ON THE STRONGLY COUNTABLE-DIMENSIONALITY OF μ -SPACES

by T. MIZOKAMI

(Received 26 May, 1982)

Nagata in [3] defined strongly countable-dimensional spaces which are the countable union of closed finite-dimensional subspaces. Walker and Wenner in [7] characterized such metric spaces as follows: a space X is a strongly countable-dimensional metric space if and only if there exists a finite-to-one closed mapping of a zero-dimensional metric space onto X with weak local order.

In this paper, we consider strongly countable-dimensionality for the class of μ -spaces in the sense of Nagami [5] and show that the above characterization is generalized to this class. To begin with, we give the definition of a mapping with weak local order, which is introduced in [7]. A mapping $f: X \to Y$ is called to have *weak local order* if for each point $y \in Y$ there exist a point $x \in f^{-1}(y)$, an open neighborhood U of x and a positive integer n such that ord $f \mid U \leq n$. All spaces are assumed to be Hausdorff and all mappings to be continuous and onto. N always denotes the set of all positive integers. An open collection of a space X means a collection of open sets of X. For a point p of a space X and for a collection \mathcal{U} of sets of X we denote by $\operatorname{ord}_p \mathcal{U}$ the largest integer n such that there exist n members of \mathcal{U} which contain p, and denote $\sup\{\operatorname{ord}_p \mathcal{U}: p \in X\}$ by $\operatorname{ord} \mathcal{U}$.

LEMMA 1. Let X be a hereditarily collectionwise normal space. Then X satisfies the following (α) :

(α) Let F be a closed subspace of X and $\mathcal{H} = \{H_{\alpha} : \alpha \in A\}$ a collection of pairwise disjoint open sets of F. Then there exists a collection $\mathcal{H}' = \{H'_{\alpha} : \alpha \in A\}$ of pairwise disjoint open sets of X such that

$$H'_{\alpha} \cap F = H_{\alpha}, \qquad \alpha \in A.$$

Proof. Observe that \mathcal{H} is a discrete collection of closed sets of the subspace

$$X' = \bigcup \{H_{\alpha} : \alpha \in A\} \cup (X - F).$$

Since X' is collectionwise normal, there exists a collection $\mathscr{H}' = \{H'_{\alpha} : \alpha \in A\}$ of pairwise disjoint open sets of X', and hence of X, such that $H_{\alpha} \subset H'_{\alpha}$, $\alpha \in A$. This implies

$$H'_{\alpha} \cap F = H_{\alpha}, \qquad \alpha \in A$$

LEMMA 2. Let X be a hereditarily collectionwise normal space. Then X satisfies the following (β):

(β) Let F be a closed subspace of X and $\mathcal{H} = \{H_{\alpha} : \alpha \in A\}$ an open cover of F with ord $\mathcal{H} \leq m$, where $m \in N$. Then there exists an open collection $\mathcal{G} = \{G_{\alpha} : \alpha \in A\}$ of X covering

F such that

$$G_{\alpha} \cap F = H_{\alpha}, \quad \alpha \in A_{\alpha}$$

ord $\mathscr{G} \leq \frac{m(m+1)}{2}.$

Proof. We shall prove (β) by induction on m. Consider the case m = 1. In this case, \mathcal{H} is a collection of pairwise disjoint open sets of F. By Lemma 1, there exists a collection $\mathcal{G} = \{G_{\alpha} : \alpha \in A\}$ of pairwise disjoint open sets of X with the required property. Thus (β) is true for m = 1. Assume that the theorem is true for all open covers with $\operatorname{ord} \leq m$ of a closed subspace of X. Let $\mathcal{H} = \{H_{\alpha} : \alpha \in A\}$ be an open cover of F with $\operatorname{ord} \mathcal{H} \leq m + 1$. Let

$$A^* = \{B \subset A : |B| = m+1\},$$
$$H_B = \bigcap\{H_\alpha : \alpha \in B\}, \qquad B \in A^*.$$

Then $\{H_B : B \in A^*\}$ is a collection of pairwise disjoint open sets of F. Therefore by Lemma 1 there exists a collection $\{G_B : B \in A^*\}$ of pairwise disjoint open sets of X such that

$$G_{\mathbf{B}} \cap F = H_{\mathbf{B}}, \qquad B \in A^*.$$

Let F_0 be the set of all points x of F such that

$$|\{\alpha \in A : x \in H_{\alpha}\}| \le m.$$

Then F_0 is closed in F, and hence in X. Since $\{F_0 \cap H_\alpha : \alpha \in A\}$ is an open cover of F_0 with ord $\leq m$, by the induction assumption there exists an open collection $\mathcal{M} = \{M_\alpha : \alpha \in A\}$ of X such that

$$M_{\alpha} \cap F_0 = F_0 \cap H_{\alpha}, \qquad \alpha \in A,$$

ord $\mathcal{M} \leq \frac{m(m+1)}{2}.$

Set

$$G_{\alpha} = M_{\alpha} \cup (\bigcup \{G_{B} : \alpha \in B\}), \qquad \alpha \in A,$$
$$\mathcal{G} = \{G_{\alpha} : \alpha \in A\}.$$

Then each G_{α} is an open set of X such that $G_{\alpha} \cap F = H_{\alpha}$. We shall show that $\operatorname{ord} \mathscr{G} \leq (m+1)(m+2)/2$. Let p be an arbitrary point of X. Since $\{G_B : B \in A^*\}$ is pairwise disjoint, there exists at most one $B \in A^*$ such that $p \in G_B$. Set

$$K = \{ \alpha \in A : p \in M_{\alpha} \}, \qquad K' = K \cup B.$$

Then we have

$$|K'| \le \frac{m(m+1)}{2} + m + 1 = \frac{(m+1)(m+2)}{2}$$

Since $p \in G_{\alpha}$, $\alpha \in A$ implies $\alpha \in K'$, we have ord $\mathscr{G} \leq (m+1)(m+2)/2$. This completes the proof.

14

LEMMA 3. Let X be a hereditarily collectionwise normal space. If X is a strongly countable-dimensional space such that for a closed cover $\{F_k : k \in N\}$,

$$X = \bigcup_{k=1}^{\infty} F_k, \quad \dim F_k \le n_k < \infty, \quad k \in N,$$

then for every locally finite open cover $\mathcal U$ of X there exists an open cover $\mathcal V$ of X such that $\mathcal V$ is a refinement of $\mathcal U$ and

$$\operatorname{ord}_{p} \mathcal{V} \leq N_{k} \quad \text{if} \quad p \in F_{k}, \qquad k \in N,$$

where

$$N_k = m_1 + \ldots + m_k, \qquad m_i = \frac{(n_i + 1)(n_i + 2)}{2}, \qquad k, i \in N.$$

Proof. Let k be an arbitrary fixed number. By [6, Th. 4.3, p. 132] there exists an open cover $\mathcal{U}_k = \{U_\alpha : \alpha \in A\}$ of the subspace F_k satisfying

$$\mathcal{U}_k < \mathcal{U}, \quad \text{ord } \mathcal{U}_k \le n_k + 1.$$

By Lemma 2 and its proof, there exists an open collection $\mathcal{U}'_k = \{U'_\alpha : \alpha \in A\}$ of open sets of X such that

$$U'_{\alpha} \cap F_{k} = U_{\alpha}, \quad \alpha \in A, \quad \mathcal{U}'_{k} < \mathcal{U},$$

ord $\mathcal{U}'_{k} \leq \frac{(n_{k}+1)(n_{k}+2)}{2} = m_{k}.$

Set

$$\mathcal{V}_k = \left\{ U'_{\alpha} \cap \left(X - \bigcup_{j=1}^{k-1} F_j \right) : \alpha \in A \right\}.$$

Then \mathcal{V}_k is an open cover of $F_k - \bigcup_{j=1}^{k-1} F_j$ in X satisfying

$$\operatorname{ord}_{p} \mathcal{V}_{k} \leq m_{k} \quad \text{if} \quad p \in \bigcup_{j=k}^{\infty} F_{j},$$
$$\operatorname{ord}_{p} \mathcal{V}_{k} = 0 \quad \text{if} \quad p \in \bigcup_{j=1}^{k-1} F_{j}.$$

 $\mathcal{V}_{\nu} < \mathcal{U}.$

Set

$$\mathcal{V} = \bigcup_{k=1}^{\infty} \mathcal{V}_k.$$

Then \mathcal{V} is an open cover of X such that

$$\mathcal{V} < \mathcal{U},$$

ord_p $\mathcal{V} \le m_1 + \ldots + m_k = N_k$ if $p \in F_k, \quad k \in N.$

This completes the proof.

16

Note that from the above proof, we can take \mathcal{V} to be locally finite in X.

LEMMA 4. Let f be a mapping of a hereditarily collectionwise normal, totally normal and strongly countable-dimensional space X onto a metric space Y. Then there exist mappings g, h such that g is that of X onto a strongly countable-dimensional metric space Z and h is that of Z onto Y such that f = hg.

Proof. Let

$$X = \bigcup_{k=1}^{\infty} F_k, \quad \dim F_k \le n_k < \infty, \quad i \in N,$$

where each F_k is closed in X. Since Y is a metric space, there exists a sequence $\{\mathcal{U}_i : i \in N\}$ of locally finite open covers of Y such that mesh $\mathcal{U}_i < 1/i$ for each $i \in N$. By induction and by virtue of Lemma 3 we can define a sequence $\{\mathcal{V}_i : i \in N\}$ of locally finite open covers of X satisfying the following:

(1) \mathcal{V}_{i+1} is a star-refinement of $\mathcal{V}_i \wedge f^{-1}(\mathcal{U}_i), u \in N$,

(2) $\operatorname{ord}_{p} \mathcal{V}_{i} \leq N_{k}$ if $p \in F_{k}$, $k \in N$, $i \in N$,

where N_k is the number defined in Lemma 3. For this $\{\mathcal{V}_i\}$, construct X', $i: X \to X'$, $f': X' \to Y$, \mathcal{V}_i^* , \mathcal{W}_i , [x], $g: X \to Z$ and $h: Z \to Y$ by the same method as in the proof of [1, Theorem 4.2.5]. Then the mappings $g: X \to Z$ and $h: Z \to Y$ have the required properties. Since $\{\mathcal{W}_i: i \in N\}$ is easily seen to be a sequence of open covers of Z satisfying the following:

(3) $\{W_i\}$ is a development of Z,

(4) $\operatorname{ord}_{[p]} \mathcal{W}_i \leq N_k$ for $i \in N$ if $p \in g(F_k), k \in N$.

(5) \mathcal{W}_{i+1} is a star-refinement of \mathcal{W}_i for each $i \in N$.

By [3, Theorem 5.3] Z is a strongly countable-dimensional metric space. This completes the proof.

Of course it follows easily that if f is one-to-one, then so are both of g and h.

Let $\rho: X \to \hat{X}$ be a one-to-one mapping of a space X onto a metric space \hat{X} and $g: Y \to \hat{X}$ a mapping of a metric space Y onto X. Construct the subspace Z of $X \times Y$ as follows:

$$Z = \{(x, y) \in X \times Y : \rho(x) = g(y)\}.$$

Let $f: Z \to X$ and $\sigma: Z \to Y$ be the restrictions to Z of the projections.

LEMMA 5. Let f, g be the same mappings stated above. (1) If g is a perfect mapping, then so is f. (2) If g is finite-to-one, then so is f. (3) If g has weak local order, then so does f.

Proof. (1) and (2) follow from the argument of [6, Lemma 5.13, p. 293]. To see (3), let x be an arbitrary point of X. Since g has weak local order, there exist a point $a \in g^{-1}(\rho(x))$, its open neighbourhood U and $n \in N$ such that ord $g \mid U \leq n$. Let

$$V = \sigma^{-1}(U), \qquad z = \sigma^{-1}(a) \in \mathbb{Z},$$

17

where σ is a mapping stated above. Then V is an open neighborhood of z in Z such that ord $f | V \le n$. Hence f has weak local order.

THEOREM. Let \mathscr{C} be the class of all μ -spaces and $X \in \mathscr{C}$. Then X is a strongly countable-dimensional space if and only if there exists a closed, finite-to-one mapping from $Z \in \mathscr{C}$ with dim $Z \leq 0$ onto X with weak local order.

Proof. Only if part is proved by the argument parallel to that of the proof of [2, Th.1], and therefore we describe the outline. Let X be a strongly countable-dimensional μ -space. Then it is seen that X is the inverse limit of a sequence $\{X_i, g_i^i\}$, where each X_i , $i \ge 2$, is a paracompact σ -metric space with (X_1, g_1^i) as its replica in the sense of [4]. Each projection $g_i: X \to X_i$ is a one-to-one mapping. By virtue of Lemma 4, there exist one-to-one mappings $h_1: X \to Y_1$ and $k_1: Y_1 \to X_1$ such that Y_1 is a strongly countable-dimensional metric space and $g_1 = k_1 h_1$. For each $i \ge 2$, construct the subspace Y_i of $X_i \times Y_1$ by

$$Y_i = \{(x, y) \in X_i \times Y_1 : g_1^i(x) = k_1(y)\}.$$

Let $k_i: Y_i \to X_i$ and $h_1^i: Y_i \to Y_1$ be the restrictions of the projections. Each Y_i is strongly countable-dimensional because Y_1 is so and (Y_1, h_1^i) is the replica of Y_i , [4, Th. 6]. For each pair *i*, *j* with i > j, h_i^i is defined by $h_i^i = (h_1^i)^{-1}h_1^i$. Since Y_i has the base

 $\{k_i^{-1}(U) \cap (h_1^i)^{-1}(V) : U, V \text{ are open in } X_i, Y_1, \text{ respectively}\},\$

 h_i^i is continuous. It follows from this that X is homeomorphic to $\lim_{\leftarrow} \{Y_i, h_i^i\}$, where each $Y_i, i \ge 2$, is a strongly countable-dimensional paracompact σ -metric space. Thus we can write $X = \lim_{\leftarrow} \{Y_i, h_j^i\}$, By the theorem of Walker and Wenner, there exists a closed, finite-to-one mapping f_1 of a zero-dimensional metric space Z_1 onto Y_1 with weak local order. By the similar way to the construction of Y_i and $h_j^i: Y_i \to Y_j$ from X_i, Y_1, g_1^i and k_1 we define a zero-dimensional paracompact σ -metric space Z_i and mappings $m_i^i: Z_1 \to Z_j, i > j$. Let $Z = \lim_{t \ge 1} \{Z_i, m_i^i\}$. Then Z is a zero-dimensional μ -space. Let $f: Z \to X$ be defined by

$$f(x) = (f_i(x_i)), \quad x = (x_i) \in Z.$$

Then f is similarly shown to be a closed, finite-to-one mapping of Z onto X, [2, Th. 1]. Since f_i has weak local order by Lemma 5, (3) and m_j^i is one-to-one, it is easily seen that f has weak local order. This completes the proof of the only if part. Since the if part is proved by the same argument as in the proof of [7, Th. 2]. Thus we complete the proof.

Nagata called a space X countable-dimensional if X is the countable union of zero-dimensional subspaces, and proved the following, [3]:

THEOREM. Let \mathscr{C} be the class of all metric spaces and $X \in \mathscr{C}$. Then X is countabledimensional if and only if there exists a closed, finite-to-one mapping of a zero-dimensional space $Z \in \mathscr{C}$ onto X.

The author does not know whether this holds or not for the class of all μ -spaces.

T. MIZOKAMI

REFERENCES

1. R. Engelking, Dimension theory (North-Holland, 1978).

2. T. Mizokami, On the dimension of μ -spaces, Proc. Amer. Math. Soc. 83 (1981), 195-200.

3. J. Nagata, On the countable sum of 0-dimensional metric spaces, Fund. Math. 48 (1960), 1-14.

4. K. Nagami, Dimension for σ -metric spaces, J. Math. Soc. Japan 23 (1971), 123-129.

5. K. Nagami, Perfect classes of spaces, Proc. Japan Acad. 48 (1972), 21-24.

6. A. R. Pears, Dimension theory of general spaces (Cambridge U.P., 1975).

7. J. W. Walker and B. R. Wenner, Characterization of certain classes of infinite dimensional metric spaces, Top. Appl. 12 (1981), 101-104.

DEPARTMENT OF MATHEMATICS JOETSU UNIVERSITY OF EDUCATION JOETSU, NIIGATA PREFECTURE 943 JAPAN