≤Hx
Q+3

[∣∣Sk

(
( f − mQx, k

( f ))χ
Rd\ 4

3
Q

)
(x)

∣∣

+
∣∣mQx, k

( f ) − mQx, Hx
Q

+1
( f )

∣∣ +
∣∣mQx, Hx

Q
+1

( f ) − mQ( f )
∣∣
]

. 1.

This implies (3.5).

Now we estimate E2. From (A-2)–(A-4) and (3.6), it follows that for any k ∈ Z

and x ∈ supp(µ),

(3.7) |Sk( f )(x) − mQx, k
( f )| . 1.

Then applying this, together with Lemma 2.15(v) and (3.4), we see that for any y ∈
Q,

|mQ( f )| − ṀS( f )(y) ≤
∣∣mQ( f ) − SH

y
Q+1( f )(y)

∣∣

≤
∣∣mQ( f ) − mQ

y, H
y
Q

+1
( f )

∣∣ +
∣∣mQ

y, H
y
Q

+1
( f ) − SH

y
Q+1( f )(y)

∣∣

. 1.
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Then we have that E2 . 1.

On the other hand, for any x, y ∈ Q and k ≤ Hx
Q, [6, Lemma 4.2] implies that

Qy, k ⊂ Qx, k−1 ⊂ Qy, k−2. Then Lemma 2.2(iv) and (v) yield that δ(Qy, k, Qx, k) . 1.

Therefore, it follows from (3.4) and (3.7) that

|Sk f (x)| − ṀS( f )(y)

≤ |Sk f (x) − Sk f (y)|

≤ |Sk f (x) − mQx, k
( f )| + |mQx, k

( f ) − mQy, k
( f )| + |mQy, k

( f ) − Sk f (y)|

. 1,

which implies E3 . 1. Combining estimates for E1 through E3 leads to (3.1).

By (3.1), if there exists a point x0 ∈ R
d such that ṀS( f )(x0) < ∞, then ṀS( f )(x)

is finite almost everywhere and for any doubling cube Q,

1

µ(Q)

∫

Q

[
ṀS( f )(x) − essinfQ ṀS( f )

]
dµ(x) . 1.

To complete the proof of Theorem 3.1, it suffices to verify that for any doubling cube

Q ⊂ R,

mQ[ṀS( f )] − mR[ṀS( f )] . 1 + δ(Q, R).

Let ṀS, R, 1( f ) and ṀS, R, 2( f ) be as in (3.2) and (3.3) with Q replaced by R,

Q1 ≡ {x ∈ Q : ṀS, R, 1( f )(x) ≥ ṀS, R, 2( f )(x)}

and Q2 ≡ Q \ Q1. Split

f = [ f − mR( f )]χ 4
3

Q + [ f − mR( f )]χ
Rd\ 4

3
Q + mR( f ) ≡ f1 + f2 + mR( f ).

From the fact that ṀS, R, 1 is sublinear, it follows that

mQ[ṀS( f )] − mR[ṀS( f )]

≤
1

µ(Q)

∫

Q1

{
ṀS, R, 1( f1)(x) + ṀS, R, 1( f2)(x)

}
dµ(x) +

[
|mR( f )| − mR[ṀS( f )]

]

+
1

µ(Q)

∫

Q2

{
ṀS, R, 2( f )(x) − mR[ṀS( f )]

}
dµ(x) ≡ F1 + F2 + F3.

By the boundedness of ṀS in L2(µ), the Hölder inequality, the doubling property

of Q, Lemma 2.2, (3.4), and [5, Corollary 3.5],

1

µ(Q)

∫

Q1

ṀS, R, 1( f1)(x) dµ(x)(3.8)

.
{ 1

µ(Q)

∫

4
3

Q

∣∣ f (x) − mf4
3

Q
( f )

∣∣ 2
dµ(x)

} 1/2

+
∣∣mf4

3
Q

( f ) − mQ( f )
∣∣ +

∣∣mQ( f ) − mR( f )
∣∣

. 1 + δ(Q, R).
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From the fact that Qx, k−1 ⊂ 4
3
Q for k ≥ Hx

Q + 4, (A-2)–(A-4), (3.6), Lemma 2.2,

(3.4), and Lemma 2.15(i) and (v), we deduce that for any x ∈ Q,

MS, R, 1( f2)(x) ≤ sup
Hx

R+1≤k≤Hx
Q+3

{
Sk

[
| f − mQx, k

( f )|
]

(x)

+ |mQx, k
( f ) − m e3R( f )| + |m e3R( f ) − mR( f )|

}

. 1 + δ(Qx, Hx
Q+3, 3̃R) . 1 + δ(Q, R).

From this and (3.8), it follows that F1 . 1 + δ(Q, R).

On the other hand, Lemma 2.15(v), (3.4), and (3.7) imply that for any y ∈ R,

|mR( f )| − ṀS( f )(y) ≤
∣∣mR( f ) − SH

y
R+1( f )(y)

∣∣

≤
∣∣mR( f ) − mQ

y, H
y
R

+1
( f )

∣∣ +
∣∣mQ

y, H
y
R

+1
( f ) − SH

y
R+1( f )(y)

∣∣ . 1.

Taking the average over y ∈ R yields F2 . 1.

Observe that for any x, y ∈ R and k ≤ Hx
R, δ(Qy, k, Qx, k) . 1. Then it follows

from (3.4) and (3.7) that

|Sk f (x)| − ṀS( f )(y)

≤ |Sk f (x) − mQx, k
( f )| + |mQx, k

( f ) − mQy, k
( f )| + |mQy, k

( f ) − Sk f (y)| . 1,

which implies F3 . 1, and hence completes the proof of Theorem 3.1.

Theorem 3.2 There exists a positive constant C such that for all f ∈ rbmo(µ),

∥∥MS( f )
∥∥

rblo(µ)
≤ C‖ f ‖rbmo(µ).

Proof By homogeneity, we may assume that ‖ f ‖rbmo(µ) = 1. We first consider the

case that R
d is an initial cube. In this case, we claim that for any cube Q ∈ D,

(3.9)
1

µ(2Q)

∫

Q

MS( f )(x) dµ(x) . 1.

By [15, Lemma 4.1], MS is bounded on L2(µ). This fact together with the Hölder

inequality and [2, Corollary 3.1] yield that

1

µ(2Q)

∫

Q

MS

[
f χ 4

3
Q

]
(x) dµ(x) .

{ 1

µ(2Q)

∫

4
3

Q

| f (x)|2 dµ(x)
} 1/2

. 1.

On the other hand, by Lemma 2.15(iii), 0 ≤ Hx
Q ≤ 1 for any x ∈ Q, which in

turn implies that k ≥ Hx
Q + 4 for k ≥ 5. Then we have Qx, k−1 ⊂ 4

3
Q. Moreover,

https://doi.org/10.4153/CJM-2010-065-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-065-7


1430 Da. Yang and Do. Yang

[2, Lemma 3.10] implies that (3.6) holds for any f ∈ rbmo(µ). From these facts

together with (A-2), it follows that for any x ∈ Q,

MS

[
f χ

Rd\ 4
3

Q

]
(x) = sup

1≤k≤4

∣∣∣∣
∫

Qx, k−1

Sk(x, y) f (y)χ
Rd\ 4

3
Q(y) dµ(y)

∣∣∣∣

≤ sup
1≤k≤4

{∫

Qx, k−1

| f (y) − mQx, k
( f )|

[|x − y| + l(Qx, k)]n
dµ(y) +

∣∣mQx, k
( f )

∣∣
}

. 1,

where in the last inequality, by Definition 2.12,
∣∣mQx, k

( f )
∣∣ ≤ 1 if k = 1; and

∣∣mQx, k
( f )

∣∣ ≤
∣∣mQx, k

( f ) − mQx, 1
( f )

∣∣ +
∣∣mQx, 1

( f )
∣∣ . 1

if 2 ≤ k ≤ 4. Therefore (3.9) follows and MS( f ) is finite almost everywhere.

We now prove that for any doubling cube Q /∈ D,

(3.10)
1

µ(Q)

∫

Q

[
MS( f )(x) − essinfQ MS( f )

]
dµ(x) . 1.

Let

MS, Q, 1( f )(x) ≡ sup
k≥Hx

Q+1

∣∣Sk( f )(x)
∣∣ , MS, Q, 2( f )(x) ≡ sup

1≤k≤Hx
Q

∣∣Sk( f )(x)
∣∣

(if Hx
Q = 0, then MS, Q, 2( f ) disappears),

Q1 ≡ {x ∈ Q : MS, Q, 1( f )(x) ≥ MS, Q, 2( f )(x)},

and Q2 ≡ Q \ Q1. Moreover, write

f = [ f − mQ( f )]χ 4
3

Q + [ f − mQ( f )]χ
Rd\ 4

3
Q + mQ( f ) ≡ f1 + f2 + mQ( f ).

Then we have

1

µ(Q)

∫

Q

[
MS( f )(x) − essinfQ MS( f )

]
dµ(x)

≤
1

µ(Q)

∫

Q1

[
MS, Q, 1( f1)(x)

+ MS, Q, 1( f2)(x)
]

dµ(x) +
[
|mQ( f )| − essinfQ MS( f )

]

+
1

µ(Q)

∫

Q2

[
MS, Q, 2( f )(x) − essinfQ MS( f )

]
dµ(x)

≡ G1 + G2 + G3.

We claim that

(3.11)
1

µ(Q)

∫

Q1

MS, Q, 1( f1)(x) dµ(x) . 1.
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In fact, an easy computation shows that (3.4) holds for any f ∈ rbmo(µ) with

‖ f ‖rbmo(µ) = 1. Then by the Hölder inequality, the boundedness of MS in L2(µ),

the doubling property of Q, [2, Corollary 3.1], and Lemma 2.2, if 4
3
Q ∈ D,

1

µ(Q)

∫

Q1

MS, Q, 1( f1)(x) dµ(x)

.

{
1

µ(Q)

∫

4
3

Q

| f (x) − mQ( f )|2 dµ(x)

} 1/2

≤

{
1

µ(Q)

∫

4
3

Q

| f (x)|2 dµ(x)

} 1/2

+
∣∣mQ( f ) − mf4

3
Q

( f )
∣∣ +

∣∣mf4
3

Q
( f )

∣∣

. 1;

and if 4
3
Q /∈ D,

1

µ(Q)

∫

Q1

MS, Q, 1( f1)(x) dµ(x)

≤
{ 1

µ(Q)

∫

4
3

Q

∣∣ f (x) − mf4
3

Q
( f )

∣∣ 2
dµ(x)

} 1/2

+
∣∣mf4

3
Q

( f ) − mQ( f )
∣∣ . 1.

Therefore, (3.11) follows.

From (A-2)–(A-4), (3.4), (3.6), Lemma 2.15(v), and the fact that Qx, k−1 ⊂ 4
3
Q

for k ≥ Hx
Q + 4, it follows that for any x ∈ Q1,

MS, Q, 1( f2)(x)

≤ sup
Hx

Q+1≤k≤Hx
Q+3

{
Sk

[
| f − mQx, k

( f )|
]

(x) +
∣∣mQx, k

( f ) − mQx, Hx
Q

+1
( f )

∣∣

+
∣∣mQx, Hx

Q
+1

( f ) − mQ( f )
∣∣
}

. 1.

This and (3.11) lead to G1 . 1.

Observe that [2, Lemma 3.10] implies that (3.7) also holds for any f ∈ rbmo(µ).

Similarly to the estimate for E2 in the proof of Theorem 3.1, by Lemma 2.15(v) and

(3.7), for any y ∈ Q,

|mQ( f )| − MS( f )(y) ≤
∣∣mQ( f ) − SH

y
Q+1( f )(y)

∣∣ . 1,

which implies that G2 . 1.

On the other hand, it follows from (3.4) and (3.7) that for any x, y ∈ Q and

1 ≤ k ≤ Hx
Q,

|Sk f (x)| − MS( f )(y)

≤ |Sk f (x) − mQx, k
( f )| + |mQx, k

( f ) − mQy, k
( f )| + |mQy, k

( f ) − Sk f (y)| . 1.
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Then we have G3 . 1. Combining the estimates for G1 through G3 yields (3.10).

Notice that by (3.9), for any cube Q ∈ D,

essinfeQMS( f ) .
1

µ(2Q̃)

∫

eQ

MS( f )(x) dµ(x) . 1.

Then by (3.9) and (3.10), to complete the proof of Theorem 3.2 in the case that R
d is

an initial cube, it suffices to prove that for any doubling cubes Q ⊂ R with Q /∈ D,

mQ[M( f )] − mR[M( f )] . 1 + δ(Q, R).

Set MS, R, 1( f )(x) ≡ supk≥Hx
R+1 |Sk( f )(x)| , MS, R, 2( f )(x) ≡ sup1≤k≤Hx

R
|Sk( f )(x)|

(if Hx
R = 0, then MS, R, 2( f ) disappears),

Q1 ≡ {x ∈ Q : MS, R, 1( f )(x) ≥ MS, R, 2( f )(x)},

and Q2 ≡ Q \ Q1. Since MS is sublinear,

mQ[MS( f )] − mR[MS( f )]

≤
1

µ(Q)

∫

Q1

{
MS, R, 1( f1)(x) + MS, R, 1( f2)(x)

}
dµ(x) +

[
|mR( f )| − mR[MS( f )]

]

+
1

µ(Q)

∫

Q2

{
MS, R, 2( f )(x) − mR[MS( f )]

}
dµ(x) ≡ H1 + H2 + H3,

where f1 ≡ [ f − mR( f )]χ 4
3

Q and f2 ≡ [ f − mR( f )]χ
Rd\ 4

3
Q.

By the boundedness of MS in L2(µ), the Hölder inequality, the doubling property

of Q, Corollary 3.1 in [2], (3.4), and Lemma 2.2, if 4
3
Q ∈ D,

1

µ(Q)

∫

Q1

MS, Q, 1( f1)(x) dµ(x)

.

{
1

µ(Q)

∫

4
3

Q

| f (x) − mR( f )|2 dµ(x)

} 1/2

.

{
1

µ(Q)

∫

4
3

Q

| f (x)|2 dµ(x)

} 1/2

+ |mR( f ) − mQ( f )|

+
∣∣mQ( f ) − mf4

3
Q

( f )
∣∣ +

∣∣mf4
3

Q
( f )

∣∣

. 1 + δ(Q, R);

and if 4
3
Q /∈ D,

1

µ(Q)

∫

Q1

MS, Q, 1( f1)(x) dµ(x) .

{
1

µ(Q)

∫

4
3

Q

∣∣ f (x) − mf4
3

Q
( f )

∣∣ 2
dµ(x)

} 1/2

+
∣∣mf4

3
Q

( f ) − mQ( f )
∣∣ + |mQ( f ) − mR( f )|

. 1 + δ(Q, R).
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On the other hand, from the fact that Qx, k−1 ⊂ 4
3
Q for k ≥ Hx

Q + 4, (A-2)–(A-4),

(3.6), Lemma 2.2, and Lemma 2.15, we deduce that for any x ∈ Q,

MS, R, 1( f2)(x) = sup
Hx

R+1≤k≤Hx
Q+3

|Sk( f2)(x)|

≤ sup
Hx

R+1≤k≤Hx
Q+3

∫

Qx, k−1

Sk(x, z)| f (z) − mR( f )| dµ(z)

≤ sup
Hx

R+1≤k≤Hx
Q+3

[∫

Qx, k−1

Sk(x, z)| f (z) − mQx, k
( f )| dµ(z)

+
∣∣mQx, k

( f ) − m e3R( f )
∣∣ +

∣∣m e3R( f ) − mR( f )
∣∣
]

. 1 + δ(Qx, Hx
Q+3, 3̃R) . 1 + δ(Q, R).

Then we have 1
µ(Q)

∫
Q1

MS, Q, 1( f2)(x) dµ(x) . 1 + δ(Q, R), which together with the

estimate for MS, Q, 1( f1)(x) yields H1 . 1 + δ(Q, R).
By Lemma 2.15(v), (3.4), and (3.7), for any y ∈ R,

|mR( f )| − MS( f )(y) ≤
∣∣mR( f ) − SH

y
R+1( f )(y)

∣∣

≤
∣∣mR( f ) − mQ

y, H
y
R

+1
( f )

∣∣ +
∣∣mQ

y, H
y
R

+1
( f ) − SH

y
R+1( f )(y)

∣∣ . 1.

This yields that H2 . 1.

Moreover, for any x, y ∈ R and 1 ≤ k ≤ Hx
R, from the fact that δ(Qy, k, Qx, k) . 1,

(3.4), and (3.7), it follows that

|Sk f (x)| − MS( f )(y)

≤ |Sk f (x) − mQx, k
( f )| + |mQx, k

( f ) − mQy, k
( f )| + |mQy, k

( f ) − Sk f (y)| . 1.

Therefore, the proof of Theorem 3.2 in the case that R
d is an initial cube is completed.

When R
d is not an initial cube, the proof is similar and we omit the details, which

completes the proof of Theorem 3.2.
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