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We explore the fundamental flow structure of temporally evolving inclined gravity currents
with direct numerical simulations. A velocity maximum naturally divides the current into
inner and outer shear layers, which are weakly coupled by momentum and buoyancy
exchanges on time scales that are much longer than the typical time scale characterising
either layer. The outer layer evolves to a self-similar state and can be described by theory
developed for a current on a free-slip slope (Van Reeuwijk et al. 2019, J. Fluid Mech.,
vol. 873, pp. 786—815) when expressed in terms of outer-layer properties. The inner layer
evolves to a quasi-steady state and is essentially unstratified for shallow slopes, with flow
statistics that are virtually indistinguishable from fully developed open channel flow. We
present the classic buoyancy—drag force balance proposed by Ellison & Turner (1959, J.
Fluid Mech., vol. 6, pp. 423-448) for each layer, and find that buoyancy forces in the
outer layer balance entrainment drag, while buoyancy forces in the inner layer balance
wall friction drag. Using scaling laws within each layer and a matching condition at the
velocity maximum, the entire flow system can be solved as a function of the slope angle,
in good agreement with the simulation data. We further derive an entrainment law from
the solution, which exhibits relatively high accuracy across a wide range of Richardson
numbers, and provides new insights into the long runout of oceanographic gravity currents
on mild slopes.

Key words: gravity currents, stratified flows, turbulent mixing

1. Introduction

Inclined gravity currents are a type of wall-bounded buoyancy-driven shear flow (Simpson
1999), serving as a critical yet poorly understood mechanism for the transport of various
substances in geophysical and engineering environments. Ellison & Turner (1959) were
the first to study the dynamics of inclined gravity currents, using laboratory experiments
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Figure 1. Structure and instantaneous buoyancy field b of an inclined gravity current.

in a sloping laboratory channel to show that the along-slope component of buoyancy in
a current is resisted by drag owing to a combination of wall friction and entrainment of
ambient fluid. This dynamic equilibrium determines the bulk flow speed in the current.

Establishing a detailed understanding of the dynamics governing an inclined gravity
current has proven challenging. In particular, the internal structure of a current generally
consists of a relatively dense inner shear layer above the bottom boundary (typically
approximated by a boundary layer; Kneller, Bennett & McCaffrey 1999), and an outer
shear layer into which overlying ambient fluid is entrained at sufficiently large Reynolds
number (Turner 1986). Figure 1 shows an example (from this study) of the instantaneous
buoyancy field and internal structure in the body of an inclined gravity current. The
two layers are naturally delineated by the level where the along-slope velocity reaches
a maximum, the (continuous) mean shear necessarily becomes zero, and the shear
production of turbulent kinetic energy (TKE) must vanish (Ellison & Turner 1959). It is
apparent, however, that different flow dynamics must govern the outer (free-shear-like)
layer and the inner (boundary-layer-like) layer, resulting in differing growth rates and
characteristic length scales. Moreover, the flows in each layer are coupled across the level
of the velocity maximum.

The modelling of inclined gravity currents in a weakly stratified environment has been
relatively well developed. These currents are characterised by a velocity maximum in close
proximity to the wall, similar to a turbulent wall jet (Wei, Wang & Yang 2021). Given
the minimal role of the inner layer in these scenarios (Sequeiros et al. 2010; Luchi et al.
2018), a scaling law based on the integral top-hat variables (Ellison & Turner 1959) of the
overall current has been widely employed, analogous to the ‘outer scaling law’ for a wall
jet (Wygnanski, Katz & Horev 1992). The flow variables normalised by the integral scales
show considerable self-similarity at relatively large slope angles (Krug ez al. 2013, 2015,
2017; van Reeuwijk et al. 2018, 2019; Dieu 2020).

It is unclear if the integral top-hat formulation and disregard of the inner layer remains
a valid approach for relatively strongly stratified currents on shallow-angled slopes. At
decreasing angles, we expect an increasing portion of the current depth to be occupied by
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the inner layer as the driving component of the buoyancy forcing reduces. Indeed, there
is accumulating evidence suggesting that the inner and outer layers become decoupled at
small angles, driven by a range of underlying mechanisms. Examples include references to
a ‘zone of strongly limited vertical turbulence’ (Luchi et al. 2018), ‘anti-diffusive mixing’
(Dorrell et al. 2019) and an ‘intermediate destruction layer’ (Salinas et al. 2021b), all of
which contribute to the formation of a transport barrier between the two layers.

In the present study, we conduct direct numerical simulations (DNS) of temporally
evolving inclined gravity currents with no-slip bottom boundary conditions for a range
of slope inclinations and initial Richardson numbers. Our aim is to investigate the internal
structure and coupled dynamics that govern the long-term behaviour of the currents in
dynamical equilibrium. The outer layer in our simulations is compared with an inclined
temporal gravity current on a free-slip boundary (van Reeuwijk et al. 2019) because the
boundary conditions are almost identical in both flows (apart from relaxation of the zero
normal buoyancy and momentum flux condition at the base of the outer layer). The inner
layer in our simulations is compared with that in a turbulent planar channel flow, including
both a closed channel (Lee & Moser 2015) and an open channel (Yao, Chen & Hussain
2022). The ultimate objective of this paper is to develop a complete description of an
inclined temporal gravity current by matching the inner- and outer-layer solutions across
the velocity maximum.

The simulation set-up and the governing equations are outlined in §2. In §3, we
examine the evolution of the currents. A scaling model for the outer layer is presented
in §4. We then investigate the interactions between the outer and inner layers in § 5, and
develop a scaling model for the inner layer in § 6. The inner—outer scaling models are
matched in § 7 to describe the entire current and to model entrainment. Finally, we draw
conclusions in § 8.

2. Case description
2.1. Simulation set-up

We consider a negatively buoyant gravity current flowing down a slope of constant angle o
after the passage of any transient ‘head’, such that the current exhibits slow vertical growth
induced by entrainment at its upper interface, as shown in figure 1. Periodic boundary
conditions are imposed for all flow variables on the lateral boundaries of a finite-sized
computational domain. Consequently, the simulations are statistically homogeneous in the
streamwise (x) and spanwise (y) directions, but evolve with time. The simulation set-
up follows the framework established by van Reeuwijk et al. (2019), with the exception
of the bottom boundary condition, which in this study is specified as no-slip rather than
free-slip. This set-up leads to the evolution of a temporal gravity current, resulting in
significant computational savings compared to simulations of a spatially evolving gravity
current, especially for shallow-angle cases involving a long evolution process. A detailed
description of temporal gravity currents is provided in van Reeuwijk et al. (2019).

If the flow is assumed to be Boussinesq, then the governing equations in the coordinate
system in figure 1 may be written as

E+u-Vu=—pa_1Vp+vV2u+be, 2.1)
ob

5, tur Vb=« Vb, (2.2)

V.u=0, (2.3)
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where u = (u, v, w) is the velocity vector, p is the pressure, b = (o, — p)g/pa 1S the
buoyancy, and p, is a reference density (taken to be that of the ambient fluid). The vertical
unit vector resolved in the coordinate system is e = (— sin ¢, 0, cos ), and v and « are the
kinematic viscosity and diffusivity, respectively.

We solve numerically the governing equations using an in-house DNS code SPARKLE,
which employs a conservative fourth-order-accurate differencing scheme (Verstappen &
Veldman 2003) for spatial discretisation, and an adaptive third-order Adams—Bashforth
scheme for explicit time advancement. The code is described in detail by Craske & van
Reeuwijk (2015) and has been widely used in simulations of gravity currents (Krug et al.
2017; van Reeuwijk et al. 2019; Dieu 2020). The grid size Ax of the domain varies
between cases to ensure Ax/ng < 3/2. Here, nk is a characteristic Kolmogorov length
scale defined as (v3/er)!/*, where er =h~! [ edz is a characteristic dissipation rate.
Here, h is a length scale defined in (2.10a). The initial conditions (¢ = 0) can be written as

ug, z<ho, by, z< ho,
b 9 = b 9 :O7 b b :07 b:
ulx,y, z) {0’ 2= ho. v(x, y,2) w(x, y,2) 0. z>ho.
2.4

where ug and hy each maintain the same value across all simulations, and bg is varied
to keep By = f —bphg sin o dz constant across the cases. The initial profiles are shown in
figure 5(a,b) below. Small random perturbations are introduced to the initial velocity field
to trigger turbulence. The computational domain size is 20k x 20k x 20k for all cases.
In the streamwise direction, the domain spans approximately ten integral length scales L1

on average, ensuring sufficient data for statistical analysis. Here, L7 = e3T/ 2 /eT, with et
denoting the characteristic TKE as defined in (2.11). A free-slip wall is imposed on the top
boundary to maintain compatibility with the temporal framework. The vertical extent of
the domain is significantly larger than the current height so that the top boundary condition
has negligible influence on the current itself. Further details are provided in table 1.

2.2. Characteristic quantities

Given the statistical homogeneity in the x and y directions, we spatially average the
governing equations, and write the Reynolds-averaged momentum and buoyancy equations
as

o ow'u 0%u

5 Py = Ua_z2 — bsin o, (25)
ob  w'd’ 9%b

o9 =k, 2.6
TR TR (26)

where % = [ s dx dy/(LyLy) represents the spatial averaging operator for the quantity x,
L, and L, are the dimensions of the domain in the x and y directions, respectively, and a
prime represents the departure from the corresponding average, i.e. ¥’ = x — *. Taking the
dot product of u with the momentum (2.1), subtracting the mean kinetic energy (w - u/2)
and averaging over x and y directions, we obtain the TKE budget

de —— Jdu

— =—wu — 4+ wb cosa —u'b sina — &, 2.7
ot 0z

where e = u;2/2 is the TKE, —w’u’(0u/dz) is the shear production of TKE, and ¢ =

v (du}/0x )2 is the dissipation rate of TKE. Note that the TKE transport terms are
neglected.
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Simulation o Riy Ris Re; Resolution (x X y X z) tave/t™
IN 1° 1.11 0.36 740 15363 20
2N 2° 0.56 0.25 620 15363 13
5N 5° 0.22 0.18 260 1536% x 1152 13
10N 10° 0.11 0.14 170 15362 x 1152 13
45N 45° 0.02 0.07 100 15362 x 1024 7

Table 1. Simulation details: Riyg = —bohg cos « /u(z) is the initial Richardson number, where b, hg, ug are the
initial buoyancy, layer thickness and velocity, respectively (see (2.4)); Rix represents the stabilised value of
Richardson number Ri when the flow is fully developed, where Ri is defined in (2.10d); the Reynolds number
Rer = urzym /v characterises the inner layer, where u; = /v (du/9z)|;=o is the friction velocity, and z,,, is the
vertical coordinate of the velocity maximum; 7,,. is a time interval towards the end of the simulation over which
the numerical results are averaged; and t* = ho/+/By is a typical time scale, where By = f —bohg sina dz is
the initial buoyancy forcing. The initial Reynolds number Rey = ugho/v is 3800, and the Prandtl number
Prr=v/kis 1.

The integral volume flux Q, momentum flux M and integral buoyancy forcing B of the
gravity current are defined here as

o0 (0,0) o0 _
Q=f udz, M=/ #&,B:f —bsina dz. (2.8a—c)
0 0 0

We decompose these quantities into inner and outer components, denoted with subscripts
i and o, respectively, i.e.

Zum o0 Zum o
Q:/ ﬁ&+/ udz, M=/ #@+/ u? dz,
0 Zum 0 Zum

o8 0, M; M,

Zum _ &) _
B=/ —bsino:dz+/ —bsinw dz,
0

Zum

(2.9a-c)

B; B,

where z,, is the vertical coordinate of the velocity maximum. Note that buoyancy
is conserved in the flow, thus B remains constant (equal to Bg). With By prescribed
identically across all cases (by adjusting bg), B is therefore invariant over the full range of
slope angles. The characteristic velocity scale ur, layer thickness &, buoyancy br, and
bulk Richardson number Ri, are defined as

2
B —bryhy cos B
h*:%a uT*:%a bT*:_h—*, Rl*: ik 2* - = 2 - )
M, * x SIN o Ur, UT, tan o
(2.10a—d)

respectively, where the subscript * is either omitted, i or o, and is used to characterise
the entire current, the inner layer or the outer layer, respectively. In a similar manner, the
characteristic scales for TKE er, are given by

oo Zum &)
/ edz=/ edz-l-/ edz. (2.11)
0 0 Zum
erh erih; eToho
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Figure 2. Temporal evolution of (a) dimensionless TKE: e¢/By for 1N, where the dotted line denotes the
boundary between the inner and outer layers, together with the instantaneous buoyancy field b/bg and profiles
of horizontally averaged velocity and buoyancy, #/ur, and b/br,, at (b) t/t* =69.5, (¢) t/t* =83.25,
(d) t/t* =90 and (e) t/t* = 101. Temporal evolution of normalised (f) er, er;, ero, (g) Ur, ur;, UuT,H, (h)
br, bri, br, (i) h, hi, hy, () Bi, B, and (k) Ri, Ri;, Ri,. Note that the subscripts 0 and i in the legend
denote the results of the outer layer (displayed with symbol o) and the inner layer (displayed with symbol
x), respectively.

3. Temporal evolution
3.1. Inner—outer flow dynamics

As we observe essentially similar evolution processes for all the slope angles considered,
we use case 1N as an example to illustrate the dynamics. Figure 2(a) shows the temporal
evolution of e(z, t), normalised by By, against #/t* for case 1N, where t* =h//By is a
typical time scale. Also shown is the location of the velocity maximum z,, normalised
by hgo (black dashed line). Instantaneous snapshots at different time intervals of the
normalised buoyancy field in figure 2(b—e) show the development of turbulent structures
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in the flow. The evolution of layer-specific characteristic flow variables for case 1N are
presented in figure 2(f~k); as above, an omitted subscript, i or o is used to denote the
overall current, the inner layer or the outer layer, respectively.

An intense initial burst of turbulence associated with shear instabilities is observed for
20 < t/t* < 40 in figure 2(a), caused by the sharp initial acceleration (figure 2g) from the
initial conditions. This initial burst leads to a noticeable plunge in velocity (see figure 2g),
as the mean flow kinetic energy is converted to TKE and potential energy (see the increase
of h, in figure 2i). Consequently, large bulk Richardson numbers arise after the initial burst
(see figure 2k) as damping of turbulence and even relaminarisation occurs in the outer
layer (see figure 2(a), 50 < t/t* < 80). Meanwhile, turbulence is sustained in the inner
layer over the whole evolution process.

During the period of damping (50 <z/t* < 80), the outer layer again accelerates
(figure 2g) due to the buoyancy forcing, leading to increased shear and reduced Richardson
number (see figure 2k). The outer layer eventually transitions to a turbulent state as
the shear instabilities overcome the restoring stratification. The temporal sequence of
instantaneous buoyancy fields (figure 2b—e) illustrates the transition to a turbulent regime
in the outer layer, which initiates with the onset of instabilities near the velocity maximum,
followed by the growth of eddies and vortices. Figure 2(f) quantifies the turbulence level
throughout the evolution process, showing the first burst of turbulence and subsequent
damping (confined to the outer layer), followed by the eventual transition to a nearly
constant turbulence level.

Restricting our attention to the time period z/¢t* > 100, it is noteworthy that the
characteristic velocities ur;, ur, and u7 attain nearly constant values (see figure 2g). This
behaviour is consistent with the so-called equilibrium state commonly assumed to exist
for inclined gravity currents, in which a bulk force balance is achieved (Ellison & Turner
1959; Britter & Linden 1980; Odier, Chen & Ecke 2014; Martin, Negretti & Hopfinger
2019).

The buoyancy variables br;, br, and by shown in figure 2(h) continue to reduce
gradually as entrainment of ambient fluid continues to dilute the current and increase the
layer thickness (figure 2i). However, the integral buoyancy forcings B, and B; (figure 2j)
are remarkably invariant, i.e. the total buoyancy in each of the inner and the outer
layers is approximately conserved. This behaviour is closely linked to the interaction
between the two layers, and is discussed in § 5.1. The bulk Richardson numbers shown
in figure 2(k) also attain approximately constant values in the turbulent regime. We will
term this state, in which multiple flow parameters take constant characteristic values, the
dynamically equilibrated regime, which implies self-similar behaviour in the outer layer
and a quasi-steady state in the inner layer; see §§ 4 and 6, respectively.

3.2. Slope angle dependence

Figures 3(a), 3(c) and 3(e) show the evolution of the characteristic thicknesses (4, h,, h;)
of the currents for different slope angles. The overall thickness % (see figure 3a) and outer-
layer thickness £, (see figure 3c) grow more rapidly on steeper slopes because of relatively
vigorous entrainment. Notably, the overall current and the outer layer exhibit a similar
normalised growth rate (approximately linear in time in the dynamically equilibrated
regime), whilst the inner layer exhibits a much slower growth rate over time.

Figures 3(b), 3(d) and 3(f) plot the bulk Richardson numbers (Ri, Ri,, Ri;) as functions
of time for different slope angles. In all cases, the various Richardson numbers become
essentially constant in the dynamically equilibrated regime and are negatively correlated
with slope angle, suggesting a greater role of stratification at a shallower angle.
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Figure 3. Temporal evolution of overall quantities (a) i/ ho and (b) Ri, outer-layer quantities (c) 4,/ ho and
(d) Ri,, and inner-layer quantities (e) h; / ho and (f) Ri;.
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Figure 4. Variation of averaged (a) normalised u7, (b) Ri, and (c) normalised er over #,,, in the dynamically
equilibrated regime against @ in degrees, including the overall, outer and inner quantities for all the slope angles
considered. The solid lines in (a) and (b) denote the theoretical predictions from (7.4) and (7.6), respectively.
The solid lines in (c) represent the prediction in (4.7) and (6.8).

Figure 4 shows the overall and layer-averaged normalised velocities, Richardson
numbers and normalised TKE (the subscript * denoting whether the ordinate in a given
panel pertains to an overall or layer-specific quantity) for the currents as a function of slope
angle in the dynamically equilibrated regime. The characteristic velocities u7, shown in
figure 4(a) attain larger values at shallower angles (uq is set to the same value across all
the slope angles), reflecting the need for greater shear to overcome stronger stratification
and transition the current to the turbulent state. We also observe that ur ~ ury, for all the
slope angles.

Figure 4(b) shows that the Richardson numbers in the dynamically equilibrated state
increase as the slope angle decreases; Ri, appears to approach an asymptotic value
at a small angle (note the logarithmic scale). This is consistent with the conjecture
that stratified shear flows adjust to a ‘marginally stable’ state (Thorpe & Liu 2009)
characterised by a critical Richardson number. Nevertheless, further simulations at milder
slopes are needed to confirm the asymptotic behaviour. The overall and inner Richardson
numbers Ri and Ri;, respectively, increase rapidly as the slope angle decreases (see
§ 6.1 and further discussion in § 7). The normalised TKE is seen in figure 4(c) to be
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Figure 5. Profiles of (a) u/ur, (b) E/bT, (c)e/er and (d)W/eT against scaled height z/ h, and (e) u/ur,,
(f) b/br,, (g)e/er, and (h) w'u’/er, against scaled distance from the velocity maximum (z — zum)/ ho
(outer-layer scaling). Profiles for each case at a series of times in the dynamically equilibrated regime are
plotted. Strong self-similarity and collapse of profiles are observed in the outer layer for all the cases considered
when normalisation is based on outer-layer integral quantities. The results for no-slip boundaries (from this
study), and free-slip boundaries (adapted from van Reeuwijk et al. 2019) are appended with ‘N’ and ‘F’,
respectively, in the legend (e.g. SF for a 5° slope with free-slip boundaries). The solid lines in (e—%) represent
the predictions from (4.1) and (4.5). The black dashed lines in (a,b) indicate the initial conditions used for all
simulations presented in this study. The black dash-dotted lines show results from DNS of a spatially evolving
current over slope 2.86°, adapted from Salinas et al. (2021a), which almost collapse onto the velocity profiles
of case 2N in (a).

approximately constant at the three smallest angles (1°, 2°, 5°) in each of the outer and
inner layers.

4. Outer-shear-layer scaling
4.1. Self-similar profiles

Figure 5 shows normalised profiles of velocity #, buoyancy b, TKE e and turbulent shear
stress w’u’ during the dynamically equilibrated regime for all the cases considered, includ-
ing both no-slip (solid lines) and free-slip (dashed lines) boundary conditions. The results
for the free-slip boundary conditions are from van Reeuwijk er al. (2019), and the
corresponding dataset is provided in van Reeuwijk (2019). Each profile is scaled by the
appropriate integral quantity (u7, bt or er) at the time of sampling in the dynamically
equilibrated regime to give figure 5(a—d). Note that w'u’ is scaled with ez, and this is
discussed in § 4.3. The normalised profiles for the flow variables largely collapse for all
free-slip cases, whereas deviations become evident with no-slip boundary conditions.
The observed deviations suggest use of a local scaling based on the integral flow
quantities in the outer layer (i.e. ut,, br, and er,). Figure 5(e—g) show the profiles of
velocity, buoyancy, TKE and Reynolds stress rescaled with the appropriate outer-layer
integral quantities. In addition, a normalised vertical (‘outer’) coordinate (z — zym)/ho
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is used to facilitate meaningful comparison between the results for free-slip and no-slip
boundary conditions (i.e. the vertical coordinate has its origin at the level of the maximum
velocity for both types of boundary conditions). Remarkably, all the normalised profiles
nearly collapse in the outer layer whether or not an inner layer (corresponding to the region
(z — zum)/ ho < 0) is present, indicating analogous self-similar dynamics dominate there.
We will therefore refer to the dynamically equilibrated regime in the outer layer as the
self-similar regime.

Although there are some deviations from universal forms, these look to be associated
primarily with the presence of a strong stratification localised near the velocity maximum
for currents on a low-angled no-slip boundary (see § 6.1 for more details). An important
observation is that w'u’ is approximately zero at z,,,, for all cases (see figure 5h), as z,, is
defined via the velocity maximum, and the gradient diffusion hypothesis (see (4.4)) works
reasonably well. This implies that 87/9z =0 and w’u’ 20 hold at the bottom boundary
(z = zum) of the outer layer in this study and of the currents in van Reeuwijk et al. (2019),
which underpins the consistency between them as shown in figure 5(e—h).

The DNS results of Salinas et al. (2021a) for a spatially evolving current over a
2.86° slope show consistent behaviour with the temporally evolving simulations presented
in this study in terms of both bulk scaling in figure 5(a,b) and outer-layer scaling in
figure 5(c,d). This comparison suggests that temporal currents (at long time) and spatial
currents (sufficiently far from the head) share the same self-similar dynamics.

4.2. Approximate self-similar solutions

Given the observed near-collapse of the outer-layer profiles in § 4.1, we now examine the
usefulness of the approximate self-similar descriptions developed by van Reeuwijk et al.
(2019) for inclined currents on a free-slip boundary. We thus propose that the outer-layer
profiles are modelled as

_ 12 2 = B, 2 61,
u=a,B, _2(771_770), b:_abh sina _2(771_770), e=a.B, _3(771_770),
UTo ! g 771 €To 771
bTo

(4.1a—c)

where the outer-layer self-similarity variable is defined as 1, = (z — zum)/ ho € [0, n1],
and the shape factor is n; =4/3. Note that (4.1a—c) reduce to the form considered by
van Reeuwijk et al. (2019) for a current on a free-slip boundary upon setting z,,, = 0 and
dropping the subscript o.

The coefficients a,, ap and a, depend on the dimensionless parameters of the problem,
and need to be determined. We adopt the results of van Reeuwijk er al. (2019), who
observed that the eddy viscosity, eddy diffusivity, shear production Pg, dissipation rate
and turbulent Prandtl number could be parametrised as

e e Cm
Kn=cmn—, Kp=cp—=, Pi=cpeS, e=ceeS, Prr=—, (4.2a—e)

S S Cp
respectively, where S = |du/dz| is the absolute strain rate of the mean flow, and
em=025+55x10"% ¢, =0.31£2 x 1073 and ¢, = 0.21 £ 2.1 x 1073 are empirical
coefficients based on the DNS results. It follows from the success of these scalings in
terms of the strain rate S and TKE e that the turbulence is in the shear-dominated regime
(Mater & Venayagamoorthy 2014; Krug et al. 2017). Armed with this turbulence closure,
van Reeuwijk et al. (2019) integrated the equations for Reynolds-averaged momentum,
buoyancy and TKE, (2.5)—(2.7), and used the Von Kdarman—Pohlhausen method (Lighthill
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Figure 6. Outer-layer scaling of averaged turbulence parameters over t;y.: (@) ¢y = K S/e =0.25+£5.5 x
1074, (b) Prr =cp/cp, =0.81£52 x 1073 (ie. ¢, ~0.31) and (c) ¢ = &/(eS) = 0.21 £ 2.1 x 1073 against
scaled distance to velocity maximum (Z — z,,)/ ho. The converged values are denoted with the vertical dashed
lines.

1950; Spalding 1954; Schlichting & Gersten 2016) to find the coefficients

<9 Prr(cm — ce) tana>_1/2
a, =\ - , ap=1.

(4.3a,b)
8 tana Prr +cy

Note, however, that the coefficient for the TKE a, (see (4.1¢)) did not follow from the
analysis of van Reeuwijk ez al. (2019), and we evaluate it in the next subsection.

The theoretical solutions given by (4.1)—(4.3) are shown in figure 5(e—h), and are in
good agreement with data from the simulations conducted in this study. Notably, the
theory predicts that e will tend to zero near n, =0 (i.e. Z = z,,), but because this is not
a solid boundary in these simulations, the TKE does not have to be zero there. Despite
this, the shear production of TKE is zero at the velocity maximum by definition, and
the magnitude of e/er, is indeed close to zero. Therefore, the theory still provides a
reasonable approximation.

Figure 6(a—c) show the temporally averaged scaling coefficients defined in (4.2) over
times sampled during the self-similar phase. We observe that there is a convincing collapse
of profiles across the range of angles, with the converged values matching those from the
free-slip cases. We thus conclude that the theory developed by van Reeuwijk et al. (2019)
can be effectively applied to the outer layer of an inclined current on a no-slip boundary.

4.3. Scaling of TKE

In this subsection, we explore if the TKE can be scaled with the integral buoyancy forcing
B as suggested by van Reeuwijk et al. (2019), thereby allowing all the turbulence quantities
in the closure to be related to macroscopic flow quantities. We first assume that the
turbulent shear stress w’u’ can be parametrised in the outer layer (where 0u/dz < 0) using
the gradient diffusion hypothesis and (4.2):

w'u' =—K a—ﬁ—c ES—c e 4.4)
- m 9z —Cm S — Cme€. .
Substituting for e using (4.1¢), we expect w’u’ to take a self-similar form
6
wu' = CmeTon_; (1 = 1lo) (4.5)
1

which is plotted in figure 5(4) and shows good agreement with the DNS data. Note that
in contrast with e, we observe that w’u’ does become zero at 1, =0, as discussed in § 4.1.
Thus the quadratic profile (4.5) is more appropriate for w’u’ than for e.
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Figure 7. (a) Temporal evolution of the maximum velocity u#,,. (b) Momentum budgets averaged in the
dynamically equilibrated regime over 7,4, for cases 1N, 2N, 5N and 10N. (¢) The instantaneous along-slope
velocity profiles in the dynamically equilibrated regime at 7/1* = 140, 152, 164 for case IN. The top legend
applies to (a) and (b).

In order to find a.(=er,/B,), we first substitute the self-similar expressions (4.1a)
and (4.5) into the streamwise momentum (2.5) to give
ou  12cper, —2Bon) 2B,n1 — 6cmer,

dt hon; (ho)n?

—dw'u’ /dz—b sina

Secondly, a crucial simplification is motivated by the observation that the characteristic
velocity in the outer layer, ur,, becomes approximately constant (or only evolves over
a relatively large time scale; see figure 2) in the self-similar regime, consistent with the
theory described in van Reeuwijk et al. (2019). Therefore, the maximum velocity in the
outer layer u,, =3urt,/2 (see (4.1a)) is also expected to become approximately constant
in the self-similar regime, consistent with figure 7(a).

Setting du/dt ~0 at n, =0 in (4.6) gives 2B,n1 — 6¢cper, =0, thus

a4, = eBT: - 3’1—; ~1.77 @.7)
and
9% 9B,
i mno, 1m0 € [0, n1]. (4.8)

The prediction from (4.7) is shown in figure 4(c). Although the shear-dominated scaling
mainly applies in the core region (1, € [0.5, 1]) of the outer layer, there is fairly good
agreement with the DNS data over the entire outer layer.

Equation (4.8) predicts that the acceleration du/d¢ increases with height above the
velocity maximum, and is consistent with the instantaneous velocity profiles in figure 7(c).
Analysis of the momentum budget shows that the individual terms in (4.6) also vary
linearly with height above the velocity maximum in the outer layer (figure 7b). Notably,
the gradient of the Reynolds stress and the buoyancy terms are in approximate balance
(i.e. no acceleration) at the velocity maximum and in the inner layer. This observation is
discussed in detail in § 6.

Over long times, however, du/dt in the outer layer gradually decreases as /, increases
through entrainment, while B, remains constant, implying a slow approach towards zero
acceleration. In reality, the current is likely disrupted by external effects such as tidal
motions or rough topography, which are beyond the scope of the present study.
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5. Inner-outer-layer interaction

In this section, we demonstrate that the inner and outer layers are weakly coupled,
providing a theoretical foundation for the development of layer-specific scaling laws.

5.1. Integral momentum and buoyancy budgets

The integral momentum and buoyancy equations for the inner and outer layers can be
obtained by integrating (2.5) and (2.6) over the respective layer to give

dBo . dBi .
= fumsinae, —— =—fypsina,
d dt (5.la-d)
on in
=B, +mynm, =B — Ty — Mym,
dr dr

where 1, = v (0u/0dz)|y is the shear stress at the lower boundary. The respective
exchanges of buoyancy and momentum between the inner and outer layers are

fum = _leum + Elzum dzﬂ + Kg_b >
! e (5.2a,b)
Mym =W|z —ul; dzﬂ
o e de

Here, w'b’|;,, and w'u’|,,, are the turbulent buoyancy and momentum fluxes at the level
of the velocity maximum z,,,, respectively, —k (3b/dz)|,, is the molecular buoyancy
flux at z,,, and b| zum ([dzum/dt) and ul;,, (dz,,/dt) are the Leibniz terms (Schatzmann
1978; Davidson 1986; van Reeuwijk et al. 2021) representing the effective buoyancy and
momentum fluxes associated with a change in the height of the velocity maximum.

Figure 8(a) plots the terms in the integral buoyancy forcing budget of the outer layer
((5.1a) and (5.2a), scaled by B,/t,) as a function of slope angle, where ¢, = h,/ut, is a
typical turnover time scale of the outer layer. The magnitudes of the normalised fluxes are
of order 1072, suggesting that the exchange of buoyancy happens over time scales much
longer than #,. The flux with the largest magnitude is the Leibniz term (especially for small
angles), but interestingly, the turbulent and molecular terms counteract it, creating a net
buoyancy flux f,,, that is practically zero for all currents under consideration.

Similarly, figure 8(c) shows the buoyancy flux terms from the inner-layer budget (of
equal magnitude and opposite sign to the outer-layer budget), but instead normalised by
B;/t;, where t; = h; /uT; is a turnover time scale of the inner layer. Here, the scaled budget
terms are also of order 1072, and as in the outer layer, the Leibniz term is in approximate
balance with the turbulent and molecular terms. It is apparent that the integral buoyancy
forcing B, can be approximated as constant in each of the inner and outer layers on time
scales up to at least #; and ¢,, respectively.

Given that the evolution of the integral buoyancy forcing (d B, /dt) is not a leading-order
term in the inner- and outer-layer budgets at any slope angle considered, the dynamics
governing the interface can therefore be regarded as quasi-steady in the self-similar
regime, and (5.1a,b) can be approximated as

dB, _dBi _
e dr

which is also consistent with the results in figure 2(;).
Equations (5.1¢,d) and (5.2b) present the integral momentum (volume flux) budgets,
where B, acts to accelerate the flow and increase the volume flux. Figure 8(b) illustrates

1022 A34-13

(5.3)



https://doi.org/10.1017/jfm.2025.10784

https://doi.org/10.1017/jfm.2025.10784 Published online by Cambridge University Press

L. Cui, G.O. Hughes and M. van Reeuwijk

Q

(

) X107 (b)

r—‘*—E];;,>>E] 1.04——
TtEL N AN R EE R #
O e SLES S
I S x me
Y - [ 05 sl @t £ B, -0,/
Q %--- ~ Zum
< ol * oo o
~ B Wiz, =~ Mum
% 5r 4
~ e
|- bl B/02)l:
Kk bl (A2 /d) A k@B, P s o
10 B =W, ~H-(B,/d) (1/sin ) Brazgp=zo-® 2
c d
© X 1072 |- = —ble,, (de,/d) Lo —k(0B/02)]z,,, ()
i 1.04
x* o — .
\~* -E- wbz,, ~Yr- (dB;/dr) (1/sin )
~ ~<L 05
< 1 F - K- - o = -
< * N A
= q R AEEE i S
S = QB---8----- [
~
m 0":1:?(1:\,,,,,,,,,,_::::’_f? — K= Tl (2 d) O =1, ~O-—m
e B ~0.5H
m -B-—wlz,, -A-B (dQ;/dr)
-1 :-"E]*r—wj‘u@/’?’ . —1.0¢= ! 4
10° 10! 100 10!
o o

Figure 8. Normalised terms against slope angles for the budgets of (@) outer integral buoyancy forcing, (b)
outer volume flux , (c) inner integral buoyancy forcing, and (d) inner volume flux. Note that these term are
averaged over f,,, in the dynamically equilibrated regime.

the individual terms in the integral momentum budget of the outer layer, normalised by
B,. At all angles, it is clear that the Leibniz term makes the dominant contribution to the
momentum exchange between layers m,,;, (see (5.2b)), while the Reynolds stress w'u'| Zum
plays a negligible role. However, this momentum exchange has magnitude approximately
0.15B, at all angles considered, and therefore plays a minor role in modifying the rate of
volume flux increase, i.e.

dQ,
dt

Figure 8(d) shows the integral momentum budget for the inner layer, and we observe a
leading-order balance between the buoyancy forcing and bottom shear stress, i.e.

Bi ~ 1. (5.5

~ B,. 5.4

The rate of increase of volume flux in the inner layer is of a similar order to the Leibniz
term (towards which the Reynolds stress contribution is negligible, as in the outer layer).

5.2. Layer-specific force balance

Ellison & Turner (1959) showed that gravity currents reach an equilibrium state where the
gravitational forces are balanced by ‘entrainment drag’ and bottom friction. It is useful to
interpret this finding in the light of weak interaction between the inner and outer layers.
The starting point is the integral momentum balance for the entire layer, which can be
obtained by adding (5.1¢) and (5.1d) to give the time derivative of Q(=urh):
do dur

dh
=h— — =(By+ Bj) — 1. .
o h ” +ur ” (Bo+ Bi) — T (5.6)
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In terms of top-hat variables (Ellison & Turner 1959), this equation can be written as

du
hd—th(B0+B,~) — Eu — 1y, (5.7)
where E = u}ldh /dt is the entrainment coefficient of a temporal gravity current (van
Reeuwijk et al. 2018, 2019). Since ur is expected to be constant in the dynamically
equilibrated regime (Ellison & Turner 1959) (see also figure 2), (5.7) simplifies to

B, + B; =1, + Eu?.. (5.8)

Given (5.5) and that m,,,, is of a similar magnitude to both (B; — t,) and (dQ,/dt — B,),
as observed in figures 8(b) and 8(d), we deduce that

B, ~ Euj. (5.9)

These results support distinct dynamics in the inner and outer layers. Buoyancy in the
inner layer primarily overcomes the bottom friction, as shown in figure 7(b), whilst the
buoyancy in the outer layer overcomes drag associated with entrainment of ambient fluid.
In the absence of significant exchange of momentum, the inner and outer layers are only
weakly coupled (subject to the continuity condition at the velocity maximum).

Importantly, our theoretical parametrisation and DNS results show that this weak
coupling is not confined to currents on small-angle slopes (with relatively strong stabilising
stratification), as conjectured by Salinas ef al. (2021b), but also applies on larger-angle
slopes (where the stabilising stratification is relatively weak). This observation signifies
that the weak coupling is not a result of a density interface forming near the velocity
maximum. Instead, it appears to be a natural behaviour of inclined gravity currents.

Although it has been reported that there is a mismatch between the levels of the velocity
maximum and zero turbulent shear stress (Salinas et al. 2021b; Wei et al. 2021), our
results indicate that this is not a leading-order effect, and the gradient—diffusion hypothesis
remains useful, i.e. both the viscous shear stress and turbulent shear stress change sign
and cross zero at the level of the velocity maximum, across which there is essentially
no momentum exchange by turbulence or diffusion. This ‘decoupling’ of the two layers
explains why the outer layer behaves independently of bottom friction and much like a
current on a free-slip slope described by van Reeuwijk et al. (2019).

6. Inner-shear-layer scaling
6.1. Inner-layer profiles

Figure 9(a—d) show the inner-layer profiles of , b, e, w'u’ normalised by the characteristic
scales ur;, br; and er;, respectively, at a series of times in the dynamically equilibrated
regime. We employ z/ h; as the scaled slope-normal coordinate.

We decompose the inner shear layer into two regions: a turbulent wall region (TWR)
and a viscous wall region (VWR) defined in terms of the dimensionless wall distance
7zt = zu, /v. Figure 9(i) illustrates these regions using case 2N. The VWR is defined up
to z* = 10, rather than z+ =50 as in traditional boundary layers (Pope 2000), since the
viscous contribution to total shear stress becomes negligible beyond z™ = 10 for small-
angled gravity currents. The TWR lies above the VWR, with TKE peaking at its lower
boundary, and decreasing to a minimum at its upper boundary. The upper boundary of
the TWR is defined via a density interface (see figure 9b) in the vicinity of the velocity
maximum for small-angled cases. The distinct regions for case 2N are also illustrated in
figure 9(a—h) with the same colour scheme as in figure 9(i). Note that the VWR occupies
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Figure 9. Profiles of spatially averaged (a) @/ur;, (b) b/br;, (c) e/er; and (d) w'u’/er; against scaled
height z/ h;, and () #/uz, (f) b/by, () e/u? and (h) w'u’/u? against z+ = zu, /v. Here, u; is the friction
velocity, and b,, is the spatially averaged buoyancy at the wall. Note that the profiles at a series of times in
the dynamically equilibrated regime are plotted for each case. Here, CCF indicates the closed channel flow
data adapted from Lee & Moser (2015), and OCF indicates the open channel flow data adapted from Yao et al.
(2022), both at Re,; = 550. Distinct regions are highlighted with shading, which are depicted in (i) using case
2N with Re; = 620, including the VWR, the TWR and the density interface, represented by blue, yellow and
green, respectively.

only a minor area at the bottom of the inner shear layer in figure 9(a—d), as the vertical
coordinate is scaled as z/ h;.

The profiles of scaled mean velocity in figure 9(a) exhibit considerable collapse over
a range of times. However, this collapse is not indicative of a self-similar regime like the
outer layer; instead, the inner layer reaches a quasi-steady state that evolves over very long
time scales. Indeed, figure 7(c) depicts (for slope angle 1°) profiles of mean streamwise
velocity u scaled by the initial (constant) velocity ug in the inner shear layer at different
times. The profiles remain nearly unchanged with time because the buoyancy and shear
stress gradient are in local balance and du /9t ~ 0 throughout the inner layer, as shown in
figure 7(b), i.e.

2 (w’u’ _ ua—”) ~ —bsina. 6.1)
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Furthermore, the profiles of buoyancy in the inner layer (figure 9b) are practically uniform
due to strong turbulent mixing, especially for small angles, implying that

J _
w'u'—va—zw—bz—rwm&(z/hi — ). 6.2)

The approximately linear profile of total momentum flux suggested by (6.2) shares a clear
analogy with a canonical plane turbulent channel flow subject to constant streamwise
pressure gradient, where the momentum balance is given by d(w'u’ — vdi/dz)/dz =
ap/ox

In order to explore this connection, profiles corresponding to a closed channel flow
(CCF, adapted from Lee & Moser 2015) and an open channel flow (OCF, adapted from Yao
et al. 2022) with turbulent Reynolds number Re; = 550 have been included in figure 9.
Note that CCF is subject to no-slip conditions on both the bottom and top boundaries of the
channel, with symmetry about the plane at half-height. For the purposes of comparison,
the channel half-height is plotted as corresponding to z/h; = 1. In contrast, OCF has a
shear-free surface at the top, which is taken to correspond to z/h; = 1. The values of Re;
that characterise the inner shear layer in the gravity currents are a function of slope angle
(see table 1 for more details); however, case 2N corresponds to Re; = 620, similar to that
of the selected channel flow comparisons. The scaled velocity profiles of the channel flows
shown in figure 9(a) nearly overlap with those for the inner layer in the gravity currents,
suggesting the strong similarity of these two flow types. Notably, this similarity is also
observed in the spatially evolving DNS results of Salinas et al. (2021a).

Figure 9(c) shows the TKE profiles normalised by er;. For small-slope-angle currents,
these profiles nearly collapse and decrease approximately linearly with height within the
TWR. Deviations become apparent in the TKE profiles between gravity currents on small-
and large-angled slopes, the likely explanation for which is that the density interface near
the velocity maximum strengthens as the slope angle decreases (figure 9b), acting to
suppress turbulence. This explanation is supported by the near collapse of the normalised
TKE profiles for the small-angle cases (1N, 2N, 5N) with that for OCF, in which no vertical
transport of turbulence is possible at the free surface. The magnitude of normalised TKE
for CCF is slightly smaller than for OCF in the TWR, an effect attributed to stronger ‘very-
large-scale motions’ in OCF (Kim & Adrian 1999; Balakumar & Adrian 2007; Yao et al.
2022).

Figure 9(d) shows the normalised turbulent shear stress w’u’/er;, which varies linearly
with height throughout most of the inner layer for small-angled gravity currents and all
channel flows. This arises because viscous shear stress is negligible compared to turbulent
shear stress in the TWR, allowing (6.2) to be simplified as

w'u’ ~ Bi(z/hi — 1). (6.3)

The observed collapse of these profiles upon scaling with er; is discussed in § 6.2.

Figure 9(e—h) show the scaled quantities in wall units with a focus on the VWR, which
is highlighted using the same colour scheme as in figure 9(i). The velocity profiles in
figure 9(e) fully collapse in the VWR (z1 < 10) across all cases, conforming to the well-
known relationship u/u = z* in this viscosity-dominated region. Figure 9( f) shows that
the buoyancy throughout the VWR is close to the wall buoyancy b,,.

The profiles of TKE and w’u’ normalised by u% are presented in figures 9(g) and 9(h),
respectively, in terms of wall units. The normalised TKE profiles are seen to collapse onto
a single curve within the VWR that increases rapidly with height from zero on the lower
boundary to a local maximum at the top of the VWR. The normalised w’u’ profiles for the
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2N slope current and the CCF and OCF cases, which all have a similar Re;, also nearly
collapse in the VWR. However, the deviations from this normalised profile for the other
slope currents considered suggest a possible Re; dependence in this scaling.

6.2. Approximate steady-state solution

Upon inspection, we find that an approach analogous to that for the outer layer in §§ 4.2
and 4.3 can also be applied to the inner shear layer. On the basis of the observed collapse
in figure 9, approximate solutions are proposed, especially for currents on small-angled
slopes:

u=ur;fui (&), b=0brifp;(§), e=erife;({), ¢=z/hic(0,1). 6.4)
Note that f,;(¢), fpi(¢) and f,; (&) are expected to be strictly valid only within the TWR.
However, as the VWR volume is negligible compared with that of the TWR for the small-
angled slope currents, we assume that these functions may be applied throughout the inner
shear layer. Taking f5;(¢) ~ 1 (consistent with figure 9b), we assume that f,; takes a
logarithmic form, as for an unstratified boundary layer adjacent to a no-slip surface:

fui(@Q)=ciIn¢ + cym, (6.5)

where ¢; is a coefficient to be determined, and ¢, = f,; (1) =u,, /ut;. Consistency with
the volume transport decomposition for the inner layer in (2.9a) requires

hi 1 ]
Qi:/o ﬁdz:uT,‘hi/O fui©)d¢ =urihi = /Ofui({)dgzl, (6.6)

thus ¢; = cym — 1.
As in §4.3, we propose that e and w’u’ in the inner layer (where du/0z > 0 now) are
related by the scaling

e=KuiS/cmi =—w'u'/cpi. (6.7)

Note that an additional subscript i is used to distinguish the inner-shear-layer eddy
parametrisation coefficient (c,,; and, later, c,; and c¢;) from that applicable to the
outer shear layer. Combining (6.3), (6.4) and (6.7) suggests that f,; takes a linear form
(consistent with collapse of the small-angled cases in figure 9¢), and consistency with the

TKE decomposition for the inner layer (2.11) requires that f()l fei(¢)d¢ =1, thus

Jei=2(1—=¢), eri=¢e/fei=Bi/(2cmi). (6.8)
The approximate solutions proposed in (6.4) and (6.7) can thus be summarised as

17 STU

7] b e w'u
—=(Cum—DIn¢+cypm, —=_1, —=—Cmi =2(1—-¢). (6.9a-c)
ur; bri Y~ er; eri ——

fui (©) Joi (©) fei (©)

The ratio of u,, to ur; (i.e. cym) is found from the DNS data to be approximately
1.12. It is interesting to consider the analogy with channel flow using the well-known
approximations for the inner layer u/u, =c_ "Inzt + C and (@, — uri) Jur = ck_l(Pope
2000, equations (7.43) and (7.52) therein), where ¢, = 0.41 is the von Karman constant,
and C is a constant with value approximately 5.2. Comparison with (6.9a) suggests that
_ ¢C +1In Re; ’ Ur; _ 1 ’ 6.10)
¢C+InRe; — 1 Ur (cum — Dy

which is in excellent agreement with the DNS data, e.g. yielding ¢;,,, = 1.13 and u7; /u,; =
18.8 for Re,; = 620.
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Figure 10. Scaling of inner-layer turbulence parameters averaged over #,,,. in the dynamically equilibrated
regime: (a) cpi = KpiS/e=0.27£0.018, (b) Prri =cmi/cpi =1%£0.048 and (c) c;; =¢/(eS) =027+
0.012 against z/ h;. The converged values are denoted with vertical dashed lines.

Figures 10(a), 10(b) and 10(c) show the coefficients c,,;, Prr; and c.; based on
the DNS data and the form of the outer-layer scaling in (4.2). We observe that a
single value for each scaling coefficient can be applied with reasonable success to the
core region of the TWR (where z/h; € [0.25, 0.75]) in the small-angle slope currents
(IN, 2N, 5N) and the channel flows. In particular, c¢,; converges to approximately
0.27, which is similar to the value of ¢, (namely 0.25), indicating comparable shear-
driven dynamics in the core regions of the inner and outer layers. Likewise, c¢g; also
converges to approximately 0.27, suggesting an approximate balance between turbulence
production and dissipation in the quasi-steady state (noting the relation in (4.2¢,d)).
The converged value of Prr; is close to unity, in agreement with the Reynolds analogy.
However, Prr; exhibits opposite trends in small- and large-angle cases near the velocity
maximum, arising from variations in the relative magnitudes of turbulent viscosity and
diffusivity. This behaviour presumably suggests the existence of a critical slope angle
below which the strong density interface that inhibits mixing spontaneously forms near
the velocity maximum. The mechanisms underlying this critical threshold warrant further
investigation.

The functions given by (6.9) with ¢;,; = 0.27 and ¢y, = 1.12 are plotted in figure 9(a—
d), and show reasonable agreement with the DNS data for currents on small-angle slopes
(e.g. up to 5°) within the TWR. The corresponding prediction from (6.8) that er; /B; ~ 1.9
is plotted in figure 4(c) and agrees well with the DNS results for small-angled currents.
We suggest that the likely reason for the success of this scaling is that the core region of
the TWR is sufficiently far from both the wall and the density interface for the turbulence
to be shear-dominated (Mater & Venayagamoorthy 2014), and therefore that parametrising
the turbulence using |du/dz| and e is reasonable.

7. Inner-outer-layer matching condition
1.1. Buoyancy partition

It is clear that the buoyancies in the inner and outer layers (B; and B,) are the primary
forcings in each layer. Therefore, a crucial step in obtaining a closed-form description of
a slope current is to predict how buoyancy is partitioned between the layers. Given that
ur ~ur, (figure 2g) and 7, = u%, (5.5) and (5.9) can be rewritten as

B,=Eu%,, Bi=u’. (7.1a,b)
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Figure 11. Plots of (a) B;i/B,, (b) uy/uo and (c) h;/ ho averaged over t,,, in the dynamically equilibrated
regime as a function of slope angle « (in degrees). The solid lines in (a,b) denote the theoretical prediction
in (7.3), (7.4), respectively.

Combining this with a velocity-matching condition in terms of the self-similar relations
Um =3uroe/2 = cymuri gives

4.

— 2 =2
B() = §Eum,

B; =c;,u,,, andthus g; = —cmkE*I, (7.2a—c)
where ¢k = (Cyum — )¢k /cum- Recalling from (4.1a) that E = Bo/uzro = au_z, where a,
is given by (4.3a), the predicted dependence of B;/B, on « is
ﬁ _ ZC,an(PrT + ¢,/ tan oe)’ (7.3)
B, Pry (cm — ce)
which is compared in figure 11(a) with B;/B, calculated from the DNS data. Reasonably
good agreement is found across the range of slope angles o considered, and the ratio
B;i/B, is seen to increase as both the slope angle « and the associated entrainment rate
decrease (7.2¢). This insight could explain the long runout of submarine gravity currents
over mild slopes. As the slope angle reduces: (i) a greater proportion of the buoyancy
is confined in the inner layer, where it propagates largely undiluted because of a weak
interaction with the outer layer; and (ii) the outer-layer buoyancy also experiences limited
dilution due to the reduced entrainment rate.
The maximum velocity u,, is determined by substituting (7.3) and B = B; + B, into
(7.2) to give

_  Bi 2B(Prr + ¢/ tan @) 3
U (o) = i =
m

= SuUro = cumttri. (14
2C,%1k(PrT+Cm/tanO[)+PrT (Cm_Cg) 2 To umUTi ( )

The DNS data for u,, and u7, shown in figures 11(b) and 4(a) are seen to be well predicted
by (7.4). Notably, the characteristic thickness h; remains a free parameter. Applying
buoyancy conservation yields

Jo " b, 2)dz  brihi B _, hi_ Bi/Bo bo
Jo b(t=0,2)dz  boho B, + B ho 1+ Bi/B, bri-

Here, B;/ B, is a function of « as given in (7.3). Equation (7.5) indicates h;/ hg (ho set to
constant) depends on « and the ratio of the initial buoyancy by to the inner characteristic
buoyancy br;. As shown in figure 11(c), h; / ho attains larger values at smaller angles, with
a sharp increase observed between cases 2N and 5N. This sudden rise is likely driven by
the dilution due to the initial burst (see 7/t* € [20, 40] in figure 2), which substantially
increases the ratio bg/br;. This observation somewhat suggests that the history of a flow
influences its subsequent evolution, as highlighted by Caulfield (2021).
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7.2. Entrainment law

Using the self-similar relations for u,,, u7, and ur; in § 7.1, we can obtain expressions for
Ri, upon combining (2.10d), (7.3), (7.4) and ur ~ ur,:

2 2
. 9 Prr (cpm — ce) Ris — CrkCum

lo=72 ) — )
°7 Stana Prr+cpy ' tan o
92¢2 (Prr + ¢/ tana) + Pry (¢ — ¢
Ri =2 mk( T m/ ) T ( m e) ‘ (7.661—6‘)
8 tano Pry + ¢,

The predictions for these Richardson numbers are plotted in figure 4(b), with good
agreement apparent for small slope angles. Equation (7.6a) indicates that the outer-layer
Richardson number Ri, increases and approaches a finite limit (Ri,, ~9 Prr (¢ —
ce)/8cm) as a decreases (tan o < ¢,/ Prr). This limiting value suggests that the outer
layer remains marginally stable and weakly stratified at all the slope angles considered
here. However, Ri and Ri; continue to increase as the slope angle decreases. Notably, Ri;
loses physical relevance for small-angled cases, as the inner layer is nearly well-mixed
in these scenarios. Richardson number Ri is directly related to the buoyancy partition, as
shown by the following relationship derived from (2.10d) with ur ~ ur,:

Ri/Ri, = B/B,. (1.7)

Therefore, the increase in Ri with decreasing « essentially reflects the increasing
proportion of the integral buoyancy held in the inner layer.

As we have shown in this study that entrainment is associated with the outer layer
dynamics in a slope current, we now adapt the entrainment law derived by van Reeuwijk
et al. (2019) for currents on free-slip boundaries ((4.24) and (4.25) therein). Using (7.7) to
relate Ri and Ri,, their theoretical expression can be rewritten as

c . . c ) . B }
E= P—:’T(Rlom —Ri,) = P—jjT (Rl,,m — Ri E) . Riym=0.15, (7.8)

which, with (7.2¢), gives the entrainment law as an explicit function of Ri:

em [ E Ri
E= Rlom—z—
Prr 9, /4+E

\/(cm Ri/Prr + cg1)* + cra — cm Ri/ Prr — cgy
E = , (7.9)
2
where cp1 = 9031,(/4 —¢m Riom/Prr and cgy = 9cikcm Ri,y,, / Prr are constants.

Figure 12 shows the predicted entrainment rate E as a function of densitometric Froude
number Fr=1/ VRi. The present theory (7.9) (solid black line) is shown together with
entrainment models from van Reeuwijk ef al. (2019) as a dashed line, Ellison & Turner
(1959) as a dash-dotted line, and Parker et al. (1987) as a dotted line, along with a
broad dataset (denoted by coloured symbols) from laboratory experiments, DNS and
field observations, as compiled by Odier et al. (2014) and Salinas et al. (2019) (details
provided in the caption). The present data are in good agreement with the present theory,
and both show consistency with the spatially evolving DNS results of Salinas et al.
(2022), suggesting that similar entrainment processes operate in both temporal and spatial
configurations.

The classical parametrisation based on the experimental data from Ellison & Turner
(1959) (proposed by Turner 1986) aligns well with the high-Fr data, but shows a different
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Figure 12. Entrainment rate E against Fr = 1/+/Ri. The black solid line and triangles denote the prediction
in (7.9) and the present DNS data, respectively. The shaded band represents the 95 % uncertainty interval of the
present theory obtained via Monte Carlo uncertainty analysis. The data and theory from van Reeuwijk et al.
(2019), Salinas et al. (2022), and the previous data and fitted functions compiled by Odier et al. (2014) and
Salinas et al. (2019) are also shown — incorporating the studies by Ellison & Turner (1959), Ashida & Egashira
(1975), Parker et al. (1987), Cenedese et al. (2004), Wells (2007), Odier et al. (2014) and Salinas et al. (2019),
together with field data (filled markers) collected from the Mediterranean, Lake Ogawara and the Faroe Bank
Channel). The dataset for this plot is available at Cui (2025).

asymptotic behaviour at low Fr (with E dropping to O at a critical Fr value beyond the
range accessible to their experiments). The parametrisation fitted by Parker et al. (1987)
has asymptotic behaviour that is more consistent with the data and offers better overall
performance, but its functional form lacks a solid theoretical basis.

The theoretical model of van Reeuwijk ez al. (2019) predicts E as a function of the outer-
layer Richardson number Ri,, as described by (7.8). A comparison between their prediction
E(Ri,) and the present theoretical prediction E(Ri) (see (7.9)), presented in figure 12,
highlights the significant role that the outer-layer dynamics is likely to play in many slope
current applications. As indicated by (7.7), Ri ~ Ri, at large Fr (corresponding to steep
slopes), where the integral buoyancy forcing is primarily confined within the outer layer
(i.e. B,/B =~ 1). Under these conditions, the two predictions are in close agreement, while
increasing deviations are observed as Fr decreases (note, however, that the entrainment
rate remains consistent for the same slope angle). Both theories suggest a maximum
entrainment rate E,, = ¢, Riyn/Prr =~ 0.046 as Fr approaches infinity, which is in good
agreement with the value 0.04 proposed by Wells, Cenedese & Caulfield (2010).

The present theory indicates that entrainment is not completely suppressed at a critical
Ri (Fr), but rather asymptotes towards 0 as Ri — oo (o« — 0), consistent with the level of
TKE in the outer layer er,, that scales with B,, (see (4.7)). Notably, this differs conceptually
from the hypothesis of ‘continued (high-Richardson-number) mixing’ associated with
intermittent turbulence under strong stratification (see e.g. Wells et al. 2010). Despite
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Ri approaching infinity as o decreases towards 0, the outer layer herein remains weakly
stratified, with Ri, asymptotically approaching Ri,, as shown in figure 4(b). Crucially,
the present theory shows good agreement with the field data (filled symbols in figure 12),
offering a physical basis and the prospect of general applicability to flows at small Fr of
geophysical relevance.

8. Conclusion

In this paper, we explored the fundamental flow structure and scaling laws of temporal
inclined gravity currents using direct numerical simulations. The simulations run for
a duration that is sufficient to reach a dynamically equilibrated (time-evolving) regime
across a range of slope angles. We find that the slope currents comprise a relatively
well-mixed inner layer adjacent to the slope that is overlain by a density-stratified outer
layer. The inner and outer layers are delineated by the level at which a velocity maximum
is situated. In the dynamically equilibrated regime, the outer layer exhibits self-similar
dynamics identical to those of gravity currents on free-slip slopes studied by van Reeuwijk
et al. (2019). The inner layer resembles fully developed plane turbulent channel flow, in
which the shear stress decreases linearly with distance from the wall, and the logarithmic
velocity defect law applies.

At small slope angles, a density interface is observed to form in the vicinity of the
velocity maximum. Although the presence of a density interface has been interpreted
in the literature as a decoupling between the inner and outer layers (Dorrell et al. 2019;
Salinas et al. 2021b), our simulations indicate that the two layers are effectively decoupled
for all slope angles investigated. As a consequence, the integral buoyancy and volume
flux in each layer evolve nearly independently (subject to the continuity condition at the
maximum). The classic force balance (Ellison & Turner 1959), in which buoyancy forces
are countered by entrainment drag and wall friction, can be further refined: the outer-layer
buoyancy forcing is responsible for overcoming the entrainment drag, whilst the inner-
layer buoyancy forcing counteracts the wall friction. This force balance, together with
the weak coupling between the inner and outer layers (becoming even weaker at smaller
slopes), underpins the dynamical equilibrium observed in both the inner and outer layers
across all slope angles considered.

Based on the flow structure, we have developed a theoretical description of an inclined
gravity current by matching the dynamics of a turbulent wall-bounded inner layer and a
self-similar outer layer at the velocity maximum. The theory predicts the flow quantities
as functions of slope angle only, and is expected to best characterise currents with higher
friction Reynolds numbers Re; (corresponding to smaller slope angles in this study), for
which the inner layer is more analogous to a pressure-driven channel flow, and the core
region of the layer is sufficiently far from both the wall and the density interface for the
turbulence to be shear-dominated (Mater & Venayagamoorthy 2014).

An important observation in both the simulations and the theory is that the ratio of the
integral buoyancies in the inner and outer layers increases as the slope angle decreases.
This insight offers a potential explanation for the long runout of submarine gravity currents
along mild slopes: as the slope angle reduces, first, a greater proportion of the buoyancy
is confined in the inner layer (where it remains largely undiluted because of a weak
interaction with the outer layer) and, second, entrainment of ambient fluid into the outer
layer (and consequent dilution of its buoyancy) is also reduced. The theory also gives the
entrainment rate £ as a function of the overall Richardson number Ri. The entrainment
model allows application to small slope angles of oceanographic relevance, and aligns
well with field data collected from the Mediterranean, Lake Ogawara and the Faroe Bank
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Channel. Although the minimum slope angle considered in the simulations here is 1°, the
inner—outer scaling offers a solid physical basis from which the theoretical predictions
have been extrapolated to the milder slopes that characterise a range of geophysical
flows. While the present analysis concerns buoyancy fields created by variations in
species concentration, the results, with appropriate caution, also apply to turbidity currents
involving very fine particles (i.e. relatively slow settling velocities).

One interesting question posed by this study is whether inclined gravity currents can
reach a strongly stratified regime — specifically, whether they can enter the so-called (high
Richardson number) ‘right flank’ (Linden 1979; Wells et al. 2010; Caulfield 2021). Our
results indicate that even though the bulk Richardson number Ri can exceed 1/4 (and
approach infinity when o — 0), a threshold often associated with ‘marginal stability’
(Thorpe & Liu 2009), neither the inner layer nor the outer layer becomes strongly stratified.
In contrast, the outer Richardson number Ri, remains below 1/4 regardless of the slope
angle, and appears to be a more relevant measure of the dynamical importance of the
stratification.

While the extrapolated flow behaviour at high Richardson numbers (i.e. small slope
angles) appears consistent with the ‘marginal stability’ conjecture and with geophysical
observations, further simulations at even smaller inclination angles are required to
confirm this. In particular, it remains to be seen whether the so-called ‘subcritical
regime’ at shallow slopes (Salinas et al. 2021b) falls within the scope of the present
theoretical framework. Moreover, although the temporal and spatial formulations exhibit
a high degree of consistency in terms of self-similarity, inner—outer layer structure and
entrainment, further research is needed to fully understand their dynamical linkage (e.g.
whether they generate the same coherent structures) and to extend the applicability of
the present theory to a broader range of gravity current scenarios. Nevertheless, the
results presented in this paper highlight the importance of a layer-wise perspective for
analysing complex geophysical wall-bounded stratified flows, where an (inner) unstratified
boundary layer can coexist with an (outer) stratified shear layer. An approach based on
bulk properties only risks overlooking the key physics and internal processes governing
such flows.
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