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Abstract

We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3

surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2.

Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined

boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with

a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double

ramification relations with target variety as a new tool to prove the initial condition. The relationship between the

holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and

Pandharipande is discussed in detail and illustrated with several examples.
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1. Introduction

Let ( be a complex nonsingular projective K3 surface and V ∈ �2((,Z) be an effective curve class.

Gromov–Witten invariants of ( are defined via intersection theory on the moduli space "6,= ((, V) of

stable maps from =-pointed genus 6 curves to (. This moduli space comes with a virtual fundamental

class. However, the virtual class vanishes for V ≠ 0, so instead we use the reduced class1

["6,= ((, V)]
A43 ∈ �6+=

(
"6,= ((, V),Q

)
.

For integers 08 ≥ 0 and cohomology classes W8 ∈ �
∗((,Q), we define

〈
g01
(W1) . . . g0= (W=)

〉(
6, V

=

∫
["6,= ((, V) ]A43

=∏
8=1

k
08
8
∪ ev∗8 (W8) ,

where ev8 : "6,= ((, V) → ( is the evaluation at the 8th marking and k8 is the cotangent class at the 8th

marking. By the deformation invariance of the reduced class, the invariant depends only on the norm

〈V, V〉 and the divisibility of the curve class V.

1.1. Quasi-modularity

Gromov–Witten invariants of K3 surfaces for primitive curve classes have been well understood since

the seminal paper by Maulik, Pandharipande and Thomas [29]. The invariants are coefficients of weakly

holomorphic2 quasi-modular forms with pole of order at most 1 [29, Theorem 4]. For imprimitive curve

classes, quasi-modularity is conjectured with the level structure [29, Section 7.5].

Quasi-modularity can be stated in a precise sense via elliptic K3 surfaces. Let

c : ( → P1

be an elliptic K3 surface with a section, and denote by �, � ∈ �2 ((,Z) the class of the section and a

fibre, respectively. For any < ≥ 1, one defines the descendent potential

F6, <
(
g01
(W1) . . . g0= (W=)

)
=

∑
ℎ≥0

〈
g01
(W1) . . . g0= (W=)

〉(
6, <�+ℎ�

@ℎ−<.

Note that this generating series involves curve classes <�+ ℎ� of different divisibilities, bounded by <.

It is convenient to use the following homogenised insertions, which will lead to quasi-modular forms

of pure weight. Let 1 ∈ �0 (() and p ∈ �4(() be the identity and the point class, respectively. Denote

, = � + � ∈ �2 ((),

let

* = Q〈�,,〉 ⊂ �2(()

1We will identify this class with its image under the cycle class map �∗ → �2∗.
2Weakly holomorphic means holomorphic on the upper half-plane, with possible pole at the cusp 8∞.
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be the hyperbolic plane in �2(() and let *⊥ ⊂ �2 (() be its orthogonal complement with respect to

the intersection form. We consider only second cohomology classes which are pure with respect to the

decomposition

�2 ((,Q) � Q
〈
�
〉
⊕ Q

〈
,

〉
⊕ *⊥.

Following [8, Section 4.6], define a modified degree function deg by

deg(W) =




2 if W = , or p,

1 if W ∈ *⊥,

0 if W = � or 1.

For < ≥ 1, consider the Hecke congruence subgroup of level <

Γ0(<) =

{(
0 1

2 3

)
∈ SL2 (Z) | 2 ≡ 0 mod <

}

and let QMod(<) be the space of quasi-modular forms for the congruence subgroup Γ0 (<) ⊂ SL2(Z).

Let Δ (@) be the modular discriminant

Δ (@) = @
∏
=≥1

(1 − @=)24.

Our first main result proves the level 2 quasi-modularity of F6,2, previously conjectured by Maulik,

Pandharipande and Thomas [29, Section 7.5].

Theorem 1. Let W1, . . . , W= ∈ �
∗(() be homogeneous on the modified degree function deg. Then F6,2

is the Fourier expansion of a quasi-modular form

F6,2
(
g01
(W1) . . . g0= (W=)

)
∈

1

Δ (@)2
QMod(2)

of weight 26 − 12 +
∑
8 deg(W8) with pole at @ = 0 of order at most 2.

1.2. Holomorphic anomaly equation

In the physics literature, the (conjectural) holomorphic anomaly equation [4, 5] predicts hidden structures

of the Gromov–Witten partition function associated to Calabi–Yau varieties. In the past few years, there

has been extensive work to prove the holomorphic anomaly equation in many cases: local P2 [26], the

quintic threefold [11, 16], K3 surfaces with primitive curve classes [33], elliptic fibration [34] and P2

relative to a smooth cubic [6].

Every quasi-modular form for Γ0(<) can be written uniquely as a polynomial in �2 with coefficients

which are modular forms for Γ0(<) [18, Proposition 1]. Here,

�2 (@) = −
1

24
�2 (@)

is the renormalised second Eisenstein series. Assuming quasi-modularity, the holomorphic anomaly

equation fixes the nonholomorphic parameter of the Gromov–Witten partition function of K3 surfaces

in terms of lower weight partition functions: it computes the derivative of F6,< with respect to the �2

variable. See [33] for the proof of the holomorphic anomaly equation for K3 surfaces with primitive

curve classes and [34] for the holomorphic anomaly equation associated to elliptic fibrations.

Define an endomorphism [33, Section 0.6]

f : �∗((2) → �∗((2)
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by the following assignments:

f(W ⊠ W′) = 0

if W or W′ ∈ �0(() ⊕ Q
〈
�
〉
⊕ �4((), and for U, U′ ∈ *⊥,

f(, ⊠,) = Δ*⊥ , f(, ⊠ U) = −U ⊠ �,

f(U ⊠,) = −� ⊠ U, f(U, U′) = 〈U, U′〉� ⊠ �,

where Δ*⊥ denotes the diagonal class for the intersection pairing on*⊥. We will view f as the exterior

product f1 ⊠ f2 via Künneth decomposition.

Recall the virtual fundamental class for trivial curve classes, which will play a role for the holomorphic

anomaly equation. For V = 0 we have an isomorphism

"6,= ((, 0) � "6,= × (,

and the virtual class is given by

["6,= ((, 0)]
E8A =



["0,= × (] if 6 = 0,

22 (() ∩ ["1,= × (] if 6 = 1,

0 if 6 ≥ 2.

Also, consider the pullback under the morphism c : ( → P1 of the diagonal class of P1:

ΔP1 = 1 ⊠ � + � ⊠ 1 =

2∑
8=1

X8 ⊠ X
∨
8 .

Define the generating series3

H6,<
(
U; W1, . . . , W=

)
= F6−1,<

(
U; W1, . . . , W=,ΔP1

)
+ 2

∑
6=61+62

{1,...,=}=�1⊔�2
8∈{1,2}

F61 ,<

(
U�1 ; W�1 , X8

)
FE8A62

(
U�2 ; W�2 , X

∨
8

)

− 2

=∑
8=1

F6,<
(
Uk8; W1, . . . , W8−1, c

∗c∗W8 , W8+1, . . . , W=
)

(1)

+
20

<

=∑
8=1

〈W8 , �〉F6,<
(
U; W1, . . . , W8−1, �, W8+1, . . . , W=

)

−
2

<

∑
8< 9

F6,<
(
U; W1, . . . , f1(W8 , W 9 )︸      ︷︷      ︸

8th

, . . . , f2(W8 , W 9 )︸      ︷︷      ︸
9th

, . . . , W=
)
,

where FE8A denotes the generating series for virtual fundamental class. In most cases this term vanishes.

The equation takes almost the same form for arbitrary <, except the last two terms acquire a factor of
1
<

. The appearance of these factors is explained in Section 4 (see also Example 22). We conjecture that

the holomorphic anomaly equation has the following form:

3Here, instead of descendent insertions we use a tautological class U ∈ '∗ ("6,=); see Section 3.2
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Conjecture 2.

3

3�2

F6,<
(
U; W1, . . . , W=

)
= H6,<

(
U; W1, . . . , W=

)
. (2)

For primitive curve classes, the holomorphic anomaly equation is proven in [33]. In higher divisi-

blity, it is precisely equation (2) that would be implied by the conjectural multiple cover formula for

imprimitve Gromow–Witten invariants of K3 surfaces. We explain this in the following section. We

prove Conjecture 2 unconditionally when < = 2:

Theorem 3. For any 6 ≥ 0,

3

3�2

F6,2
(
U; W1, . . . , W=

)
= H6,2

(
U; W1, . . . , W=

)
. (3)

1.3. Multiple cover formula

Motivated by the Katz–Klemm–Vafa (KKV) formula, Oberdieck and Pandharipande conjectured a

formula which computes imprimitive invariants from the primitive invariants:

Conjecture 4 ([32], Conjecture C2). For a primitive curve class V,〈
g01
(W1) . . . g0= (W=)

〉
6, <V

(4)

=
∑
3 |<

326−3+deg
〈
g01
(i3,< (W1)) . . . g0= (i3,< (W=))

〉
6, i3,< ( <3 V)

.

The invariants on the right-hand side are with respect to primitive curve classes.4 Assuming this

formula, we can deduce the holomorphic anomaly equation:

Proposition 5. Let < ≥ 1. Assume that the multiple cover formula (4) holds for all curve classes of
divisibility 3 | < and all descendent insertions. Then the holomorphic anomaly equation (2) holds.

Given this proposition, it seems a natural strategy to prove the multiple cover formula in divisibility 2

and deduce, as a consequence, the holomorphic anomaly equation. Indeed, our method does follow this

logic for < = 2 and for low genus: we verify the multiple cover formula for 6 ≤ 2 (see Example 35). For

higher genus, however, our method does not seem suitable. Instead, our proof of Theorem 1 provides

an algorithm, based on the degeneration to the normal cone of a smooth elliptic fibre � ⊂ (, to reduce

divisibility 2 invariants to low-genus invariants for which the multiple cover formula is known.5 The

degeneration formula intertwines invariants of ( with invariants of P1 × � in a nontrivial way. This

phenomenon is illustrated in Example 35 for the genus 2 invariants〈
g0 (p)

2
〉

2, 2V
.

1.4. Hecke operator

In Section 3 we apply Conjecture 4 to an elliptic K3 surface to deduce a conjectural multiple cover

formula for the descendent potentials F6,<. The multiple cover formula for any divisibility < is then

simply a Hecke operator of the wrong weight acting on the primitive potential F6,1. Indeed, the weight

of F6,1 (and conjecturally of F6,<) is 26 − 12 + deg, whereas the Hecke operator has the weight of a

descendent potential attached to elliptic curves, namely 26 − 2 + deg. This operator can be expressed in

terms of Hecke operators (of the correct weight) and translation @ ↦→ @3 . Together with the holomorphic

4Section 3 contains all relevant definitions.
5The cases in genus 0 and genus 1 are proved by Lee and Leung in [24, 25]. Their proof involves a degeneration formula in

symplectic geometry which is not possible in algebraic geometry. We present an algebro-geometric approach using the KKV
formula.
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anomaly equation for primitive curve classes [33], this naturally leads to Conjecture 4 for the holomorphic

anomaly equation for higher divisibility.

1.5. Plan of the paper

We prove quasi-modularity and the holomorphic anomaly equation by induction on the genus and

the number of markings. In Section 2, we discuss Hecke theory for weakly holomorphic quasi-

modular forms. This leads to a natural formulation of the multiple cover formula in Section 3 and

the imprimitive holomorphic anomaly equation in Section 4. In Section 5, the compatibility of the

holomorphic anomaly equation with the degeneration formula is presented. In Section 6, we derive

the multiple cover formula, which implies the holomorphic anomaly equation, for genus 0, genus 1

and some genus 2 decendent invariants from the KKV formula. The genus 2 computation relies on

double ramification relations with target variety. This result serves as the initial condition for our

induction. In Section 7, we use previous results to prove Theorems 1 and 3. The property of the

top tautological group '6−1("6,=) reduces higher-genus cases to lower-genus invariants discussed in

Section 6.

2. Quasi-modular forms and Hecke operators

We recall basic properties of quasi-modular forms and Hecke operators (see [22, 39], in particular [22,

pp. 156–163] and [22, Ch. 3, Section 3]). The Hecke theory for weakly holomorphic quasi-modular

forms, however, seems to be less well documented. We thus also include some proofs.

The following operators will play a central role. For any Laurent series

5 (@) =

∞∑
==−∞

0=@
= (5)

and 3 ∈ Z>0, we define

D@ 5 = @
3

3@
5 , B3 5 =

∞∑
==−∞

0=@
3=, U3 5 =

∞∑
==−∞

03=@
=.

We will apply these operators to the Laurent series associated to certain modular functions. For this

we briefly review the definition of modular forms.

2.1. Quasi-modular forms

Let H = {g ∈ C | Im(g) > 0} be the upper half-plane. The group GL+2 (R) of real 2 × 2-matrices with

positive determinant acts on H via

�g =
0g + 1

2g + 3
, � =

(
0 1

2 3

)
∈ GL+2 (R).

Let 5 : H→ C be a function and let

@ = 42c8g , H = Im(g).

For : ∈ Z define the :th slash operator

( 5 |:�) (g) = det(�):/2(2g + 3)−: 5 (�g).
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Definition 6. A quasi-modular form of weight : for SL2 (Z) is a holomorphic function 5 : H → C

admitting a Fourier expansion

5 (@) =

∞∑
==0

0=@
=, |@ | < 1, (6)

such that there exist ? ≥ 0 and holomorphic functions 5A , A = 0, . . . , ? satisfying the following

conditions:

(i) the (nonholomorphic) function 5̂ =
∑?

A=0
5A H
−A satisfies the transformation law

5̂ |:W = 5̂ for all W ∈ SL2 (Z),

(ii) 5 = 50 and

(iii) each 5A has an expansion of the form of equation (6).

If ? = 0, then 5 is called a modular form. We denote the spaces of modular and quasi-modular forms

by Mod and QMod, respectively.

Remark 7. If 5̂ =
∑?

A=0
5A H
−A as with 5? ≠ 0, then each 5A is a quasi-modular form of weight : − 2A

(see [39, Proposition 20]). Moreover, the last one – that is, 5? – is in fact modular (of weight : − 2?).

The following structural results are well known [39, Proposition 4, Proposition 20]:

Mod = C[�4, �6], QMod = C[�2, �4, �6],

where

�28 (@) = −
�28

28 · (28)!
�28 (@)

is the renormalised 28th Eisenstein series. Condition (i) in Definition 6 defines the space AHM of almost
holomorphic modular forms, and the assignment 5̂ ↦→ 5 is an isomorphism

AHM→ QMod.

Under this map, differentiation with respect to 1
8cH

corresponds to differentiation with respect to �2.

The modular functions considered in this paper will usually have poles at the cusp g = 8∞ corre-

sponding to @ = 0. We will refer to these functions as weakly holomorphic with pole of specified order.

We want to clarify this terminology in the context of quasi-modular forms.

Definition 8. A function 5 is said to be weakly holomorphic quasi-modular with pole of order at
most < ≥ 0 if 5 satisfies the conditions in Definition 6, except that each 5A is allowed to have a pole

at the cusp 8∞ of order at most <. If ? = 0, then 5 is called a weakly holomorphic modular form with

pole of order at most <.

By parallel arguments as in [39, Proposition 20], the assertions in Remark 7 hold analogously for

weakly holomorphic quasi-modular forms. In particular, 5? is weakly holomorphic modular with pole

of order at most<. The space of weakly holomorphic modular forms is generated by 1
Δ

over Mod, where

Δ (@) = @
∏
=≥1

(1 − @=)24

is the modular discriminant.6 As a consequence,

5? ∈
1

Δ<
Mod,

6See [14], where the authors examine an explicit basis of the space of weakly holomorphic modular forms.
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and since 5? is of weight : − 2? (and there are no nonzero modular forms of negative weight), we have

: ≥ 2? − 12<.

For quasi-modular forms we include the following observation:

Lemma 9. The space of weakly holomorphic quasi-modular forms with pole of order at most < is given
by

1

Δ<
QMod.

Proof. Let 5 be a weakly holomorphic form with pole of order at most < and weight : , and let

5̂ =

?∑
A=0

5A H
−A ,

with 5 = 50. Multiplying by Δ<, we have, for all W ∈ SL2 (Z),

(Δ< 5̂ ) |:+12<W = (Δ<) |12<W · ( 5̂ ) |:W = Δ< 5̂ .

Since each Δ< 5A is holomorphic at 8∞, this proves

5 ∈
1

Δ<
QMod.

An analogous argument shows that the quotient of any quasi-modular form by Δ< defines a weakly

holomorphic quasi-modular form with pole of order at most <. �

2.2. Hecke operators

Let < ∈ N and consider the set of integral matrices of determinant <

�< =

{(
0 1

2 3

)
| 0, 1, 2, 3 ∈ Z , 03 − 12 = <

}
.

The modular group SL2(Z) acts on �< by left multiplication. The classical Hecke operators T< acting

on modular forms 5 of weight : are defined by [39, Section 4.1]:

T< 5 = <
:/2−1

∑
W∈SL2 (Z)\�<

5 |:W.

This definition is equivalent to [22, Ch. 3, Proposition 38]:

T< =
∑
03=<

0:−1B0U3 . (7)

The action of equation (7) naturally extends to the action of the @-expansion of weakly holomorphic

quasi-modular forms. We prove that the action again defines a weakly holomorphic quasi-modular

form. For simplicity (we will only use this case), we restrict to the case when 5 has a pole of order at

most 1.

Lemma 10. Let 5 ∈ 1
Δ

QMod be of weight : . Then T< 5 is a weakly holomorphic quasi-modular form
of weight : with pole of order at most < – that is,

T< 5 ∈
1

Δ<
QMod.
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Proof. In [31] it is shown that T< defines a map QMod → QMod preserving the weight. We briefly

recall the key arguments for 5 ∈ QMod. The definition of quasi-modular forms is equivalent to the

condition

( 5 |:W) (g) =

?∑
A=0

( 2

2g + 3

)A
5A (g) for all W =

(
0 1

2 3

)
∈ SL2(Z),

where 5A are as in Definition 6.7 Defining a modification of the slash operator for quasi-modular

forms,8

( 5 | |:�) (g) =

?∑
A=0

(−2)A (2g + 3)A ( 5A |:�) (g) for � =

(
0 1

2 3

)
∈ GL+2 (R),

and the quasi-modularity is then equivalent to

5 | |:W = 5 for all W ∈ SL2(Z).

This leads to a parallel treatment of Hecke operators as in the classical context of modular forms. By

[31, Proposition 2] we have

5 | |: (W�) = 5 | |:� , for all W ∈ SL2 (Z) , � ∈ GL+2 (R)

and we define

T< 5 = <
:/2−1

∑
�∈SL2 (Z)\�<

5 | |:�.

This definition is then independent of a choice of representatives of SL2(Z) \ �<. To conclude that

T< 5 is a quasi-modular form, we would like to argue that it is invariant under (−)| |:W for all W ∈ SL2(Z).

This statement, however, is not sensible at the moment,9 because the definition of (−)| |:W relies on the

existence of associated functions 5A . This technicality is resolved in [31, Section 2.4, 2.5] by considering

a certain period domain P and identifying quasi-modular forms as holomorphic functions on P, which

are left SL2 (Z)-invariant and satisfy a transformation property for a right action of the subgroup of

upper triangular matrices. The domain P is contained in GL2 (C) and contains the upper-half plane H.

The actions are given by left and right multiplication. The argument carries over to weakly holomorphic

quasi-modular forms without change.

A particular set of representatives for SL2(Z) \ �< is given by

{
W1 =

(
0 1

0 3

)
| 0, 3 ∈ N, 03 = <, 0 ≤ 1 < 3

}
.

Note that (−)| |:W1 = (−)|:W1 , because the terms for A > 0 vanish. Since

U3 5 (g) =
1

3

∑
0≤1<3

5

(
g + 1

3

)
,

7This notion is called ‘differential modular form’ in [31]. As pointed out in [39, Section 5.3], it is equivalent to a quasi-modular
form.

8This definition differs from [31, Equation 12] by a factor<−? , where ? is the depth of 5 . Our definition of the Hecke operator
differs by the same factor.

9We are grateful to the referee for pointing out this subtle detail.

https://doi.org/10.1017/fms.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.6


10 Younghan Bae and Tim-Henrik Buelles

we thus recover equation (7):

T< 5 (g) = <
:/2−1

∑
03=<

0≤1<3

3−:<:/2 5

(
0g + 1

3

)

=
∑
03=<

0:−1B0U3 5 (g).

For weakly holomorphic quasi-modular forms 5 ∈ 1
Δ

QMod, we follow the same proof. The difference

here is that the functions 5A are allowed to have simple poles at 8∞. The slash operator (−)| |: , however,

may turn a simple pole into a pole of higher order. For (−)| |:W1 this order is bounded by <. As a

consequence, T< 5 is weakly holomorphic quasi-modular with pole of order at most <. �

For our study of the multiple cover formula in Section 3, we will require a more flexible notion, where

the exponent is not necessarily related to the weight. The action of this operator will preserve the weight

of weakly holomorphic quasi-modular forms; it will, however, introduce poles and level structure.

Definition 11. For ℓ ∈ Z, we define

T<,ℓ =
∑
03=<

0ℓ−1B0U3 .

The operator T<,ℓ is simply the <th Hecke operator of weight ℓ, which we let act on functions of

weight : . By Möbius inversion we may rewrite each of them in terms of the other (see [1, Section 2.7]).

For this, let ` be the Möbius function.

Lemma 12. The action of T<,ℓ on weakly holomorphic quasi-modular forms of weight : is given by

T<,ℓ =
∑
03=<

2:,ℓ (0)B0T3 ,

where

2:,ℓ (0) =
∑
A |0

Aℓ−1`
( 0
A

) ( 0
A

) :−1

.

Proof. The formula for 2:,ℓ can be rewritten as

2:,ℓ = Idℓ−1 ★ (` · Id:−1),

where Idℓ−1(=) = =
ℓ−1 is the (ℓ − 1)th power function and★ denotes Dirichlet convolution – that is, for

functions 6, ℎ we have

(6 ★ ℎ) (<) =
∑
03=<

6(0)ℎ(3).

Note also that B is multiplicative with respect to composition – that is, for 4 | 0 we have B0 = B4B 0
4

–

and therefore
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T<,ℓ =
∑
03=<

0ℓ−1B0U3

=
∑
03=<

(
Idℓ−1 ★ (` · Id:−1) ★ Id:−1

)
(0)B0U3

=
∑
03=<

©«
∑
4 |0

2:,ℓ (4)
( 0
4

) :−1ª®¬
B0U3

=
∑
DF=<

2:,ℓ (D)BD
©«
∑
E |F

E:−1BEU F
E

ª®¬
=

∑
DF=<

2:,ℓ (D)BDTF .
�

As a consequence, we obtain the following result. Here we let Mod(<) and QMod(<) be the spaces

of modular and quasi-modular forms, respectively, for the congruence subgroup Γ0(<) ⊂ SL2(Z) (see

the introduction).

Proposition 13. Let 5 ∈ 1
Δ

QMod be of weight :; then T<,ℓ 5 is a weakly holomorphic quasi-modular
of weight : with pole of order at most < for the congruence subgroup Γ0(<) ⊂ SL2(Z):

T<,ℓ 5 ∈
1

Δ<
QMod(<).

Proof. We use the formula in Lemma 12 and treat each summand separately. By Lemma 9, each T3 5

satisfies

T3 5 ∈
1

Δ3
QMod.

The action of B0 raises @ ↦→ @0, or equivalently g ↦→ 0g, so it maps QMod to QMod(0) (see [22, Ch. 3,

Proposition 17]). Therefore,

B0T3 5 ∈
1

Δ (@0)3
QMod(0).

Finally, the weakly holomorphic modular form for Γ0(0) defined by

Δ (@)0

Δ (@0)

is in fact holomorphic at 8∞ – that is, contained in Mod(0). Hence the same is true for its 3th power,

and we find

B0T3 5 ∈
1

Δ<
QMod(0).

which concludes the proof since, QMod(0) ⊂ QMod(<). �

For later reference, we list the following basic commutator relations between the foregoing operators

acting on weakly holomorphic quasi-modular forms 5 of weight : . Recall that the algebra QMod(<)

is freely generated by the Eisenstein series �2 over the algebra Mod(<) of modular forms. Formal

differentiation with respect to �2 is therefore well defined.

Lemma 14. Let 3, 4 ∈ N and ℓ ∈ Z; then

(i) B3B4 = B34 = B4B3 ,

(ii) U3U4 = U34 = U4U3 ,
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(iii) D@B3 = 3B3D@ , U3D@ = 3D@U3 ,

(iv) T<,ℓ+2D@ = <D@T<,ℓ ,

(v) 3
3�2

T<,ℓ+2 = <T<,ℓ
3
3�2

,

(vi) [ 3
3�2

,D@] = −2: .

Proof. The proof for (i)–(iv) follows directly from the definition. For (v) one may use the fact that

under the isomorphism 5̂ ↦→ 5 , the differentiation 3
3�2

corresponds to differentiation with respect to
1

8cH
(see Remark 7). Statement (v) is then checked as an identity of Laurent series in @ with polynomial

coefficients in H−1. The commutator relation (vi) is well known (see, for example, [39, Section 5.3]).

�

3. Multiple cover formula

This section contains a discussion of the multiple cover formula. We start by recalling the conjecture

formulated in [32]. Then, we study the conjecture for the descendent potentials associated to elliptic

K3 surfaces. The result is expressed in terms of Hecke operators. The discussion naturally leads to a

candidate for the holomorphic anomaly equation in higher divisibility. We conclude with a proof of the

multiple cover formula in the fibre direction.

3.1. Multiple cover formula

Let ( be a nonsingular projective K3 surface, V ∈ �2 ((,Z) be a primitive effective curve class, < ∈ N

and 3 | < be a divisor of <. The formula proposed by Oberdieck and Pandharipande involves a choice

of a real isometry

i3,< :
(
�2((,R), 〈 , 〉

)
→

(
�2((3 ,R), 〈 , 〉

)
between two K3 surfaces such that

i3,<

(<
3
V
)
∈ �2 ((3 ,Z)

is a primitive effective curve class.10 The second author proved in [9] that such an isometry can always

be found, and Gromov–Witten invariants are in fact independent of the choice of isometry.

Consider integers 08 ∈ N and cohomology classes W8 ∈ �
∗((,Q) and let deg =

∑
deg(W8). Then the

conjectured multiple cover formula [32, Conjecture C2], identical to our Conjecture 4, is〈
g01
(W1) . . . g0= (W=)

〉
6,<V

=
∑
3 |<

326−3+deg
〈
g01
(i3,< (W1)) . . . g0= (i3,< (W=))

〉
6,i3,< ( <3 V)

.

Let ( be an elliptic K3 surface with a section.11. The full (reduced) Gromov–Witten theory of K3

surfaces is captured by ( with curve class<�+ℎ� via standard deformation arguments using the Torelli

theorem. In fact, the multiple cover conjecture can be captured entirely via ( as well: we may choose

the same (3 = ( for any 3 dividing < and ℎ. For ; ∈ Q∗ we define

q; : �
∗((,Q) → �∗((,Q)

10We view curve classes also as cohomology classes under the natural isomorphism �2 ((, Z) � �
2 ((, Z) .

11Notations here are as in Section 1 In particular, we use the modified degree function deg.
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acting on* = Q〈�,,〉 as

q; (�) =
1

;
�, q; (,) = ;,,

and trivially on the orthogonal complement *⊥. For 3 | < and 3 | ℎ we may choose i3,< as q 3
<

:

q 3
<

(
<

3
� +

ℎ

3
�

)
= � +

(
<(ℎ − <)

32
+ 1

)
� in �2((,Z),

which is a primitive curve class.

Altering the curve class via the isometry q therefore results in additional factors of 3
<

or <
3

while

keeping the descendent insertions unchanged. This explains the change in exponents

26 − 3 + deg←→ 26 − 3 + deg

and the factor <
deg−deg

in the multiple cover formula for the descendent potential (see later). We use

the operator T<,ℓ introduced in Definition 11. As pointed out in Section 1.4, this is the <th Hecke

operator for functions of weight ℓ, which we let act on F6,1 (which has weight 26 − 12 + deg). Before

stating the conjecture, we want to discuss the role of tautological classes and compatibility with respect

to restriction to boundary strata.

3.2. Compatibility I

We will find it convenient to use pullbacks of tautological classes from "6,= instead of k-classes on

"6,= ((, V). For 26 − 2 + = > 0, let

'∗("6,=) ⊆ �
∗("6,=)

be the tautological ring of "6,=. For a tautological class U ∈ '∗("6,=), we consider the invariants

〈
U; W1, . . . , W=

〉
=

∫
["6,= ((,V) ]A43

c∗U ∪

=∏
8=1

ev∗8 (W8),

where c : "6,= ((, V) → "6,= is the stabilisation morphism. We write

F6,<
(
U; W1, . . . , W=

)
=

∑
ℎ≥0

〈
U; W1, . . . , W=

〉
6,<�+ℎ�

@ℎ−<

for the generating series in divisibility<. By the usual trading of cotangent line classes, these generating

series are related to the ones defined via cotangent classes on "6,= ((, V). Any monomial in k- and

^-classes can be written, after adding markings, as a product of k-classes. This procedure leaves deg

and deg unchanged. Before stating the multiple cover formula later, we explain the compatibility with

respect to restriction to boundary strata in "6,= ((, V).

A crucial point for this compatibility is the splitting behaviour of the reduced class. Consider the

pullback of the boundary divisor

"6−1,=+2 → "6,=

under the stabilisation morphism c. Let U be the push-forward of a tautological class (we will omit

push-forwards in the notation later). By the restriction property of the reduced class, we obtain

F6,<
(
U; W

)
= F6−1,<

(
U; WΔ(

)
.
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Then the compatibility follows from two facts. First, for the diagonal class Δ( we have

(
deg−deg

)
(Δ() = 0,

and thus the factor <
deg−deg

in Conjecture 15 remains unchanged. Second, we have deg(Δ() = 2, which

precisely offsets the genus reduction from 6 to 6 − 1 in the formula

ℓ = 26 − 2 + deg.

Next, consider the pullback of the boundary divisor

"61 ,=1+1 × "62 ,=2+1 → "6,=

under the stabilisation morphism c. Let

U = U1 ⊠ U2, {1, . . . , =} = �1 ∪ �2, W = W1 ⊠ W2,

be the push-forward of the product of tautological classes, the splitting of markings and the splitting of

the insertions, respectively. The Künneth decomposition of the class of the diagonal is denoted by

[Δ(] =
∑
9

Δ 9 ⊠ Δ
9 .

The splitting property implies that

F6,<
(
U; W

)
=

∑
<1+<2=<

∑
9

(
F61 ,<1

(
U1; W�1Δ 9

)
· FE8A62 ,<2

(
U1; W�1Δ

9
)

+ FE8A61 ,<1

(
U1; W�1Δ 9

)
· F62 ,<2

(
U1; W�1Δ

9
))
.

The virtual class for nonzero curve classes vanishes, and thus the contribution FE8A is a number. As a

consequence, no nontrivial products of generating series appear when we use boundary expressions.

By a similar consideration, using the deg and deg for the diagonal class, we find that the multiple cover

formula is compatible with respect to this boundary divisor as well. We can now state the multiple cover

formula for the generating series with tautological classes:

Conjecture 15. For deg-homogeneous W8 ∈ �∗((,Q),

F6,<
(
U; W1, . . . , W=

)
= <

deg−deg
T<,ℓ

(
F6,1

(
U; W1, . . . , W=

) )
,

where deg =
∑

deg(W8), deg =
∑

deg(W8) and ℓ = 26 − 2 + deg.

Based on the foregoing discussion, the same formula is conjectured for the potential

F6,<
(
g01
(W1) . . . g0= (W=)

)
.

We now show that our presentation of the multiple cover formula is equivalent to the original formula.

Lemma 16. Conjecture 4 for all 3 | < is equivalent to Conjecture 15 for <.

Proof. By the deformation invariance of the reduced class, the Gromov–Witten invariants for arbitrary

curve classes are fully captured by an elliptic K3 surface with a section. The primitive curve classes are

� + ℎ� ∈ �2 ((,Z). Taking the coefficient of @<ℎ−< in Conjecture 15 gives a multiple cover formula
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for the curve class <� + <ℎ� which matches the formula in Conjecture 4. It is the other implication

which we have to justify.

The generating series F6,< involves curve classes <� + ℎ� of different divisibilities bounded by <.

We apply Conjecture 4 to each invariant and use the isometries q. Note that each appearance of W8 = �

introduces a factor of <
3

, while each appearance of W8 = , gives 3
<

. Moreover,

|{8 | W8 = �}| − |{8 | W8 = ,}| = deg−deg,

and therefore

F6,<
(
U; W1, . . . , W=

)
=

∑
ℎ≥0

〈
U; W1, . . . , W=

〉
6,<�+ℎ�

@ℎ−<

=
∑
ℎ≥0

∑
3 |<
3 |ℎ

326−3+deg
(<
3

)deg−deg 〈
U; W1, . . . , W=

〉
6,�+

(
<(ℎ−<)

32 +1
)
�
@ℎ−<

= <
deg−deg

∑
3 |<

3
26−3+deg

(∑
ℎ≥0

〈
U; W1, . . . , W=

〉
6,�+( <3 (ℎ−

<
3
)+1)�

(
@3

)ℎ−<
3

)

= <
deg−deg

∑
3 |<

3
26−3+deg

(
B3U<

3

∑
ℎ≥0

〈
U; W1, . . . , W=

〉
6,�+ℎ�

@ℎ−1

)

= <
deg−deg

∑
3 |<

3
26−3+deg

B3U<
3

F6,1
(
U; W1, . . . , W=

)

= <
deg−deg

T<,ℓ

(
F6,1

(
U; W1, . . . , W=

) )
. �

As a direct consequence, the multiple cover formula implies level < quasi-modularity.

Proposition 17. If the generating series F6,< satisfies the multiple cover formula, it satisfies the quasi-
modularity conjecture. More precisely,

F6,< ∈
1

Δ (@)<
QMod(<).

Proof. The descendent potentials for primitive curve classes are weakly holomorphic quasi-modular

with pole of order at most 1 and weight 26 − 12 + deg (see [29, Theorem 4] and [8, Theorem 9]). The

claim thus follows from Proposition 13. �

3.3. Multiple cover formula in the fibre direction

When the curve class is a multiple of the fibre class �, the multiple cover formula reduces to a property

of the Gromov–Witten invariant of elliptic curves. Relevant properties are conjectured in [38].

Let ( → P1 be an elliptic K3 surface with section and let V = <�. By Section 7, Case 1, we may

assume at least one of the insertions is the point class W1 = p and 6 ≥ 1. Let

] : � ↩→ (

be the inclusion of a fibre representing the class �. Since the point class is represented by a transverse

intersection of � and the section �, the Gromov–Witten theory of ( localises to the Gromov–Witten

theory of � with the curve class <� . Computation of the obstruction bundle shows that the invariant is

of the form 〈
g01
(p)g02

(W2) . . . g0= (W=)
〉(
6,<�

=
〈
_6−1; g01

(l)g02
(]∗W2) . . . g0= (]

∗W=)
〉�
6,<�

,
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where _6−1 = 26−1 (E6). In particular, if W8 ∈ Q
〈
�
〉
⊕*⊥ ⊕ Q

〈
p
〉
, the invariant vanishes. Consider the

generating series

F�6
(
g01
(W1) . . . g0= (W=)

)
=

∑
<≥0

〈
_6−1; g01

(W1) . . . g0= (W=)
〉�
6,<�

@<,

where W8 = 1 or l and
∑
08 +

∑
deg(W8) = 6 − 1 + =.

The generating series F�6 has a simple description in terms of Eisenstein series. The following formula

is conjectured in [38]:

Lemma 18. For 6 ≥ 1,

F�6
(
g6−1(l)

)
=

6!

26−1
�26 .

Proof. In [38, Proposition 4.4.7], this formula is given under assumption of the Virasoro constraint

for P1 × � . The Virasoro constraint for any toric bundle over a nonsingular variety which satisfies the

Virasoro constraint is proven in [13]. Combining this result with the Virasoro constraint for elliptic

curves [35], the result follows. �

When V = <�, Conjecture 4 is equivalent to the following proposition:

Proposition 19. There exists 2 ∈ Q such that

F�6
(
g01
(l) . . . g0A (l)g0A+1 (1) . . . g0A′ (1)

)
= 2DA−1

@ F�6
(
g6−1(l)

)
.

Proof. Boundary strata with a vertex of genus less than 6 do not contribute, because the invariants

involving _ℎ vanish on "6,= (�, <) when ℎ ≥ 6. If A ′ > A , then
∑
08 ≥ 6 and we can reduce to the case

when A ′ = A by topological recursion on the k-monomial in '≥6 ("6,=) [23]. If A ′ = A , then
∑
08 = 6−1

and a similar argument as in Section 7, Case 3, can be applied. Therefore F�6 is proportional to

F�6
(
g6−1(l)g0(l)

A−1
)
= DA−1

@ F�6
(
g6−1(l)

)
,

where the equality comes from the divisor equation. �

Remark 20. One can find a closed formula for the constant 2 ∈ Q by integrating tautological classes

on "6,=.

4. Holomorphic anomaly equation

This section contains a proof of Proposition 5. We derive the holomorphic anomaly equation for < ≥ 1

from the conjectural multiple cover formula, such that both are compatible.12 It turns out that the equation

is almost identical to the one in the primitive case. Additional factors appear only in the last two terms,

which are specific to K3 surfaces. We refer to [34, Section 7.3] for explanations of the appearance of

these terms.

Proof of Proposition 5. Set W1, . . . , W= ∈ �
∗(() with

deg =
∑
8

deg(W8), deg =
∑
8

deg(W8).

We will simply write W to denote W1, . . . , W=. Assume that the multiple cover formula (4) holds for

all divisors 3 | < and all descendent insertions. Using Lemma 16, Conjecture 15 also holds. By

Proposition 17, the descendent potentials are quasi-modular forms of level < and we can consider the

12We should point out that this derivation should be lifted to the cycle-valued holomorphic anomaly equation. Tautological
classes play no role here.

https://doi.org/10.1017/fms.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.6


Forum of Mathematics, Sigma 17

3
3�2

-derivative. We apply the 3
3�2

-derivative to Conjecture 15 and use the commutator relations of

Lemma 14 to obtain

3

3�2

F6,<
(
U; W

)
=

3

3�2

(
<

deg−deg
T<,26−2+degF6,1

(
U; W

) )

= <
deg−deg+1

T<,26−4+deg
3

3�2

F6,1
(
U; W

)
.

We want to explain that the last row precisely recovers the definition of H6,< in equation (1), after

applying the holomorphic anomaly equation for the primitive series [33, Theorem 4]:

3

3�2

F6,1
(
U; W

)
= H6,1

(
U; W

)
.

We do so by explaining how each term of H6,1
(
U; W

)
is affected:

(i) The degree deg of F6−1,1

(
U; WΔP1

)
has increased by one. The genus, however, has dropped by one.

Thus, the first term precisely matches the multiple cover formula – that is,

F6−1,<

(
U; WΔP1

)
= <

deg−deg+1
T<,26−4+deg

(
F6−1,1

(
U; WΔP1

) )
.

(ii) The virtual class is nonzero only for curve class V = 0 and general 0, 1 (see Section 1). In these

cases, the potential FE8A62
is simply a number, and the operator T<,ℓ acts nontrivially only on F61 ,<.

We distinguish the two cases:

62 = 0. The virtual class is given by the fundamental class and the integral is given by intersection

pairing on (. Nontrivial terms are obtained from X∨8 = 1 or �. If X∨8 = 1, then

deg(W�2 ) = deg(W�2 ) = 2.

The modified degree deg of F61 ,1

(
U�1 ; W�1X8

)
has decreased by two, whereas deg has decreased by

one (the insertion X8 = � contributes deg = 1). The term thus matches the multiple cover formula:

F61 ,<

(
U�1 ; W�1X8

)
= <

deg−deg+1
T<,26−4+deg

(
F61 ,1

(
U�1 ; W�1X8

) )
.

If X∨8 = �, then

deg(W�2 ) = 1, deg(W�2 ) = 2.

The modified degree deg of F61 ,1

(
U�1 ; W�1X8

)
has decreased by two, whereas deg has decreased by

one. The term matches the multiple cover formula.

62 = 1. The virtual class is given by 22 (() and the integral is given by intersection pairing on (.

Nontrivial terms are obtained only from X∨8 = 1, and

deg(W�2 ) = deg(W�2 ) = 0.

Analogously to case (i), the degree deg of F61 ,1

(
U�1 ; W�1X8

)
has increased by one, deg remains

unchanged and the genus has dropped by one. The term matches the multiple cover formula.

(iii) The modified degree deg of F6,1
(
Uk8; W1, . . . , c

∗c∗W8 , . . . , W=
)

has decreased by two, whereas deg

has decreased by one. Again we find that the term matches the multiple cover formula:
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F6,<
(
Uk8; W1, . . . , c

∗c∗W8 , . . . , W=
)

= <
deg−deg+1

T<,26−4+deg

(
F6,1

(
Uk8; W1, . . . , c

∗c∗W8 , . . . , W=
) )
.

(iv) The degree of 〈W8 , �〉F6,1
(
U; W1, . . . , �, . . . , W=

)
remains unchanged, whereas deg has decreased

by two. An additional factor of 1
<

therefore appears:

1

<
〈W8 , �〉F6,<

(
U; W1, . . . , �, . . . , W=

)
= <

deg−deg+1
T<,26−4+deg

(
〈W8 , �〉F6,1

(
U; W1, . . . , �, . . . , W=

) )
.

(v) The term F6,1
(
. . . , f1(W8 , W 9 ), . . . , f2(W8 , W 9 ), . . .

)
is similar to the previous case: deg remains

unchanged, whereas deg has decreased by two, giving rise to an additional factor of 1
<

:

1

<
F6,<

(
W1, . . . , f1(W8 , W 9 ), . . . , f2(W8 , W 9 ), . . . , W=

)
= <

deg−deg+1
T<,26−4+deg

(
F6,1

(
W1, . . . , f1(W8 , W 9 ), . . . , f2(W8 , W 9 ), . . . , W=

) )
.

We arrive at the level < holomorphic anomaly equation (1) from Section 1. �

4.1. Divisor equation

For primitive curve classes, it was pointed out in [33, Section 3.6, Case (i)] that the holomorphic anomaly

equation in genus 0 is compatible with the divisor equation. For divisibility <, set

3

3W
= 〈W, �〉D@ + <〈W,,〉, W ∈ �2(().

The divisor equation implies that

F6,<
(
g01
(W1) . . . g0=−1

(W=−1)g0(W=)
)

=
3

3W=
F6,<

(
g01
(W1) . . . g0=−1

(W=−1)
)

+

=−1∑
8=1

F6,<
(
g01
(W1) . . . g08−1 (W8 ∪ W=) . . . g0=−1

(W=−1)
)
.

The compatibility with the divisor equation corresponds to

H6,<
(
g01
(W1) . . . g0=−1

(W=−1)g0(W=)
)

=
3

3W=
H6,<

(
g01
(W1) . . . g0=−1

(W=−1)
)

− 2:F6,<
(
g01
(W1) . . . g0=−1

(W=−1)
)

(8)

+

=−1∑
8=1

H6,<
(
g01
(W1) . . . g08−1(W8 ∪ W=) . . . g0=−1

(W=−1)
)
,

where : is the weight of F6,<
(
g01
(W1) . . . g0=−1

(W=−1)
)

and we have used the commutator relation

[ 3

3�2

,D@

]
= −2:.
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The same check as in the primitive case works for arbitrary divisibility. This relies on the fact that

the divisor equation for, is the same as applying the differential operator

D@ = @
3

3@

to the generating series. Indeed, for the curve class V = <� + ℎ�,

〈V,,〉 = −2< + ℎ + < = ℎ − <,

which matches the exponent of @ℎ−< in the generating series F6,<. The divisor equation for � acts as

multiplication by < on the generating series.

In Section 7, the refined induction reduces any generating series ultimately to genera 0 and 1. We

thus have to justify compatibility of the holomorphic anomaly equation for generating series of the form

F1,<

(
g0(p)g0(W1) . . . g0(W=)

)
, W8 ∈ �

2(().

This compatibility is true. By Proposition 28, the multiple cover formula, which is compatible with the

divisor equation, holds in genus ≤ 1. Thus we also find compatibility for the holomorphic anomaly

equation.

Example 21. We consider F0,<

(
g0(,)

2
)

to illustrate compatibility. To compute H0,<, we use the fact

that f(, ⊠,) = *⊥, where the endomorphism f is as defined in Section 1. Since the curve classes

are contained in*, application of the divisor equation to a basis of*⊥ implies

F0,<

(
g0 (*

⊥)
)
= 0.

We find that

H0,<

(
g0(,)

2
)
= −4F0,<

(
g1 (1)g0(,)

)
+

40

<
F0,<

(
g0(�)g0(,)

)
.

In this notation, W= = , is the second, and : = −10 is the weight of F0,<

(
g0 (,)

)
. We have to check

that

H0,<

(
g0(,)

2
)
= D@H0,<

(
g0 (,)

)
+ 20F0,<

(
g0 (,)

)
.

By the dilaton equation, we can verify

H0,<

(
g0 (,)

2
)
− D@H0,<

(
g0 (,)

)
= −2D@F0,<

(
g1(1)

)
− 4F0,<

(
g0 (,)

)
+

20

<
F0,<

(
g0(�)g0(,)

)
= 4D@F0,<

(
∅
)
− 4D@F0,<

(
∅
)
+ 20F0,<

(
g0 (,)

)
= 20F0,<

(
g0 (,)

)
.

Example 22. The previous example in genus 0 illustrates how the second-to-last term in the holomorphic

anomaly equation (2) plays a role. We consider

F1,<

(
g1(,)g0(,)

)
to show how the last term – that is, the term involving f – interacts nontrivially with the other terms.
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The corresponding series H1,< are

H1,<

(
g1(,)g0(,)

)
= 2F0,<

(
g1(,)g0(,)g0(1)g0(�)

)
− 2

(
F1,<

(
g2 (1)g0(,)

)
+ F1,<

(
g1(,)g1(1)

) )
+

20

<

(
F1,<

(
g1(�)g0(,)

)
+ F1,<

(
g1(,)g0(�)

) )
−

2

<
F1,<

(
k1;Δ*⊥

)
,

H1,<

(
g1 (,)

)
= 2F0,<

(
g1(,)g0(1)g0(�)

)
− 2F1,<

(
g2(1)

)
+

20

<
F1,<

(
g1(�)

)
.

Let : = −8 be the weight of F1,<

(
g1(,)

)
. Then equation (8) is equivalent to

H1,<

(
g1 (,)g0(,)

)
= D@H1,<

(
g1(,)

)
− 2:F1,<

(
g1 (,)

)
.

The term F1,<

(
k1;Δ*⊥

)
can be computed using

k1 = [X1] +
1

24
[X0] ∈ �

1("1,2),

where [X0] ∈ �
1("1,2) is the class of the push-forward of the fundamental class under the map

"0,4 → "1,2

gluing the third and fourth markings, and [X1] is the class of the boundary divisor of curves with a

rational component carrying both markings. The genus 0 contribution vanishes by the divisor equation.

Since the rank of*⊥ is 20, we obtain the genus 1 contribution

F1,<

(
k1;Δ*⊥

)
= 20F1,<

(
g0(p)

)
.

The divisor equation for � implies that

20

<
F1,<

(
g1 (,)g0(�)

)
= 20F1,<

(
g1 (,)

)
+

20

<
F1,<

(
g0(p)

)
.

We can now verify compatibility by a direct computation using the divisor and dilaton equation:

H1,<

(
g1(,)g0(,)

)
= D@H1,<

(
g1(,)

)
− 2F1,<

(
g1 (,)

)
− 2F1,<

(
g1 (,)g1(1)

)
+

20

<
F1,<

(
g0(p)

)
+

20

<
F1,<

(
g1(,)g0(�)

)
−

2

<
F1,<

(
k1;Δ*⊥

)
= D@H1,<

(
g1(,)

)
− 4F1,<

(
g1 (,)

)
+

20

<
F1,<

(
g0(p)

)
+

20

<
F1,<

(
g1(,)g0(�)

)
−

40

<
F1,<

(
g0 (p)

)
= D@H1,<

(
g1(,)

)
+ 16F1,<

(
g1(,)

)
.
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5. Relative holomorphic anomaly equation

In this section, we first state the degeneration formula for the reduced virtual class under the degeneration

to the normal cone. For the primitive curve class, the formula is proven in [29]. For the sake of

completeness, we summarise a proof for arbitrary divisibility in Appendix A. Then we state the relative

holomorphic anomaly equation and prove the compatibility with the degeneration formula.

5.1. Degeneration formula

Let ( → P1 be an elliptic K3 surface with a section. For < ≥ 1, let V = <� + ℎ� be a curve class.

Choose a smooth fibre � of ( → P1. Let n : S→ A1 be the total space of the degeneration to the normal

cone of � in (. This space corresponds to the degeneration

( ( ∪� P
1 × �. (9)

Over the centre ] : 0 ↩→ A1, the fibre is ( ∪� P
1 × � , and over C ≠ 0, the fibre is isomorphic to (. Let

"6,= (n, V) be the moduli space of stable maps to the degeneration S. Over C ≠ 0, this moduli space is

isomorphic to "6,= ((, V), and over C = 0, it parametrises stable maps to the expanded target

S̃0 = ( ∪� P
1 × � ∪� · · · ∪� P

1 × �.

Let

a = (61, 62, =1, =2, ℎ1, ℎ2)

be a splitting of the discrete data 6, =, ℎ and let V8 = <� + ℎ8� be the splitting of the curve class. An

ordered partition of <

` = (`1, . . . , `;)

specifies the contact order along the relative divisor � .

Let ; = length(`) and let "6,= (S0, a)` be the fibre product

"6,= (S0, a)` = "61 ,=1
((/�, V1)` ×�; "

•

62 ,=2
(P1 × �/�, V2)` (10)

of the boundary evaluations at relative markings,13 and let

]a` : "6,= (S0, a)` → "6,= (S0, V)

be the finite morphism. Let Δ�; : � ; → � ; × � ; be the diagonal embedding.

Theorem 23. The reduced virtual class of maps to the degeneration (9) satisfies the following properties:

(i) For ]C : {C} ↩→ A1, the Gysin pullback of reduced class is given by

]!C ["6,= (n, V)]
A43 = ["6,= (SC , V)]

A43 .

(ii) For the special fibre,

["6,= (S0, V)]
A43 =

∑
a,`

∏
8 `8

;!
]a`∗ ["6,= (S0, a)`]

A43 .

13We use • to indicate (possibly) disconnected theory – namely, for each connected component � of the domain curve, the
intersection of � with the relative divisor � is nontrivial.
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(iii) On the special fibre, we have the factorisation

["6,= (S0, a)`]
A43 = Δ !

�;

(
["61 ,=1

((/�, V1)`]
A43

× ["
•

62 ,=2
(P1 × �/�, V2)`]

E8A
)
.

Proof. When < ≥ 1, the reduced class of the disconnected moduli space "
•

6,= ((/�, V) vanishes on

all components parametrising maps with at least two connected components. Therefore, disconnected

theory can only appear on the bubble P1 × � . The proof is given in Appendix A. �

Denote an ordered cohomology weighted partition by

` =
(
(`1, X1), . . . , (`; , X;)

)
, X8 ∈ �

∗(�),

and letl ∈ �2(�) be the point class. The descendent potential for the pair ((, �) is defined analogously

to the absolute case:

Frel
6,<

(
U; W1, . . . , W= | `

)
=

∑
ℎ≥0

〈
U; W1, . . . , W= | `

〉(/�
6,<�+ℎ�

@ℎ−<.

The descendent potential for the pair (P1 × �, �) is defined by

Grel,•
6,<

(
U; W1, . . . , W= | `

)
=

∑
ℎ≥0

〈
U; W1, . . . , W= | `

〉P1×�/�,•

6,<�+ℎ�
@ℎ .

As a corollary, we get the degeneration formula of reduced Gromov–Witten invariants:

Corollary 24. Set W1, . . . , W= ∈ �
∗(() and choose a lift of these cohomology classes to the total space

S. Then

F6,<
(
g01
(W1) . . . g0= (W=)

)
=

∑
a

∑
`≠`l

∏
8 `8

;!
Frel
61 ,<

(
. . . | `

)
· Grel,•

62 ,<

(
. . . | `∨

)
, (11)

where

`∨ =
(
(`1, X

∨
1 ), . . . , (`; , X

∨
; )

)
and `l =

(
(`1, l), . . . , (`; , l)

)
.

Proof. By Theorem 23, we are left to prove that the relative profile `l on (/� has vanishing contribution.

Let G be the intersection of the section of the elliptic fibration and the fibre � . We consider (�, G) as an

abelian variety. Let  be the kernel of the following morphism between abelian varieties:

� ; → Pic0 (�), (G8)8 ↦→ O�

(∑
8

`8 (G8 − G)
)
.

Consider a stable map 5 from a curve � to an expanded degeneration of (/� . The equality 5∗ [�] = V1

(after push-forward to () in �2((,Z) lifts to a rational equivalence of line bundles on ( because the

cycle-class map

21 : Pic(() → �2 ((,Z) � �2 ((,Z)

is injective. Intersecting with the relative divisor, the two line bundles are, respectively, O� (
∑
`8G8)

and O� (<G). Thus, we see that the evaluation map "61 ,=1
((/�, V1) → � ; factors through  . Since

 ⊂ � ; has codimension 1, a generic point on � ; does not lie on  , and thus the contribution from the

relative profile `l vanishes. �
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5.2. Relative holomorphic anomaly equations

Assuming quasi-modularity, we have two ways to compute the derivative of F6,< with respect to �2:

(i) Apply the degeneration formula from Corollary 24, together with the holomorphic anomaly equa-

tions for ((, �) and (P1 × �, �).

(ii) Apply the holomorphic anomaly equation (3) for (, followed by the degeneration formula for each

term.

We argue that both methods yield the same result. This compatibility is parallel to the compatibility

proved in [34, Section 4.6]. We first state the holomorphic anomaly equations for the relevant relative

geometries.

Relative (P1 × E,E)

Consider c : P1×� → P1 as a trivial elliptic fibration over P1. For the pair (P1×�, �), the holomorphic

anomaly equation holds for cycle-valued generating series [34]. The equation for descendent potentials

can thus be obtained by integrating against tautological classes U ∈ '∗("6,=). For insertions W8 ∈

�∗(P1 × �,Q), we will simply write W. Let ` =
(
(`1, X1), . . . , (`; , X;)

)
and `′ be ordered cohomology

weighted partitions. We denote by

G∼,•6,<
(
` | U; W | `′

)
=

∑
ℎ≥0

〈
` | U; W | `′

〉P1×�,∼,•

6,<P1+ℎ�
@ℎ

the disconnected rubber generating series for P1 × � relative to divisors at 0 and ∞. Let Δ� ⊂ � × �

be the class of the diagonal. Define the generating series

Prel,•
6,<

(
U; W | `

)
= G

rel,•
6−1,<

(
U; W,ΔP1 | `

)
+ 2

∑
6=61+62

{1,...,=}=�1⊔�2
∀8∈�2:W8 ∈�

2 (�)
ℎ≥0

∑
1;11 ,...,1ℎ
;1 ,...,;ℎ

∏ℎ
8=1 18

ℎ!
Grel,•
61 ,<

(
U�1 ; W�1 | ((1, 1), (18 ,Δ�,;8 )

ℎ
8=1)

)

× G∼,•62 ,<

(
((1, 1), (18 ,Δ

∨
�,ℓ8
)ℎ8=1) | U�2 ; W�2 | `

)
− 2

=∑
8=1

Grel,•
6,<

(
Uk8; W1, . . . , W8−1, c

∗c∗W8 , W8+1, . . . , W= | `
)

− 2

;∑
8=1

Grel,•
6,<

(
U; W | (`1, X1), . . . , (`8 , k

rel
8 c
∗c∗X8), . . . , (`; , X;)

)
,

where krel
8

is the cotangent line class at the 8th relative marking and Δ� =
∑
Δ�,;8 ⊗Δ

∨
�,;8

is the pullback

of the Künneth decomposition of Δ� at the corresponding relative marking. The holomorphic anomaly

equation takes the following form:

Proposition 25 ([34], Proposition 20). G
rel,•
6,< (U; W | `) is a quasi-modular form and

3

3�2

Grel,•
6,< (U; W | `) = Prel,•

6,< (U; W | `).
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Relative (S,E)

Since the log canonical bundle of ((, �) is nontrivial, relative moduli spaces in fibre direction have

nontrivial virtual fundamental class. Define

FE8A−rel
6,0 (U; W | ∅) =

∑
ℎ≥0

〈
U; W | ∅

〉(/�,E8A
6,ℎ�

@ℎ .

Recall that we denote the pullback of the diagonal of P1 as

ΔP1 = 1 ⊠ � + � ⊠ 1 =

2∑
8=1

X8 ⊠ X
∨
8 .

Define a generating series

Hrel
6,<

(
U; W | `

)
= Frel

6−1,<

(
U; W,ΔP1 | `

)
+ 2

∑
6=61+62

{1,...,=}=�1⊔�2
8∈{1,2}

Frel
61 ,<

(
U�1 ; W�1 , X8 | `

)
FE8A−rel
62 ,0

(
U�2 ; W�2 , X

∨
8 | ∅

)

+ 2
∑

6=61+62

{1,...,=}=�1⊔�2
∀8∈�2:W8 ∈�

2 (�)
ℎ≥0

∑
1;11 ,...,1ℎ
;1 ,...,;ℎ

∏ℎ
8=1 18

ℎ!
Frel
61 ,<

(
U�1 ; W�1 | ((1, 1), (18 ,Δ�,;8 )

ℎ
8=1)

)

× G∼,•62 ,<

(
((1, 1), (18 ,Δ

∨
�,ℓ8
)ℎ8=1) | U�2 ; W�2 | `

)
− 2

=∑
8=1

Frel
6,<

(
Uk8; W1, . . . , W8−1, c

∗c∗W8 , W8+1, . . . , W= | `
)

− 2

;∑
8=1

Frel
6,<

(
U; W | ((`1, X1), . . . , (`8 , k

rel
8 c
∗c∗X8), . . . , (`; , X;))

)

+
20

<

=∑
8=1

〈W8 , �〉F
rel
6,<

(
U; W1, . . . , W8−1, �, W8+1, . . . , W= | `

)

−
2

<

∑
8< 9

Frel
6,<

(
U; W1, . . . , f1(W8 , W 9 )︸      ︷︷      ︸

8th

, . . . , f2(W8 , W 9 )︸      ︷︷      ︸
9th

, . . . , W= | `
)
.

The conjectural holomorphic anomaly equation for ((, �) has the form

Frel
6,<(U; W | `) ∈

1

Δ (@)<
QMod(<),

and

3

3�2

Frel
6,<(U; W | `) = Hrel

6,<(U; W | `). (12)

Proposition 26. Let < ≥ 1. Assuming quasi-modularity for F6,< and Frel
6,<, the holomorphic anomaly

equations are compatible with the degeneration formula in the previous sense.
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Proof. The proof given in [34, Proposition 21] treats virtual fundamental classes, not reduced classes.

The splitting behaviour of the reduced class with respect to restriction to boundary divisors [29, Section

7.3] calls for a slight adaptation of the proof. For this, we introduce a formal variable Y with Y2 = 0. We

can then interpret reduced Gromov–Witten invariants of the K3 surface as integrals against the class

["6,= ((, V)]
E8A + Y ["6,= ((, V)]

A43

followed by taking the [Y]-coefficient.14 We consider a similar class for (/� . This class has the advantage

of satisfying the usual splitting behaviour of virtual fundamental classes. Thus, for this class one can

follow the proof of compatibility given in [34, Proposition 21]. All the terms appearing in computation (ii)

also appear in computation (i). We are left with proving the cancellation of the remaining terms

in (i). This follows from comparing the krel
8

-class and the k-class pulled back from the stack of target

degeneration [34, Lemma 22]. In particular, we match the third term of Hrel times Grel,• with the fourth

term of Frel times Prel,•, and analogously the fifth term of Hrel times Grel,• with the second term of Frel

times Prel,•. �

The main advantage of the holomorphic anomaly equation is that it is compatible with the degener-

ation formula. Thus, the genus reduction from the degeneration formula connects the low-genus results

with arbitrary-genus predictions. On the other hand, it is not even clear what the compatibility of the

multiple cover formula and the degeneration formula should be.

6. Tautological relations and initial condition

This section contains a proof of the multiple cover formula in genera 0 and 1 for any divisibility <. It

is a direct consequence of the KKV formula. However, as an initial condition for our induction we also

require a special case in genus 2, which cannot be easily deduced from the KKV formula. We treat this

descendent potential separately, using double ramification relations [3] for K3 surfaces. This approach

is likely to give relations in any genus and will be pursued in the future.

6.1. Double ramification relations

In this section we recall double ramification relations with target variety developed in [2, 3].

Let Pic6,= be the Picard stack for the universal curve over the stack of prestable curves M6,= of

genus 6 with = markings. Let

c : ℭ → Pic6,=, B8 : Pic6,= → ℭ, L→ ℭ, lc → ℭ (13)

be the universal curve, the 8th section, the universal line bundle and the relative dualising sheaf of c,

respectively. The following operational Chow classes onPic6,= are obtained from the universal structure

(13):

◦ k8 = 21 (B
∗
8lc) ∈ �

1
op (Pic6,=),

◦ b8 = 21 (B
∗
8L) ∈ �

1
op (Pic6,=),

◦ [ = c∗
(
21 (L)

2
)
∈ �1

op (Pic6,=).

Let � = (01, . . . , 0=) ∈ Z
= be a vector of integers satisfying∑

8

08 = 3, (14)

where 3 is the degree of the line bundle. We denote by %
2,A

6,�,3
the codimension 2 component of the class

14We thank G. Oberdieck for pointing this out.
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∑
Γ∈G6,=,3

F ∈WΓ,A

A−ℎ
1 (ΓX )

|Aut(ΓX) |
9Γ∗

[
=∏
8=1

exp

(
1

2
02
8k8 + 08b8

) ∏
E ∈+ (ΓX )

exp

(
−

1

2
[(E)

)

∏
4=(ℎ,ℎ′) ∈� (Γ)

1 − exp
(
−
F (ℎ)F (ℎ′)

2
(kℎ + kℎ′)

)
kℎ + kℎ′

]
.

We refer to [3] for details about the notations. This expression is polynomial in A when A is sufficiently

large. Let % 2
6,�,3

be the constant part of %
2,A

6,�,3
.

Theorem 27 ([3], Theorem 8). % 2
6,�,3

= 0 for all 2 > 6 in �2op (Pic6,=).

After restricting % 2
6,�,3

to equation (14), this expression is a polynomial in 01, . . . , 0=−1. The poly-

nomiality will be used to get refined relations.

Let ! be a line bundle on ( with degree ∫
V

21 (!) = 3.

The choice of a line bundle ! induces a morphism

i! : "6,= ((, V) → Pic6,=, [ 5 : � → (] ↦→ (�, 5 ∗!).

Then Theorem 27 gives relations

% 26,�,3 (!) = i
∗
!%

2
6,�,3 ∩ ["6,= ((, V)]

A43 = 0 for all 2 > 6 (15)

in �6+=−2
(
"6,= ((, V)

)
.

6.2. Compatibility II

The relations among descendent potentials coming from tautological relations on "6,= ((, V) are com-

patible with the multiple cover formula. This follows from two observations. First, the splitting behaviour

of the reduced class, discussed in Section 3.2, is crucial. It is already crucial to justify compatibility

with respect to boundary restriction for tautological classes pulled back from "6,=. For tautological

relations on "6,= ((, V), a second fact is essential for the compatibility.

For 2 > 6 > 0, � ∈ Z= and 1 ∈ Z, consider the series of relations

%26,1�,31 (!
⊗1) = 0

obtained by tensoring the line bundle ! by 1 times. For each coefficient of a monomial in 08-variables,

this expression is polynomial in 1, and hence each 1-variable is a relation. As a consequence, each term

of a relation %2
6,�,<

(�) gives the same value of

<
deg−deg

,

where deg(b) = 1 and deg(b) = 0, as in Definition 1.1. The same holds true with the roles of � and,

interchanged. Thus, the relations are compatible with the operator

<
deg−deg

T<,26−2+deg,

which gives the multiple cover formula in Conjecture 15.
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6.3. Initial condition

The KKV formula implies that the generating series of _6-integrals

F6,<
(
_6; ∅

)
satisfies the multiple cover formula [36]. Here, _6 = 26 (E6) is the top Chern class of the rank 6 Hodge

bundle E6 on "6 ((, V). The KKV formula will be the starting point of our genus induction.

The class _6 is a tautological class by the Grothendieck–Riemann–Roch computation [15], but

the formula is rather complicated. Instead we use an alternative expression of _6 in terms of double

ramification cycle, proven in [17]. We recall that the class (−1)6_6 is equal to the double ramification

cycle DR6 (∅) with the empty condition. By [17, Theorem 1], the class DR6 (∅) can be written as a graph

sum of tautological classes without ^-classes.

Proposition 28. The multiple cover formula holds in genera 0 and 1 for all < ≥ 1.

Proof. When 6 = 0, 1, the tautological ring '∗ ("6,=) is additively generated by boundary strata [19, 37].

Thus, one can replace descendents U ∈ '∗("6,=) by classes in �∗((). By the divisor equation and the

dimension constraint, we can reduce to the case F0,<

(
∅
)

and F1,<(g0 (p)). The genus 0 case is covered

by the full Yau–Zaslow formula [21, 36]. The genus 1 case follows from the genus 2 KKV formula.

Using the boundary expression of _2 on "2, we have

F2,<

(
_2; ∅

)
=

1

240
F1,<

(
k1;Δ(

)
+

1

1152
F0,<

(
;Δ( ,Δ(

)
=

1

10
F1,<

(
g0 (p)

)
+

1

60
D2
@F0,<

(
∅
)
,

where Δ( ⊂ ( × ( is the diagonal class. Therefore, F1,<

(
g0 (p)

)
satisfies Conjecture 15. �

In the argument to follow, we will use tautological relations on "6,= which have recently been

obtained by A-spin relations. For convenience, we summarise the result.

Proposition 29 ([23]). Set 6 ≥ 2 and = ≥ 1. Consider tautological classes on "6,=.

(i) (Topological recursion relations) Any monomial ofk-classes of degree at least 6 can be represented
by a tautological class supported on boundary strata without ^-classes.

(ii) Any tautological class of degree 6 − 1 can represented by a sum of a linear combination of
k
6−1

1
, . . . , k

6−1
= and a tautological class supported on boundary strata.

Proof. The proof of (i) follows from the proof of [23, Lemma 5.2] (see also [12, page 3]). By [23,

Proposition 3.1] (or [10, Theorem 1.1]), the degree 6−1 part '6−1(M6,=) is spanned by k
6−1

1
, . . . , k

6−1
= .

Since relations used in the proof are all tautological, the boundary expression is tautological, and thus

we obtain (ii). �

Together with the boundary expression for _6+1, we obtain the following more general consequence

of the KKV formula:

Proposition 30. Set < ≥ 1 and 6 ≥ 1. Assume that the multiple cover formula from Conjecture 15
holds for < and all descendents of genus < 6. Then Conjecture 15 holds for

F6,<
(
g6−1(p)

)
.

Proof. Let X ∈ '1("6) be the boundary divisor corresponding to a curve with nonseparating node.

Denote two half-edges as ℎ and ℎ′. Recall that (−1)6_6 is equal to the double ramification cycle DR6 (∅)

with the empty condition. We use this formula for genus 6 + 1. By [17, Theorem 1],
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(−1)6+1_6+1 = DR6+1(∅)

=
1

2

[
−

1

(6 + 1)!

A−1∑
F=0

(F2

2
(kℎ + kℎ′)

)6]
A1
X + lower genus,

where [· · · ]A1 is the coefficient of the linear part of a polynomial in A . The leading term is nonzero by

Faulhaber’s formula.

By Proposition 29(i), any k-monomial in '≥6 ("6,=) can be represented by a sum of tautological

classes supported on boundary strata without ^ classes. There is only one graph with a genus 6 vertex

(with a rational component carrying both markings). The graph is decorated with a polynomial of

degree 6 − 1 in k- and ^-classes. By Proposition 29(ii), this tautological class can be represented by a

sum of a multiple of k6−1 and tautological classes supported on boundary strata. We find that

(k1 + k2)
6 = 2

6 0

1

2

k6−1

+ lower genus

in '6 ("6,2) for some 2 ∈ Q.15 Therefore, it suffices to prove that 2 is nonzero. Recall that _6_6−1

vanishes on "6,= \ "
AC
6,=, so

∫
"6,2

(k1 + k2)
6_6_6−1 = 2

∫
"6,1

k
6−1

1
_6_6−1.

The left-hand side of the equation is nonzero by [17, Lemma 8], which concludes the proof. �

We now consider the case of genus 2. By the Getzler–Ionel vanishing on "2,=, the dimension

constraint and the divisor equation, any descendent insertion reduces to the following three cases:

F2,<

(
g1(p)

)
, F2,<

(
g0 (p)

2
)
, F2,<

(
g1(W)g0 (p)

)
, with W ∈ �2 (().

The first case is treated in Proposition 30 and follows from the KKV formula in genus ≤ 3. The second

case, for < = 2, is treated as part of the proof of Theorem 1 in Section 7. We use the double ramification

relation (15) to prove the multiple cover formula for the third case. The point class p will be obtained as

the product of � and, .

Proposition 31. For W ∈ �2((), the generating series F2,<(g1 (W)g0(p)) satisfies Conjecture 15.

Proof. We will use relations in �2+=−3

(
"2,= ((, V)

)
,

%3
2,�,< (�) = 0,

associated to the line bundle O( (�) on (. More precisely, we will distinguish two cases W ∈ * and

W ∈ *⊥ and set respectively

� = (01, < − 01), � = (01, 02, < − 01 − 02).

Refined relations are then obtained by considering particular monomials in the 08 , as outlined in the

previous section. The [-class vanishes in this case, because 〈�, �〉 = 0, and b2
8 vanishes for the same

reason. Define

- = F2,<

(
g1 (W)g0(p)

)
.

15The number under each vertex is the genus, and legs correspond to markings.
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The case W = � is treated first. As explained in Section 6.1, the tautological relations are polynomial in

08 , and we may obtain a refined relation by considering the [04
1
]-coefficient of

%3
2,�,< (�) |02=<−01

.

We will only need to consider boundary strata which both

◦ contribute to - and

◦ contribute to the [04
1
]-coefficient.

These two properties simplify the calculation significantly. By the splitting property of the reduced

class, a relevant boundary stratum is a tree with one genus 2 vertex and contracted genus 0 components.

The integrals are given by the intersection product of the corresponding insertions. In the case with only

two markings, the only relevant stratum16 is

ℎ ℎ′
1

2.

The weight factor for this stratum is

F(ℎ)F(ℎ′)

2
= −

<2

2
.

This stratum, therefore, cannot contribute to the [04
1
]-coefficient, since k-classes on the genus 0 com-

ponent vanish. It remains to determine the contributions from the trivial graph

1 2.

We will order the terms by the total degree deg(k) in the k-classes:

0. deg(k) = 0. The relation we consider is of codimension 3. This case is therefore impossible, by

virtue of b2
8 = 0.

1. deg(k) = 1. This case results in nontrivial terms, discussed later.

2. deg(k) ≥ 2. We may apply Proposition 29(i) to reduce to the descendent F2,<

(
g1 (p)

)
. This

descendent is covered by Proposition 30.

Therefore, up to lower-genus data, the [04
1
]-coefficient is

−
1

2
k1b1b2 −

1

2
k2b1b2.

Integrating

ev∗2(,)%
3
2,�,<(�) |02=<−01

against the reduced class, we find (up to lower-genus data)

−
1

2
- −

<

2
F2,<

(
g1 (p)

)
,

16The genus 2 vertex is represented by a filled node, and other nodes represent genus 0 vertices. Labeled half-edges correspond
to markings.
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where the second term is obtained by application of the divisor equation. We thus find that - is a linear

combination of terms which satisfy Conjecture 15. Switching the role of � and, , we obtain the same

result for W = , .

Next we consider W ∈ *⊥. The following vanishing of intersection products will be used frequently:

〈W, �〉 = 0, 〈W,,〉 = 0, 〈W, V〉 = 0.

We use a similar argument as before;17 this time, however, we use three markings and consider the

[03
1
02]-coefficient of

ev∗1(W) ev
∗
2(,)%

3
2,�,<(�) |03=<−01−02

. (16)

By the given vanishing of intersection products, the only possible trees with nontrivial contribution are

2

3,

1
ℎ ℎ′

1

3.

2
ℎ ℎ′

The weight factor for the right stratum is

F(ℎ)F(ℎ′)

2
= −
(< − 02)

2

2
.

Since k-classes on the genus 0 component vanish, the power of 01 in any monomial obtained from this

stratum is bounded by 2. The contribution to the [03
1
02]-coefficient is, therefore, zero.

Next we explain the contributions from the left stratum. Note that the left vertex is of genus 2 with

two markings, and we can apply the same reasoning as in the previous discussion for W = �. Here the

deg(k) = 0 term b1b2 has trivial contribution due to 〈W, �〉 = 0. The deg(k) = 1 terms kℎb2, kℎb3

have vanishing contribution by application of the divisor equation for W. Nontrivial contributions are

obtained only from

k1b2, k1b3.

These two terms have contributions

−
(< − 01)

2

4
02

102-, −
(< − 01)

2

4
02

103-.

The [03
1
02]-coefficients, however, cancel due to 03 = <−01−02. It remains to determine the contributions

from the trivial graph

1 2 3.

As before, we order the terms by the total degree deg(k) in the k-classes:

0. deg(k) = 0. The relation we consider is of codimension 3. Since b2
8 = 0, the class b1 must appear.

This term, however, vanishes because 〈W, �〉 = 0.

1. deg(k) = 1. This case results in nontrivial terms corresponding to k1 or k3, discussed later. The

choice of the monomial [03
1
02] excludes the appearance of k2.

2. deg(k) = 2. This case results in nontrivial terms corresponding to k1k3 or k2
3
, discussed later.

The choice of the monomial [03
1
02] excludes the appearance of k2

1
.

17We are grateful to the referee for pointing out a mistake in an earlier version of the text. It has become clear that the choice of
monomial leading to nontrivial relations is a very subtle one. Symmetry in the 08 and the insertions causes cancellation in many
cases. We plan to come back to this in future work.
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3. deg(k) = 3. As before, this case reduces to the descendent F2,<

(
g1 (p)

)
, which is covered already.

The contributions from deg(k) ∈ {1, 2} are

k1b2b3 →
1

2
02

10203F2,<

(
g1 (W)g0(p)g0(�)

)
=

1

2
02

102 (< − 01 − 02)<-,

k3b2b3 →
1

2
02

30203F2,<

(
g0 (W)g0(p)g1(�)

)
=0,

k1k3b2 →
1

2
02

1

1

2
02

302F2,<

(
g1(W)g0(p)g1(1)

)
=02

102 (< − 01 − 02)
2-,

k1k3b3 →
1

2
02

1

1

2
03

3F2,<

(
g1 (W)g0(,)g1(�)

)
=

1

4
02

1 (< − 01 − 02)
3- + (lower genus),

k2
3b2 →

1

8
04

302F2,<

(
g0 (W)g0(p)g2(1)

)
=

1

8
02 (< − 01 − 02)

4-,

k2
3b3 →

1

8
04

303F2,<

(
g0 (W)g0(,)g2(�)

)
=0.

The third calculation uses the dilaton equation. All of the other calculations are obtained by application

of the divisor equation. Additionally, the fourth calculation involves Proposition 29. The only stratum

with a genus 2 vertex (that is, with both markings on a contracted genus 0 component) has vanishing

contribution because 〈W, �〉 = 0, and therefore the relation reduces to lower-genus descendents. The

total contribution to [03
1
02] is

−
1

2
<- − 2<- +

3

2
<- −

1

2
<- = −

3

2
<-.

We find that - is a linear combination of terms which satisfy Conjecture 15. �

Remark 32. In fact, for W ∈ *⊥ the previous generating series vanishes (and thus trivially satisfies the

multiple cover formula). A proof in the primitive case is given in [9, Lemma 4].

7. Proof of Theorems 1 and 3

7.1. Proof of Theorem 1

The proof proceeds via induction on the pair (6, =) ordered by lexicographic order: (6′, =′) < (6, =) if

◦ 6′ < 6 or

◦ 6′ = 6 and =′ < =.

Recall the dimension constraint of insertions:

6 + = = deg(U) +
∑
8

deg(W8).
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We separate the proof into several steps.

Case 0. The genus 0 case is covered by Proposition 28. This serves as the start for our induction.

Case 1. If all cohomology classes W8 satisfy deg(W8) ≤ 1, then deg(U) ≥ 6, and by the strong

form of Getzler–Ionel vanishing [15, Proposition 2] we have U = ]∗U
′ with U′ ∈ '∗(m"6,=) and

] : m"6,= → "6,=. We are thus reduced to lower (6, =).

Case 2. Assume deg(U) ≤ 6 − 2 or, equivalently, that there exist at least two descendents of the point

class. We use the degeneration to the normal cone of a smooth elliptic fibre:

( ( ∪� (P
1 × �).

We specialise the point class to the bubble P1 × � . Let � = � ′ ∪ � ′′ be the splitting of a domain

curve appearing in the degeneration formula in Theorem 23. Namely, � ′ is the component on ( and � ′′

is the component on P1 × � . We argue that this splitting has nontrivial contribution only for 6(� ′) < 6.

If 6(� ′) = 6, this forces � ′′ to be a disconnected union of two rational curves. Since the degree of

the curve class along the divisor is 〈2� + ℎ�, �〉 = 2, the two descendents of the point class then

force the cohomology weighted partition to be (1, 1)2 on the bubble or, equivalently, (1, l)2 for ((, �).

This contribution vanishes because there are no curves which can satisfy this condition (if (1, l)2 is

represented by a generic point in �2, see Corollary 24).

Case 3. Assume deg(U) = 6−1 or, equivalently, that there exists only one descendent of the point class.

We may thus assume W1 = p. If = = 1, 6 ≥ 2, we can move g6−1(p) to the bubble and the genus on (

drops.

When = ≥ 2, moving the point class to the bubble as in case 2 may not reduce the genus. In particular,

moving g0 (p) to the bubble has nontrivial contribution from rational curves on the bubble. On the other

hand, if 0 ≥ 1, moving g0 (p) to the bubble reduces the genus on ( because of the dimension constraint.

We use Buryak, Shadrin and Zvonkine’s description of the top tautological group '6−1("6,=) [10].

For any U ∈ '6−1("6,=), the restriction of U to "6,= is a linear combination of

'6−1("6,=) = Q
〈
k
6−1

1
, k

6−1

2
, . . . , k

6−1
=

〉
(17)

and the boundary term is also a tautological class in '6−1(m"6,=). By the divisor equation and

subsequent use of equation (17), we can reduce to cases for ≤ (6, 2). When 6 ≥ 3, equation (17) has a

different basis,

'6−1("6,2) = Q
〈
k
6−1

1
, k1k

6−2

2

〉
,

which is an easy consequence of the generalised top intersection formula. Therefore, we may assume

the descendent of the point class is of the form g0 (p) with 0 ≥ 1. Specialising this insertion to the

bubble P1 × � reduces the genus, and hence the same argument as in case 2 applies. The genus 2 case

is covered by Proposition 31.

Relative vs. absolute. We reduced to invariants for ((, �) with genus 6′ < 6. As explained in the proof

of [29, Lemma 31] (see also [28]), the degeneration formula provides an upper triangular relation

between absolute and relative invariants for all pairs ≤ (6′, =′). Thus our induction applies. �

7.2. Proof of Theorem 3

We argue by showing that each induction step in the proof of Theorem 1 is compatible with the

holomorphic anomaly equation. A nontrivial step appears when the degeneration formula is used. From

the compatibility result in Proposition 26, we are reduced to proving the relative holomorphic anomaly

equation for lower-genus relative generating series Frel
6′,2

for ((, �) and relative generating series for
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(P1 × �, �). The holomorphic anomaly equation for (P1 × �, �) is established in [33]. Because of

the relative versus absolute correspondence [28], we are reduced to proving the holomorphic anomaly

equation for F6′,2 in genera 0, 1 and some genus 2 descendents. We proved the multiple cover formula

for these cases in Section 6, which implies the holomorphic anomaly equation by Proposition 5. �

Remark 33. Parallel argument shows that we can always reduce the proof for arbitrary descendent

insertions to the case where the number of point insertions is less than or equal to < − 1.

8. Examples

Example 34. We compute F1,2

(
g1(�)

)
via topological recursion in genus 1 and illustrate Conjecture 15.

Let [X0] ∈ �
1("1,1) be the push-forward of the fundamental class under the gluing map

"0,3 → "1,1.

Since

k1 =
1

24
[X0] ∈ �

1("1,1),

we obtain

F1,1

(
g1(�)

)
=

1

24
F0,1

(
g0(�)g0(Δ()

)
=

1

12
F0,1

(
g0 (�)g0(� ×,)

)

=
1

12
D@F0,1,

where Δ( ⊂ ( × ( is the diagonal class. Analogously,

F1,2

(
g1(�)

)
=

1

24
F0,2

(
g0 (�)g0(Δ()

)
=

1

3
D@F0,2.

Using the multiple cover formula in genus 0,

F0,2 = T2F0,1 +
1023

8192
F0,1 (@

2),

we obtain

F1,2

(
g1(�)

)
=

1

3
D@F0,2 = 2T2

1

12
D@F0,1 +

1023

1024
B2

1

12
D@F0,1

= 2T2F1,1

(
g1 (�)

)
+ (20 − 2−10)B2F1,1

(
g1(�)

)
,

in perfect agreement with Conjecture 15 using the formula for T2,0 from Lemma 12.

Example 35. We compute F2,2(g0 (p)
2) via the degeneration formula and verify the multiple cover

formula. The first two terms are computed by the classical geometry of K3 surfaces in [32]. For

simplicity, we write F1,2 = F1,2 (g0(p)). The relative invariants for ((, �) can be written in terms of

absolute invariants:

Lemma 36.

(i) Frel
0,2

(
∅ | (1, 1)2

)
= 2F0,2,

(ii) Frel
1,2

(
∅ | (1, 1), (1, l)

)
= F1,2 − 2F0,2D@�2,

(iii) Frel
1,2

(
∅ | (2, 1)

)
= 1

3
D@F0,2 − 4�2F0,2.
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Proof. This is a standard computation of the relative versus absolute correspondence [28]. �

The relative invariants for (P1 × �, �) can be computed by the Gromov–Witten invariants of � :

Lemma 37.

(i) Grel
0,1

(
g0 (p) | (1, 1)

)
= 1, Grel

0,1

(
∅ | (1, l)

)
= 1,

(ii) Grel
1,1

(
g0 (p) | (1, l)

)
= D@�2, Grel

1,1

(
g0(p)

2 | (1, 1)
)
= 2D@�2,

(iii) Grel
2,1

(
g0 (p)

2 | (1, l)
)
= (D@�2)

2,

(iv) Grel
1,2

(
g0 (p)

2 | (2, l)
)
= D2

@�2, Grel
1,2

(
g0 (p)

2 | (1, l)2
)
= D3

@�2.

Consider the degeneration where two point insertions move to the bubble P1 × � . By Theorem 23,

F2,2

(
g0(p)

2
)
=

(
F1,2 − 2F0,2D@�2

)
4D@�2 +

(1
3

D@F0,2 − 4�2F0,2

)
2D2

@�2

+ (2F0,2)
1

2

(
D3
@�2 + 4(D@�2)

2
)

= 36@ + 8760@2 + 754992@3 + 36694512@4 + · · · .

On the other hand, the primitive generating series

F2,1

(
g0(p)

2
)
=

(
D@�2

)2

Δ (@)

is computed in [7], and one can apply the multiple cover formula to obtain a candidate for F2,2

(
g0(p)

2
)
.

The first few terms of the two generating series match. It is enough to conclude that the two generating

series are indeed equal because the space of quasi-modular forms with given weight is finite-dimensional.

However, it seems nontrivial to match the formula from the degeneration with the formula provided by

Conjecture 15.

Appendix A. A proof of the degeneration formula

For a self-contained exposition, we present a proof of the degeneration formula which is parallel to the

proof in [29, 30]. When < = 1, 2, a proof using symplectic geometry was presented in [24].

Perfect obstruction theory

For simplicity, assume = = 0. General cases easily follow from this case. Let n : S → A1 be the total

family of the degeneration and

"6 (n, V) → A
1

be the moduli space of stable maps to the expanded target S̃. For the relative profile `, the embedding

]` : "6 (S0, `) ↩→ "6 (n, V)

can be realised as a Cartier pseudo-divisor (!`, B`).

Let En → LMg (n ,V)
be the perfect obstruction theory constructed in [27]. Then the perfect obstruction

theories E0 and E` of "6 (S0, V) and "6 (S0, `) sit in exact triangles

!∨0 → ]∗0En → E0

[1]
−−→

!∨` → ]∗`En → E`
[1]
−−→ .
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On "6 (S0, `), the perfect obstruction theory splits as follows. Let E1 and E2 be the perfect obstruction

theory of relative stable map spaces "6 ((/�, V1)` and "6 (P
1 × �/�, V2)`, respectively. There exists

an exact triangle

; (`)⊕
8=1

(#∨
Δ�/�×�

)8 → E1 ⊞ E2 → E`
[1]
−−→ (A.1)

where (#∨
Δ�/�×�

)8 is the pullback of the conormal bundle of the diagonal Δ� ⊂ � × � along the 8th

relative marking.

Reduced class

Let d : S̃→ ( × A1 → ( be the projection. By pulling back the holomorphic symplectic form on ( via

d, one can define a cosection of the obstruction sheaf of En

$1
"6 (n ,V)

→ O

(see [20, Section 5]). Dualising the cosection gives a morphism

W : O[1] → En .

Let Ered
n be the cone of W which gives the reduced class on "6 (n, V). Similarly, we can construct

Wrel : O[1] → E1

for the moduli space of relative stable maps "6 ((/�, V).

Degeneration formula for reduced class

Restricting W to "6 (S0, V) and "6 (S0, `), we get

W0 : O[1] → ]∗0En → E0

W` : O[1] → ]∗`En → E`,

where the compositions induce reduced classes. The exact triangles

!∨0 → ]∗0Ered
n → Ered

0

[1]
−−→

!∨` → ]`Ered
n → Ered

`

[1]
−−→

still hold.

Lemma 38. We have an exact triangle

#∨
Δ
�; /�;×�; → Ered

1 ⊞ E2 → Ered
`

[1]
−−→

on "6 (S0, `) compatible with the structure maps to the cotangent complex.
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Proof. Consider the diagram of complexes

O[1] ⊞ 0 O[1]

⊕; (`)

8=1
(#∨

Δ�/�×�
)8 E1 ⊞ E2 E`

⊕; (`)

8=1
(#∨

Δ�/�×�
)8 Ered

1
⊞ E2 Ered

` ,

Wrel⊞0 W`

where the middle horizontal morphisms are the exact triangle from formula (A.1). The square on the top

commutes because the cosections for S̃ and ((, �) are both coming from the holomorphic symplectic

form on (. The vertical morphisms are exact triangles and hence induce a map between cones. �

Now Theorem 23 is a direct consequence of Lemma 38.
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