# THE UNIFORM LIMIT OF LIPSCHITZ FUNCTIONS ON A BANACH SPACE* 

J. V. HEROD

(Received 27 September 1971)
Communicated by E. Strzelecki

With $R$ the set of real numbers and $S$ a Banach space, let $\mathscr{L}$ be the class of functions $A$ from $R \times S$ to $S$ which have following properties:
(1) if $B$ is a bounded subset of $S$ then the family $\{A(\cdot, P): P$ is in $B\}$ is equicontinuous; i.e., if $t$ is a number and $\varepsilon>0$ then there is a positive number $\delta$ such that if $|s-t|<\delta$ and $P$ is in $B$ then $|A(s, P)-A(t, P)|<\varepsilon$.
(2) $A$ is Lipschitz continuous; i.e., there is a continuous, real valued function $\alpha$ such that if $t$ is a number and $P$ and $Q$ are in $S$ then $|A(t, P)-A(t, Q)| \leqq \alpha(t)$ - $|P-Q|$, and
(3) if $t$ is a number then $A(t, \cdot)$ is dissipative; i.e., if $c>0, P$ and $Q$ are in $S$, and $t$ is a number then

$$
|[P-c A(t, P)]-[Q-c A(t, Q)]| \geqq|P-Q|
$$

Theorem 1. Suppose that $A_{0}$ is a function from $R \times S$ to $S$. These are equivalent:
I. There is a sequence $\left\{A_{p}\right\}_{p=1}^{\infty}$ in $\mathscr{L}$ having the property that if $a<b$ and $B$ is a bounded subset of $S$ then $\left\{A_{p}\right\}_{p=1}^{\infty}$ converges uniformly to $A_{0}$ on $[a, b] \times B$.
II. The function $A_{0}$ has the following properties:
(a) if $B$ is a bounded subset of $S$ then the family $\left\{A_{0}(\cdot, P): P\right.$ is in $\left.B\right\}$ is equicontinuous in the sense of (1) above,
(b) if $a<b$ and $B$ is a bounded subset of $S$ then
(i) $A_{0}$ is bounded on $[a, b] \times B$, and
(ii) if $\varepsilon>0$ then there is a positive number $\delta$ such that if $a \leqq t \leqq b, P$ is in $B, Q$ is in $S$, and $|P-Q|<\delta$ then $\left|A_{0}(t, P)-A_{0}(t, Q)\right|<\varepsilon$, and
(c) if $t$ is a number then $A_{0}(t, \cdot)$ is dissipative.

[^0]Corollary. (See also [4, Theorem 4.1]) If case I of the above Theorem holds, then there is a sequence of functions $\left\{M_{n}\right\}_{n=0}^{\infty}$ such that if $P$ is in $S$ then $M_{n}(x, y) P=P+\int_{y}^{x} A_{n}\left(s, M_{n}(s, y) P\right) d s$ for $x \geqq y$ and $n=0,1,2, \cdots$. Moreover, $M_{0}=\lim _{p} M_{p}$ and the convergence is uniform on bounded subsets of $R \times R \times S$.

For each non-negative integer $n$, the existence of the function $M_{n}$ which solves the integral equation indicated in the Corollary has been established. See, for example, [3] for the Lipschitz case and, otherwise, [7, p. 277]. In case $A_{n}$ is in $\mathscr{L}$ or has the properties of statement II in the above Theorem and in case $x>y$ and $P$ is in $S$, then $M_{n}(x, y) P$ may be found to be

$$
{ }_{x} \Pi^{y}\left[1-d s \cdot A_{n}(s, \cdot)\right] P
$$

which is approximated by
$\left[1-\left(s_{1}-s_{0}\right) A_{n}\left(s_{0}, \cdot\right)\right]\left[1-\left(s_{2}-s_{1}\right) A_{n}\left(s_{1}, \cdot\right)\right] \cdots\left[1-\left(s_{m}-s_{m-1}\right) A_{n}\left(s_{m}, \cdot\right)\right] P$
with $x=s_{0} \geqq \cdots \geqq s_{m}=y$. In more general situations ([7, Theorem 1.] or [2]), $M_{n}(x, y) P$ is given by

$$
{ }_{x} \Pi^{y}\left[1+d s \cdot A_{n}(s, \cdot)\right]^{-1} P .
$$

If $\left\{A_{p}\right\}_{p=1}^{\infty}$ is a sequence as indicated in statement I of the Theorem, then the fact that $A_{0}$ has the properties indicated in II follows from the standard inequalities. On the other hand, beginning with statement II, the question is how to construct the sequence $\left\{A_{p}\right\}_{p=1}^{\infty}$ of Lipschitz continuous functions which will converge uniformly on bounded subsets to $A_{0}$. A prototype is found in [5, Theorem 1.].

With $A_{0}$ as in statement II of the above Theorem, define $V(x, y) P$ to be $\int_{y}^{x} A_{0}(s, P) d s$ for $x \geqq y$ and $P$ in $S$. Then $V$ has the following properties: [2, Theorem 6.1]

1A. if $P$ and $Q$ are in $S, c>0$, and $x \geqq y$ then

$$
|[1-c V(x, y)] P-[1-c V(x, y)] Q| \geqq|P-Q|
$$

2 A. if $x \geqq y \geqq z$ and $P$ is in $S$ then

$$
V(x, y) P+V(y, z) P=V(x, z) P
$$

3A. if $a<b$ and $B$ is a bounded subset of $S$ then there is a number $L$ such that if $b \geqq x \geqq y \geqq a$ and $P$ is in $B$ then

$$
|V(x, y) P| \leqq L \cdot(x-y), \text { and }
$$

4A. if $a<b, B$ is $a$ bounded subset of $S$, and $\varepsilon>0$, then there is $a$ positive number $\delta$ such that if $P$ is in $B, Q$ is in $S$ such that $|Q-P|<\delta$, and
$b \geqq x \geqq y \geqq a$, then

$$
|V(x, y) P-V(x, y) Q| \leqq(x-y) \varepsilon .
$$

The main Theorem of [2] states that there is a function $M$ from $R \times R \times S$ to $S$ related to $V$ by the following formulas: if $x \geqq y$ and $P$ is in $S$, then
i.

$$
M(x, y) P=P+\int_{x}^{y} V[M(\cdot, y) P]
$$

ii.

$$
M(x, y) P={ }_{x} \Pi^{y}[1-V]^{-1} P, \text { and }
$$

iii. $\quad V(x, y) P={ }_{x} \Sigma^{y}[M-1] P$.

Moreover, $M$ has the following properties:
1M. if $P$ and $Q$ are in $S$ and $x \geqq y$ then

$$
|M(x, y) P-M(x, y) Q| \leqq|P-Q|
$$

2M. if $x \geqq y \geqq z$ and $P$ is in $S$ then $M(x, y) M(y, z) P=M(x, z) P$,
3M. if $a<b$ and $B$ is a bounded subset of $S$ then there is a number $L$ such that if $b \geqq x \geqq y \geqq a$ and $P$ is in $B$ then

$$
|M(x, y) P-P| \leqq L \cdot(x-y), \text { and }
$$

4M. if $a<b, B$ is a bounded subset of $S$, and $\varepsilon>0$, then there is a positive number $\delta$ and a positive number $d$ such that if $P$ is in $B, Q$ is in $S$ such that $|Q-P|<\delta$, and $b \geqq x \geqq y \geqq a$ such that $x-y<d$, then

$$
|[M(x, y) P-P]-[M(x, y) Q-Q]| \leqq(x-y) \varepsilon
$$

These results will be used to establish the Theorem.
Indication of proof For ii $\rightarrow$ I. For each positive integer $n$, let $A_{n}(t, P)$ $=n[M(t+1 / n, t) P-P]$. If $n$ is a positive integer and $B$ is a bounded subset of $S$ then the family $\left\{A_{n}(\cdot, P): P\right.$ is in $\left.B\right\}$ is equicontinuous for: if $s \leqq t$ and $P$ is in $B$ then

$$
\begin{aligned}
& |n[M(t+1 / n, t) P-P]-n[M(s+1 / n, s) P-P]| \\
& \quad \leqq n|M(t+1 / n, t) P-M(t+1 / n, t) M(t, s) P| \\
& \quad \begin{array}{l}
\quad+n|M(t+1 / n, s+1 / n) M(s+1 / n, s) P-M(s+1 / n, s) P| \\
\\
\\
\leqq n|[M(t+1 / n, t) P-P]-[M(t+1 / n, t)-1] M(t, s) P| \\
\quad \\
\quad+n|P-M(t, s) P|+n|M(t+1 / n, s) P-M(s+1 / n, s) P| .
\end{array}
\end{aligned}
$$

These inequalities, together with the properties 3 M . and 4 M ., establish the equicontinuity of the family $\left\{A_{n}(\cdot, P): P\right.$ is in $\left.B\right\}$.

If $n$ is a positive integer and $t$ is a number then $A_{n}(t, \cdot)$ is Lipschitz for: if $P$ and $Q$ are in $S$ then

$$
\begin{gathered}
\left|A_{n}(t, P)-A_{n}(t, Q)\right|=n|[M(t+1 / n, t) P-M(t+1 / n, t) Q]-[P-Q]| \\
\leqq 2 n|P-Q|
\end{gathered}
$$

And, if $n$ is a positive integer and $t$ is a number, then $A_{n}(t, \cdot)$ is dissipative for if $c>0$ and $P$ and $Q$ are in $S$ then

$$
\begin{gathered}
|\{P-c n[M(t+1 / n, t) P-P]\}-\{Q-c n[M(t+1 / n, t) Q-Q]\}| \\
\geqq[1+c n]|P-Q|-c n|P-Q|=|P-Q|
\end{gathered}
$$

Finally, if $a<b$ and $B$ is a bounded subset of $S$ then $\left\{A_{p}\right\}_{p=1}^{\infty}$ converges uniformly on $[a, b] \times B$ for: suppose that $\varepsilon>0$. Let $\delta$ be as specified in 4A and $L$ be as in 3A. Suppose that $x-y<\delta / L$ and that

$$
b \geqq x=t_{0} \geqq t_{1} \geqq \cdots \geqq t_{n}=y \geqq a
$$

If $p$ is an integer in $[1, n]$ and $P$ is in $B$, then

$$
\left|\prod_{i=p}^{n}\left[1-V\left(t_{i-1}, t_{i}\right)\right]^{-1} P-P\right| \leqq \sum_{i=p}^{n}\left|V\left(t_{i-1}, t_{i}\right) P\right|<\delta
$$

Thus

$$
\begin{aligned}
& \left|\prod_{p=1}^{n}\left[1-V\left(t_{i-1}, t_{i}\right)\right]^{-1} P-P-V(x, y) P\right| \\
& \quad=\left|\sum_{p=1}^{n} V\left(t_{p-1}, t_{p}\right) \prod_{i=p}^{n}\left[1-V\left(t_{i-1}, t_{i}\right)\right]^{-1} P-V\left(t_{p-1}, t_{p}\right) P\right| \leqq(x-y) \varepsilon .
\end{aligned}
$$

Hence, if $b \geqq x \geqq y \geqq a$ and $x-y<\delta / L$ then

$$
|M(x, y) P-P-V(x, y) P| \leqq(x-y) \varepsilon
$$

(See [2, Lemma 4.1].) Moreover, by II (a), there is a number $d$ such that if $a \leqq s \leqq t \leqq b, t-s<d$, and $P$ is in $B$ then

$$
\left|V(t, s) P-(t-s) A_{0}(s, P)\right|=\left|\int_{s}^{t} A_{0}(z, P) d z-(t-s) A_{0}(s, P)\right|<(t-s) \varepsilon
$$

Hence, if $n$ is a positive integer such that $1 / n<\operatorname{minimum}\{\delta / L, d\}, t$ is in $[a, b]$, and $P$ is in $B$ then

$$
\begin{aligned}
& \left|A_{n}(t, P)-A_{0}(t, P)\right|=\left|n[M(t+1 / n, t) P-P]-A_{0}(t, P)\right| \\
& \leqq n|M(t+1 / n, t) P-P-V(t+1 / n, t) P| \\
& +n\left|V(t+1 / n, t) P-A_{0}(t, P) / n\right|<2 \varepsilon .
\end{aligned}
$$

Hence, $\left\{A_{p}\right\}_{p=1}^{\infty}$ converges uniformly on $[a, b] \times B$ and has limit $A_{0}$.
Indication of proof for corollary. For each non-negative integer $n$, let $V_{n}(x, y) P=\int_{y}^{x} A_{n}(s, P) d s$ for $x \geqq y$ and $P$ in $S$. If $n$ is a non-negative integer,
then $V_{n}$ has properties $1 \mathrm{~A} .-4 \mathrm{~A}$. and there is a function $M_{n}$ related to $V_{n}$ as indicated above and in the main Theorem of [2]. Now suppose that $P$ is in $S$ and $x=t_{0} \geqq \cdots \geqq t_{n}=b$. Then

$$
\begin{aligned}
\mid \prod_{p=1}^{n} & {\left[1-V_{n}\left(t_{p-1}, t_{p}\right)\right]^{-1} P-\prod_{p=1}^{n}\left[1-V_{0}\left(t_{p-1}, t_{p}\right)\right]^{-1} P \mid } \\
= & \mid \sum_{p=1}^{n}\left\{\prod_{q=1}^{p}\left[1-V_{n}\left(t_{q-1}, t_{q}\right)\right]^{-1} \prod_{q=p+1}^{n}\left[1-V_{0}\left(t_{q-1}, t_{q}\right)\right]^{-1} P\right. \\
& \left.\quad-\prod_{q=1}^{p-1}\left[1-V_{n}\left(t_{q-1}, t_{q}\right)\right]^{-1} \prod_{q=p}^{n}\left[1-V_{0}\left(t_{q-1}, t_{q}\right)\right]^{-1} P\right\} \mid \\
\leqq & \sum_{p=1}^{n} \mid \prod_{q=p+1}^{n}\left[1-V_{0}\left(t_{q-1}, t_{q}\right)\right]^{-1} P \\
& \quad-\left[1-V_{n}\left(t_{p-1}, t_{p}\right)\right] \prod_{q=p}^{n}\left[1-V_{0}\left(t_{q-1}, t_{q}\right)\right]^{-1} P \mid \\
= & \sum_{p=1}^{n} \mid-V_{0}\left(t_{p-1}, t_{p}\right) \prod_{q=p}^{n}\left[1-V_{0}\left(t_{q-1}, t_{q}\right)\right]^{-1} P \\
& +V_{n}\left(t_{p-1}, t_{p}\right) \prod_{q=p}^{n}\left[1-V_{0}\left(t_{q-1}, t_{q}\right)\right]^{-1} P \mid .
\end{aligned}
$$

Suppose that $a<b$ and $B$ is a bounded subset of $S$. Let $B^{\prime}$ be the set of points $Q$ in $S$ for which there is a decreasing sequence $\left\{t_{p}\right\}_{p=0}^{n}$ in $[a, b]$ with $t_{n}=a$ and a member $P$ in $B$ such that

$$
Q=\prod_{p=1}^{n}\left[1-V_{0}\left(t_{p-1}, t_{p}\right)\right]^{-1} P
$$

The set $B^{\prime}$ is bounded. (See [2, Lemma 2.0].) Corresponding to $B^{\prime}$, let $N$ be an integer such that if $n>\mathrm{N}, Q$ is in $B^{\prime}$, and $a \leqq t \leqq b$ then

$$
\begin{gathered}
\left|A_{n}(t, Q)-A_{0}(t, Q)\right|<\varepsilon . \text { For } a \leqq y \leqq x \leqq b,\left|V_{n}(x, y) Q-V_{0}(x, y) Q\right| \\
<(x-y) \varepsilon ;
\end{gathered}
$$

and, the above inequalities show that if $P$ is in $B$ and $a \leqq y \leqq x \leqq b$ then

$$
\left|M_{n}(x, y) P-M_{0}(x, y) P\right| \leqq(x-y) \varepsilon
$$

Theorem 2. Suppose that $A_{0}$ is a function from $R \times S$ to $S$ and that $\rho$ is a continuous function from $R$ to $R$. These are equivalent:

1. There is a sequence $\left\{A_{p}\right\}_{p=1}^{\infty}$ of functions from $R \times S$ to $S$ with the following properties:
a. if $p$ is a positive integer and $B$ is a bounded subset of $S$ then the family $\left\{A_{p}(\cdot, P): P\right.$ is in $\left.B\right\}$ is equicontinuous,
b. there is a sequence $\left\{\alpha_{p}\right\}_{p=1}^{\infty}$ of continuous functions from $R$ to $R$ such that if $p$ is a positive integer, $t$ is a number, and $P$ and $Q$ are in $S$, then

$$
\left|A_{p}(t, P)-A_{p}(t, Q)\right| \leqq \alpha_{p}(t)|P-Q|
$$

c. there is a sequence $\left\{\beta_{p}\right\}_{p=1}^{\infty}$ of continuous functions such that $\lim _{p \rightarrow \infty} \beta_{p}=\rho$ and, if $t$ is a number, $n$ is a positive integer, $P$ and $Q$ are in $S$, and $c>0$, then

$$
\left|\left[P-c A_{n}(t, P)\right]-\left[Q-c A_{n}(t, Q)\right]\right| \geqq\left[1-c \beta_{n}(t)\right]|P-Q|, \text { and }
$$

d. $\left\{A_{p}\right\}_{p=1}^{\infty}$ converges uniformly on bounded subsets and has limit $A_{0}$ :
II. The function $A_{0}$ has the following properties:
a. if $B$ is a bounded subset of $S$ then

1. $\left\{A_{0}(\cdot, P): P\right.$ is in $\left.B\right\}$ is equicontinuous,
2. if $a<b$ then
(i) $A_{0}$ is bounded on $[a, b] \times B$, and
(ii) if $\varepsilon>0$ then there is a positive number $\delta$ such that if $a \leqq u \leqq b$, $P$ is in $B$, and $Q$ is in $S$ such that $|Q-P|<\delta$ then

$$
\left|A_{0}(u, Q)-A_{0}(u, P)\right|<\varepsilon, \text { and }
$$

b. if $t$ is a number, $P$ and $Q$ are in $S$, and $c>0$, then

$$
\left|\left[P-c A_{0}(t, P)\right]-\left[Q-c A_{0}(t, Q)\right]\right| \geqq[1-c \rho(t)]|P-Q|
$$

Remark. Suppose that $P$ is in $S$ and $\left\{G_{p}\right\}_{p=0}^{\infty}$ is a sequence of functions defined by $G_{0}(t)=P$ and

$$
G_{n}(t)=P+\int_{0}^{t} A_{0}\left(s, G_{n-1}(s)\right) d s
$$

for $t \geqq 0$ and $n=1,2, \cdots$. One might conjecture that, if $A_{0}$ has the properties in statement II of Theorem 1, and, hence, is the uniform limit (on bounded subsets) of Lipschitz functions, then the sequence $\left\{G_{p}\right\}_{p=0}^{\infty}$ converges to the solution for $y(0)=P$ and $y^{\prime}(t)=A_{0}(t, y(t))$. That this is not the case may be seen by examining an example by Müller [6] (or [1, p. 53]).

## References

[1] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955.)
[2] J. V. Herod, 'A pairing of a class of evolution systems with a class of generators', Trans. Amer. Math. Soc. 157 (1971), 247-260.
[3] J. S. Mac Nerney, 'A nonlinear integral operation’, Illinois J. Math. 8 (1964), 621-638.
[4] J. L. Mermin, 'An exponential limit formula for nonlinear semigroups', Trans. Amer. Math. Soc. 150 (1970), 469-476.
[5] I. Miyadera and S. Oharu, 'Approximation of semigroups of nonlinear operators', Tohoku Math. J. 22 (1970), 22-47.
[6] M. Müller, 'UUber das Fundamentaltheorem in der Theorie der gewöhnliche Differentielgleichungen', Math. Zeit. 26 (1927), 619-645.
[7] G. F. Webb, 'Product integral representation of time dependent nonlinear evolution equations in Banach spaces,' Pacific J. Math. 32 (1970), 269-281.

Georgia Institute of Technology
Atlanta, Georgia 30332, USA


[^0]:    * The main portion of the research in this paper was completed while the author was supported by a Frederick Gardner Cottrell grant in aid from Research Corporation,

